MAT 2125 – Homework 5 – Solutions

(due at midnight on April 14, in Brightspace)

1 Properties of the Riemann Integral

1. Let $f:[a,b] \to \mathbb{R}$ be continuous, $f \ge 0$ on [a,b], and $\int_a^b f = 0$. Show that f(x) = 0 for all $x \in [a,b]$.

Proof: We will show the contrapositive of the statement.

Suppose that there exists $z \in [a, b]$ such that f(z) > 0. Since f is continuous, we may assume $z \in (a, b)$.¹ Then, taking $\varepsilon = f(z)/2$ in the definition of continuity, there exists a $\delta > 0$ such that

 $|x-z| < \delta \implies |f(x) - f(z)| < f(z)/2 \implies f(x) > f(z)/2.$

Reducing δ if necessary, we may assume $\delta \leq \min\{z - a, b - a\}$. Therefore,

$$[z - \delta/2, z + \delta/2] \subseteq (z - \delta, z + \delta) \subseteq [a, b].$$

Thus

$$\int_{a}^{b} f = \int_{a}^{z-\delta/2} f + \int_{z-\delta/2}^{z+\delta/2} f + \int_{z+\delta/2}^{b} f \ge 0 + \delta f(z)/2 + 0 > 0.$$

This completes the proof.

2. Let $f:[a,b] \to \mathbb{R}$ be continuous and let $\int_a^b f = 0$. Show $\exists c \in [a,b]$ such that f(c) = 0.

Proof: We will show the contrapositive of the statement.

Suppose $f(c) \neq 0$ for all $c \in [a, b]$. Then, by the Intermediate Value Theorem, either f(x) > 0 for all $x \in [a, b]$ or f(x) < 0 for all $x \in [a, b]$.

If f(x) > 0 for all $x \in [a, b]$, then $\int_a^b f > 0$ by the preceding question. Similarly, if f(x) < 0 for all $x \in [a, b]$, then $\int_a^b (-f) > 0$, which implies that $-\int_a^b f > 0$. In both cases, $\int_a^b f \neq 0$.

2 Fundamental Theorem of Calculus

1. Let $f:[0,3] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x & x \in [0, 1) \\ 1 & x \in [1, 2) \\ x & x \in [2, 3] \end{cases}$$

Find $F: [0,3] \to \mathbb{R}$, where

$$F(x) = \int_0^x f.$$

Where is F differentiable? What is F' there?

Proof: The function f is increasing on [0,3] so it is Riemann integrable there. The function F is given by

$$F(x) = \begin{cases} \frac{x^2}{2}, & x \in [0,1) \\ x - \frac{1}{2}, & x \in [1,2) \\ \frac{x^2 - 1}{2}, & x \in [2,3] \end{cases}$$

By the Fundamental Theorem of Calculus, F is differentiable wherever f is continuous, that is on $[0, 2) \cup (2, 3]$, and F' = f there.

¹If f(z) = 0 for all $\overline{z \in (a, b)}$, then f(a) = f(b) = 0.

2. Compute $\frac{d}{dx} \int_{-x}^{x} e^{t^2} dt$.

Proof: According to the additivity property of the Riemann integral and the Fundamental Theorem of Calculus, we have

$$\frac{d}{dx} \int_{-x}^{x} e^{t^{2}} dt = \frac{d}{dx} \left(\int_{-x}^{0} e^{t^{2}} dt + \int_{0}^{x} e^{t^{2}} dt \right) = \frac{d}{dx} \left(-\int_{0}^{-x} e^{t^{2}} dt + \int_{0}^{x} e^{t^{2}} dt \right)$$
$$= -\frac{d}{dx} \int_{0}^{-x} e^{t^{2}} dt + \frac{d}{dx} \int_{0}^{x} e^{t^{2}} dt = -e^{x^{2}} \cdot (-1) + e^{x^{2}} = 2e^{x^{2}},$$

where we used the chain rule in the second-to-last equality.

3 Improper Integrals

1. Let $f : [a, b] \to \mathbb{R}$ be Riemann-integrable on $[a + \delta, b]$ and unbounded in the interval $(a, a + \delta)$ for every $0 < \delta < b - a$. Define

$$\int_{a}^{b} f = \lim_{\delta \to 0^{+}} \int_{a+\delta}^{b} f,$$

where $\delta \to 0^+$ means that $\delta \to 0$ and $\delta > 0$. A similar construction allows us to define

$$\int_{a}^{b} g = \lim_{\delta \to 0^{+}} \int_{a}^{b-\delta} g.$$

Such integrals are said to be *improper*; when the limits exist, they are further said to be *convergent*.

How can the expression

$$\int_0^1 \frac{1}{\sqrt{|x|}} \, dx$$

be interpreted as an improper integral? Is it convergent? If so, what is its value?

Proof: By definition,

$$\int_0^1 \frac{1}{\sqrt{|x|}} \, dx = \lim_{a \to 0^+} \int_a^1 \frac{1}{\sqrt{x}} \, dx = \lim_{a \to 0^+} \left(2\sqrt{1} - 2\sqrt{a} \right) = 2.$$

Thus the improper integral converges to 2.

2. For which values of s does the integral $\int_0^1 x^s dx$ converge? You may use the antiderivatives rules of calculus.

