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93. Answer the following questions about series.

(a) If
∞∑
k=1

(ak + bk) converges, what about
∞∑
k=1

ak and
∞∑
k=1

bk?

(b) If
∞∑
k=1

(ak + bk) diverges, what about
∞∑
k=1

ak and
∞∑
k=1

bk?

(c) If
∞∑
k=1

(a2k + a2k−1) converges, what about
∞∑
k=1

ak?

(d) If
∞∑
k=1

ak converges, what about
∞∑
k=1

(a2k + a2k−1)?
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Solution.

(a) They might both diverge. Consider ak = −k and bk = k. However,
if one converges, then so does the other, by the arithmetic of
limits/series.

(b) At least one of them diverges because if they both converged, then
the series of sums would converge as well (according to a proposition
seen in class).

(c) Nothing. Consider a2k = k, a2k+1 = −k, for which
∞∑
k=1

ak diverges,

but a2k = 1
k2

, a2k+1 = 0, for which
∞∑
k=1

ak converges.
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(d) It also converges. The sequence of partial sums of the second series is

(a1 + a2, a1 + a2 + a3 + a4, , a1 + a2 + a3 + a4 + a5 + a6, . . .)

is a subsequence of the sequence of partial sums of the first series

(a1, a1 + a2, a1 + a2 + a3, a1 + a2 + a3 + a4, . . .).

If the first series sequence of partial sums converges, so does the
subsequence’s series. �
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94. Show that

1

r − 1
=

1

r + 1
+

2

r2 + 1
+

4

r4 + 1
+

8

r8 + 1
+ · · ·

for all r > 1.

Hint: Note that
1

`− 1
− 1

`+ 1
=

2

`2 − 1
.
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Proof. From the hint, we see that

1

`+ 1
=

1

`− 1
− 2

`2 − 1
.

Thus, for all k ∈ N, if ` = 2k, we have

1

r2k + 1
=

1

r2k − 1
− 2

r2k+1 − 1

=⇒ 2k

r2k + 1
=

2k

r2k − 1
− 2k+1

r2k+1 − 1
.

Therefore, we have a telescoping sum

∞∑
k=1

2k

r2k + 1
= lim

n→∞

n∑
k=1

2k

r2k + 1
= lim

n→∞

(
1

r − 1
− 2n

r2n − 1

)
=

1

r − 1
,
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where the last equality follows from the fact that, for r > 1, we have

lim
m→∞

m

rm
= 0.

This completes the proof. �
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95. Find the values of p for which the series
∞∑

n=1

1

np
converges.

P. Boily (uOttawa) 7



MAT 2125 – Elementary Real Analysis Exercises – Solutions – Q93-Q100

Proof. If p ≤ 0, then 1
np 6→ 0 so the series diverges. In what follows,

then, let p > 0.

For k ∈ N, consider the function fk;p : [1, k] → R defined by
fk;p(x) = 1

xp. Since f ′k;p(x) = − p
xp+1 < 0 for all x ≥ 1, fk;p is

strictly decreasing on [1, k]. Thus fk;p is Riemann-integrable on [1, k].

Consider the partition Pk = {1, 2, . . . , k, k + 1} of [1, k + 1]. Since
fk;p is Riemann-integrable,

L(fk;p;Pk) ≤
∫ k+1

1

fk;p ≤ U(fk;p;Pk).

As fk;p is decreasing on the sub-interval [µ, ν], fk;p reaches its maximum
at µ and its minimum at ν;
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Hence

U(fk;p;Pk) =

k∑
n=1

fk;p(n)(n+ 1− n) =
k∑

n=1

1

np
, and

L(fk;p;Pk) =

k+1∑
n=2

fk;p(n+ 1)(n+ 1− n) =
k+1∑
n=2

1

np
.

But
k+1∑
n=2

1

np
=

1

(k + 1)p
− 1 +

k∑
n=1

1

np
.

Thus
1

(k + 1)p
− 1 +

k∑
n=1

1

np
≤
∫ k+1

1

fk;p ≤
k∑

n=1

1

np
.
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Write sk;p for the partial sum and note that

∫ k+1

1

fk;p =

∫ k+1

1

dx

xp
=

{
ln(k + 1), when p = 1
1

1−p(k
1−p − 1), when p 6= 1

If p = 1, then ln(k+1) ≤ sk;1 for all k. Since the sequence {ln(k+1)}k
is unbounded, so must {sk;1}k be unbounded, which means that the
corresponding series cannot converge.

If p > 1, then

lim
k→∞

(
1

1− p
(k1−p − 1) + 1− 1

(k + 1)p

)
=

p

p− 1
.
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Since sk;p is monotone (as every additional 1
np added to the partial sum

is positive) and since sk;p is bounded above by the convergent sequence{
1

1− p
(k1−p − 1) + 1− 1

(k + 1)p

}
k

,

sk;p is a convergent sequence.

If p < 1, then {
1

1− p
(k1−p − 1)

}
k

is unbounded. As sk;p ≥ 1
1−p(k

1−p−1) for all k, {sk;p} is also unbounded,
which means that the corresponding series cannot converge.

Thus, the series converges if and only if p > 1. �
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96. Which of the following series converge?

(a)
∞∑

n=1

n(n+ 1)

(n+ 2)2

(b)
∞∑

n=1

2 + sin3(n+ 1)

2n + n2

(c)
∞∑

n=1

1

2n − 1 + cos2 n3

(d)
∞∑

n=1

n+ 1

n2 + 1

(e)
∞∑

n=1

n+ 1

n3 + 1

P. Boily (uOttawa) 12



MAT 2125 – Elementary Real Analysis Exercises – Solutions – Q93-Q100

(f)
∞∑

n=1

n!

nn

(g)
∞∑

n=1

n!

