
MAT 2125 – Homework 5 – Solutions
(due at midnight on April 14, in Brightspace)

1 Properties of the Riemann Integral

1. Let f : [a, b]→ R be continuous, f ≥ 0 on [a, b], and
∫ b
a
f = 0. Show that f(x) = 0 for all x ∈ [a, b].

Proof: We will show the contrapositive of the statement.

Suppose that there exists z ∈ [a, b] such that f(z) > 0. Since f is continuous, we may assume z ∈ (a, b).1

Then, taking ε = f(z)/2 in the definition of continuity, there exists a δ > 0 such that

|x− z| < δ =⇒ |f(x)− f(z)| < f(z)/2 =⇒ f(x) > f(z)/2.

Reducing δ if necessary, we may assume δ ≤ min{z − a, b− a}. Therefore,

[z − δ/2, z + δ/2] ⊆ (z − δ, z + δ) ⊆ [a, b].

Thus ∫ b

a

f =

∫ z−δ/2

a

f +

∫ z+δ/2

z−δ/2
f +

∫ b

z+δ/2

f ≥ 0 + δf(z)/2 + 0 > 0.

This completes the proof. �

2. Let f : [a, b]→ R be continuous and let
∫ b
a
f = 0. Show ∃c ∈ [a, b] such that f(c) = 0.

Proof: We will show the contrapositive of the statement.

Suppose f(c) 6= 0 for all c ∈ [a, b]. Then, by the Intermediate Value Theorem, either f(x) > 0 for
all x ∈ [a, b] or f(x) < 0 for all x ∈ [a, b].

If f(x) > 0 for all x ∈ [a, b], then
∫ b
a
f > 0 by the preceding question. Similarly, if f(x) < 0 for all

x ∈ [a, b], then
∫ b
a

(−f) > 0, which implies that −
∫ b
a
f > 0. In both cases,

∫ b
a
f 6= 0. �

2 Fundamental Theorem of Calculus

1. Let f : [0, 3]→ R be defined by

f(x) =


x x ∈ [0, 1)

1 x ∈ [1, 2)

x x ∈ [2, 3]

.

Find F : [0, 3]→ R, where

F (x) =

∫ x

0

f.

Where is F differentiable? What is F ′ there?

Proof: The function f is increasing on [0, 3] so it is Riemann integrable there. The function F is given
by

F (x) =


x2

2 , x ∈ [0, 1)

x− 1
2 , x ∈ [1, 2)

x2−1
2 , x ∈ [2, 3]

By the Fundamental Theorem of Calculus, F is differentiable wherever f is continuous, that is on [0, 2)∪
(2, 3], and F ′ = f there. �

1If f(z) = 0 for all z ∈ (a, b), then f(a) = f(b) = 0.
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2. Compute
d

dx

∫ x

−x
et

2

dt.

Proof: According to the additivity property of the Riemann integral and the Fundamental Theorem
of Calculus, we have

d

dx

∫ x

−x
et

2

dt =
d

dx

(∫ 0

−x
et

2

dt+

∫ x

0

et
2

dt

)
=

d

dx

(
−
∫ −x
0

et
2

dt+

∫ x

0

et
2

dt

)
= − d

dx

∫ −x
0

et
2

dt+
d

dx

∫ x

0

et
2

dt = −ex
2

· (−1) + ex
2

= 2ex
2

,

where we used the chain rule in the second-to-last equality. �

3 Improper Integrals

1. Let f : [a, b] → R be Riemann-integrable on [a + δ, b] and unbounded in the interval (a, a + δ) for every
0 < δ < b− a. Define ∫ b

a

f = lim
δ→0+

∫ b

a+δ

f,

where δ → 0+ means that δ → 0 and δ > 0. A similar construction allows us to define∫ b

a

g = lim
δ→0+

∫ b−δ

a

g.

Such integrals are said to be improper ; when the limits exist, they are further said to be convergent.

How can the expression ∫ 1

0

1√
|x|

dx

be interpreted as an improper integral? Is it convergent? If so, what is its value?

Proof: By definition, ∫ 1

0

1√
|x|

dx = lim
a→0+

∫ 1

a

1√
x
dx = lim

a→0+

(
2
√

1− 2
√
a
)

= 2.