Proof. If $s \ge 0$, the integral is not improper. The integrand being continuous, the integral exists (i.e. converges) for those values of s. Now, consider s < 0.

First assume $s \neq -1$. We have

$$\int_0^1 x^s \, dx = \lim_{a \to 0^+} \int_a^1 x^s \, dx = \lim_{a \to 0^+} \left(\frac{1^{s+1}}{s+1} - \frac{a^{s+1}}{s+1} \right).$$

This limit exists if and only if s > -1, in which case it is equal to $\frac{1}{s+1}$. Now, if s = -1, then we have

$$\int_0^1 x^s \, dx = \lim_{a \to 0^+} \int_a^1 x^{-1} \, dx = \lim_{a \to 0^+} \big(\log 1 - \log a\big),$$

which does not exist. Therefore, the given improper integral converges if and only if s > -1.

4 Sequences of Functions

1. Show that $\lim_{n \to \infty} \int_{\pi/2}^{\pi} \frac{\sin(nx)}{nx} dx = 0$. You may assume that sin is continuous and that $|\sin x| \le 1, \forall x \in \mathbb{R}$.

Proof: For $n \in \mathbb{N}$, define $f_n : [\pi/2, \pi] \to \mathbb{R}$ by

$$f_n(x) = \frac{\sin(nx)}{nx}.$$

Then each f_n is continuous. For all $n \in \mathbb{N}$, we have

$$\sup_{\mathbf{r}\in[\pi/2,\pi]}\left\{\left|\frac{\sin(nx)}{nx}\right|\right\} \le \frac{2}{n\pi}.$$

Since $2/n\pi \to 0$ as $n \to \infty$, we have $f_n \rightrightarrows 0$ (why?). Then the limit interchange theorem for integrals applies, and we have

$$\lim_{n \to \infty} \int_{\pi/2}^{\pi} \frac{\sin(nx)}{nx} \, dx = \int_{\pi/2}^{\pi} 0 \, dx = 0.$$

This completes the proof.

2. Show that if $f_n \rightrightarrows f$ on [a, b], and each f_n is continuous, then the sequence of functions

$$F_n(x) = \int_a^x f_n(t) \, dt$$

also converges uniformly on [a, b].

Proof: Define $F(x) = \int_a^x f(t) dt$. Let $\varepsilon > 0$. Since $f_n \rightrightarrows f$, $\exists N \in \mathbb{N}$ such that, for all $n \ge N$, we have

$$|f_n(x) - f(x)| < \frac{\varepsilon}{b-a} \quad \forall x \in [a, b].$$

Then, for all $n \ge N$ and $x \in [a, b]$, we have

$$|F_n(x) - F(x)| = \left| \int_a^x f_n(t) \, dt - \int_a^x f(t) \, dt \right| \le \int_a^x |f_n(t) - f(t)| \, dt \le (x-a) \cdot \frac{\varepsilon}{b-a} \le \varepsilon.$$

Thus $F_n \rightrightarrows F$ on [a, b].

5 Series and Power Series

1. If the series $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ both converge, does $\sum_{k=1}^{\infty} a_k b_k$ converge?

Proof: In general, we cannot conclude that $\sum_{k=1}^{\infty} a_k b_k$ converges. For instance, if

$$a_k = b_k = \frac{(-1)^{k-1}}{\sqrt{k}},$$

then $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ both converge by the Alternating Series Test. However, $\sum_{k=1}^{\infty} a_k b_k$ is the harmonic series, which diverges.

Now assume that $a_k, b_k \ge 0$ for all $k \in \mathbb{N}$. We will show that $\sum_{k=1}^{\infty} a_k b_k$ converges. Since $\sum_{k=1}^{\infty} b_k$ converges, we have $b_k \to 0$. Therefore, there exists $N \in \mathbb{N}$ such that

$$0 \le b_n < 1 \quad \forall n \ge N.$$

Thus, for all $n \ge N$, we have

$$0 \le a_n b_n \le a_n$$

Then $0 \leq \sum_{k=1}^{\infty} a_k b_k \leq \sum_{k=1}^{\infty} a_k$, and as the latter converges, so does the former.

2. Find the radius of convergence for each of the following series.

(a)
$$\sum_{k=0}^{\infty} (-1)^k x^{2k}$$

(b)
$$\sum_{k=0}^{\infty} k x^k.$$

(c)
$$\sum_{k=0}^{\infty} k! x^k.$$

Solution: It what follows, let a_k be the coefficient of x^k in the given power series.

(a) We have

$$\sqrt[k]{|a_k|} = \begin{cases} 1 & \text{if } k \text{ is even,} \\ 0 & \text{if } k \text{ is odd.} \end{cases}$$

Thus $\limsup_{k\to\infty} \sqrt[k]{|a_k|} = 1$, and so R = 1.

(b) Using one of the exercises done in class, we have

$$\sqrt[k]{|a_k|} = \sqrt[k]{k} \to 1 \text{ as } k \to \infty.$$

Thus, R = 1.

(c) It can be shown that $n! > (n/2)^{n/2}$. Therefore,

$$\sqrt[n]{n!} > \left(\frac{n}{2}\right)^{1/2}.$$

Since $\sqrt{n/2} \to \infty$ as $n \to \infty$, we have $\sqrt[n]{n!} \to \infty$ as $n \to \infty$. Therefore, R = 0.