MAT 2377 Probability and Statistics for Engineers

Practice Set

P. Boily (uOttawa)

Winter 2021

Based on course notes by Rafał Kulik

- **Q91**. Use the data from **Q89**.
- a) Provide a the 5-number summary of the data $(q_0, q_1, q_2, q_3, q_4)$, as well as the interquartile range IQR.
- b) Display the 5-number summary as a boxplot chart.

Solution:

a) To make it easy to compute the quartiles, we provide an **ordered stemand-leaf diagram** of the concentrations on the next slide. There were 100 observations, so

$$Q_0 = 0.85, \ Q_1 = 0.89, \ Q_2 = 0.92, \ Q_3 = 0.97, \ Q_4 = 1.06.$$

The IQR, meanwhile, is $Q_3 - Q_1 = 0.08$.

b) There are no outliers since

$$Q_1 - 1.5 \times IQR = 0.85 - 1.5(0.08) < Q_0$$
, and
 $Q_3 + 1.5 \times IQR = 0.97 + 1.5(0.08) > Q_4$.

Practice Set

Table 6.2-6 Ordered stem-and-leaf diagram of fluoride concentrations		
Stems	Leaves	Frequency
0.8 f	5555	4
0.8 s	6667777	7
0.8•	8888888899999999	16
0.9*	00000000111111111	17
0.9 t	2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3	19
0.9 <i>f</i>	4 4 5 5 5 5 5 5 5 5	9
0.9 s	667777	6
0.9•	888888899	10
1.0*	0000111	7
1.0 t	233	3
1.0 f	5	1
1.0 s	6	1

Practice Set

Q92. Use the data from **Q89**. Compute the midrange $\frac{1}{2}(Q_0 + Q_4)$, the trimean $\frac{1}{4}(Q_1 + 2Q_2 + Q_3)$, and the range $Q_4 - Q_0$ for the fluoride data.

Solution: The midrange is $\frac{1}{2}(Q_0 + Q_4) = \frac{1}{2}(0.85 + 1.06) = 0.955$. The trimean is $\frac{1}{4}(Q_1 + 2Q_2 + Q_3) = \frac{1}{4}(0.89 + 2(0.92) + 0.97) = 0.925$. The range is $Q_4 - Q_0 = 1.06 - 0.85 = 0.21$. Q125. Consider the following dataset:

2.63.70.89.65.8-0.80.70.64.81.23.35.03.70.1-3.10.3

The median and the interquartile range of the sample are, respectively:

a)2.4, 3.3 b)1.9, 3.8 c)1.9, 1.8 d)2.9, 12.2 e)none of the preceding **Solution:** the correct answer is a).

Q128. Assume that random variables $\{X_1, \ldots, X_8\}$ follow a normal distribution with mean 2 and variance 24. Independently, assume that random variables $\{Y_1, \ldots, X_{16}\}$ follow a normal distribution with mean 1 and variance 16. Let \overline{X} and \overline{Y} be the corresponding sample means. Then $P(\overline{X} + \overline{Y} > 4)$ is:

Solution: since the X_i and Y_j are independent,

$$\overline{X} + \overline{Y} \sim \mathcal{N}\left(2+1, \frac{24}{8} + \frac{16}{16}\right) = \mathcal{N}(3, 4).$$

Thus

$$P(\overline{X} + \overline{Y} > 4) = P\left(\frac{\overline{X} + \overline{Y} - 3}{\sqrt{4}} > \frac{4 - 3}{\sqrt{4}}\right) = P(Z > 0.5)$$
$$= 1 - P(Z < 0.5) = 1 - \Phi(0.5) \approx 1 - 0.6915 = 0.3085.$$

Q136. The following charts show a histogram and a boxplot for two samples, A and B. Based on these charts, we may conclude that

a)only A arises from a normal populationb)only B arises from a normal populationc)both A and B arise from a normal population

Based on course notes by Rafał Kulik

Solution: it is reasonable to expect that A arises from a normal population, but the skew and asymmetric distribution for B means it does not come from a normal distribution.