Thus the improper integral converges to 2. �

2. For which values of s does the integral
∫ 1

0
xs dx converge? You may use the antiderivatives rules of calculus.

Proof. If s ≥ 0, the integral is not improper. The integrand being continuous, the integral exists
(i.e. converges) for those values of s. Now, consider s < 0.

First assume s 6= −1. We have∫ 1

0

xs dx = lim
a→0+

∫ 1

a

xs dx = lim
a→0+

(
1s+1

s+ 1
− as+1

s+ 1

)
.

This limit exists if and only if s > −1, in which case it is equal to 1
s+1 . Now, if s = −1, then we have∫ 1

0

xs dx = lim
a→0+

∫ 1

a

x−1 dx = lim
a→0+

(
log 1− log a

)
,

which does not exist. Therefore, the given improper integral converges if and only if s > −1. �
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4 Sequences of Functions

1. Show that lim
n→∞

∫ π

π/2

sin(nx)

nx
dx = 0. You may assume that sin is continuous and that | sinx| ≤ 1, ∀x ∈ R.

Proof: For n ∈ N, define fn : [π/2, π]→ R by

fn(x) =
sin(nx)

nx
.

Then each fn is continuous. For all n ∈ N, we have

sup
x∈[π/2,π]

{∣∣∣∣ sin(nx)

nx

∣∣∣∣} ≤ 2

nπ
.

Since 2/nπ → 0 as n → ∞, we have fn ⇒ 0 (why?). Then the limit interchange theorem for integrals
applies, and we have

lim
n→∞

∫ π

π/2

sin(nx)

nx
dx =

∫ π

π/2

0 dx = 0.

This completes the proof. �

2. Show that if fn ⇒ f on [a, b], and each fn is continuous, then the sequence of functions

Fn(x) =

∫ x

a

fn(t) dt

also converges uniformly on [a, b].

Proof: Define F (x) =
∫ x
a
f(t) dt. Let ε > 0. Since fn ⇒ f , ∃N ∈ N such that, for all n ≥ N , we

have
|fn(x)− f(x)| < ε

b− a
∀x ∈ [a, b].

Then, for all n ≥ N and x ∈ [a, b], we have

|Fn(x)− F (x)| =
∣∣∣∣∫ x

a

fn(t) dt−
∫ x

a

f(t) dt

∣∣∣∣ ≤ ∫ x

a

|fn(t)− f(t)| dt ≤ (x− a) · ε

b− a
≤ ε.

Thus Fn ⇒ F on [a, b]. �

5 Series and Power Series

1. If the series
∞∑
k=1

ak and
∞∑
k=1

bk both converge, does
∞∑
k=1

akbk converge?

Proof: In general, we cannot conclude that

∞∑
k=1

akbk converges. For instance, if

ak = bk =
(−1)k−1√

k
,

then

∞∑
k=1

ak and

∞∑
k=1

bk both converge by the Alternating Series Test. However,

∞∑
k=1

akbk is the harmonic

series, which diverges.

Now assume that ak, bk ≥ 0 for all k ∈ N. We will show that

∞∑
k=1

akbk converges. Since

∞∑
k=1

bk con-

verges, we have bk → 0. Therefore, there exists N ∈ N such that

0 ≤ bn < 1 ∀n ≥ N.
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Thus, for all n ≥ N , we have
0 ≤ anbn ≤ an.

Then 0 ≤
∞∑
k=1

akbk ≤
∞∑
k=1

ak, and as the latter converges, so does the former. �

2. Find the radius of convergence for each of the following series.

(a)

∞∑
k=0

(−1)kx2k.

(b)

∞∑
k=0

kxk.

(c)

∞∑
k=0

k!xk.

Solution: It what follows, let ak be the coefficient of xk in the given power series.

(a) We have

k
√
|ak| =

{
1 if k is even,

0 if k is odd.

Thus lim supk→∞
k
√
|ak| = 1, and so R = 1.

(b) Using one of the exercises done in class, we have

k
√
|ak| =

k
√
k → 1 as k →∞.

Thus, R = 1.

(c) It can be shown that n! > (n/2)n/2. Therefore,

n
√
n! >

(n
2

)1/2
.

Since
√
n/2→∞ as n→∞, we have n

√
n!→∞ as n→∞. Therefore, R = 0. �
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