5n

(h)
∞∑

n=1

nn

31+2n

(i)
∞∑

n=1

(
5n+ 3n3

7n3 + 2

)n
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Solution. We use the various tests at our disposal.

(a) Since

lim
n→∞

n(n+ 1)

(n+ 2)2
= 1 6= 0,

the series diverges .

(b) Since −1 ≤ sin3(n+ 1) ≤ 1, we have

0 ≤ 2 + sin3(n+ 1)

2n + n2
≤ 1

2n + n2
≤ 1

2n
.

Thus the given series converges by comparison with the geometric series
∞∑

n=1

1

2n
.
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(c) If an denotes the n-th term of the series, we have

an+1

an
=

2n − 1 + cos2 n3

2n+1 − 1 + cos2(n+ 1)3
→ 1

2
< 1.

Thus the series converges by the ratio test.

(d) We have
n+ 1

n2 + 1
≥ n

2n2
=

1

2n
.

Thus the series diverges by comparison with the harmonic series.

(e) We have

0 ≤ n+ 1

n3 + 1
≤ 2n

n3
=

2

n2
.

P. Boily (uOttawa) 15



MAT 2125 – Elementary Real Analysis Exercises – Solutions – Q93-Q100

Thus the series converges by comparison with
∞∑

n=1

2

n2
.

(f) For n ≥ 2, we have

0 ≤ n!

nn
=

1

n
· 2
n
· 3 · 4 · · ·n

nn−2 ≤ 2

n2
.

Thus the series converges by comparison with
∞∑

n=1

2

n2
.

(g) If an denotes the n-th term in the series, we have

an+1

an
=

(n+ 1)!

5n+1

5n

n!
=
n+ 1

5
→∞.

Thus the series diverges by the ratio test.
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(h) We have (
nn

31+2n

)1/n

=
n

32+1/n
→∞.

Thus the series diverges by the root test.

(i) We have ((
5n+ 3n3

7n3 + 2

)n)1/n

=
5n+ 3n3

7n3 + 2
→ 3

7
< 1.

Thus the series converges by the root test. �
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97. Give an example of a power series
∞∑
k=0

akx
k with interval of convergence

exactly [−
√
2,
√
2).
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Proof. Consider the series ∞∑
k=1

xk

k
.

We have

lim sup
k→∞

k

√
|x|k
k

= lim sup
k→∞

|x|
k
√
k
= |x|.

Therefore, by the root test, the series converges when |x| < 1 and
diverges for |x| > 1.

For x = 1, the series is the harmonic series, which diverges. For
x = −1, it is the alternating harmonic series, which converges.

Thus, the series converges precisely on the interval [−1, 1).
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Now, replace x by x/
√
2. The corresponding power series is thus

∞∑
k=0

1
√
2
k
k
xk.

We have

lim sup
k→∞

k

√
|x|k
√
2
k
k
= lim sup

k→∞

|x|√
2 k
√
k
=
|x|√
2
.

The series converges on |x|√
2
< 1 and diverges on |x|√

2
> 1. For x =

√
2,

the series is the harmonic series, which diverges. For x = −
√
2, it is the

alternating harmonic series, which converges.

Thus, the series converges precisely on the interval [−
√
2,
√
2). �
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98. Find the values of x for which the following series converge:

(a)
∞∑

n=1

(nx)n;

(b)
∞∑

n=1

xn;

(c)
∞∑

n=1

xn

n2
;

(d)
∞∑

n=1

xn

n!
.
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Solution.

(a) The series diverges whenever x 6= 0 since the terms (nx)n do not tend
to zero when n → ∞. (For large enough n, we have n|x| ≥ 1.) Thus,
this power series converges only at its center.

(b) The geometric series converges precisely on the interval (−1, 1), and the
series takes on the value 1

1−x there.

(c) For |x| ≤ 1, we have ∣∣∣∣xnn2

∣∣∣∣ ≤ 1

n2
,

and thus the series converges for these values of x. If |x| > 1, the terms
|xn/n2| → ∞, and so the series diverges. Hence the series converges
precisely on the interval [−1, 1].
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(d) Let x ∈ R. Using the ratio test we have

xn+1

(n+ 1)!
· n!
xn

=
x

n+ 1
→ 0.

Thus the series converges for all x ∈ R (and takes on the value ex). �
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99. If the power series
∞∑
k=0

akx
k has radius of convergence R, what is the

radius of convergence of the series
∞∑
k=0

akx
2k?
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Solution. The new series can be written as
∞∑
k=0

bkx
k, where bk = ak/2

if k is even and bk = 0 if k is odd. Thus

lim sup
k→∞

k
√
|bk| = lim

k→∞
k

√
|ak/2| = lim

k→∞
2k
√
|ak| = lim

k→∞

(
k
√
|ak|
)1/2

=

(
lim
k→∞

k
√
|ak|
)1/2

= R1/2.

Therefore, the radius of convergence of the new series is
√
R. �
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100. Obtain power series expansions for the following functions.

(a)
x

1 + x2
;

(b)
x

(1 + x2)2
;

(c)
x

1 + x3
;

(d)
x2

1 + x3
;

(e) f(x) =

∫ 1

0

1− e−sx

s
ds, about x = 0.
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Solution.

(a) Since

1

1− x
=

∞∑
k=0

xk,

we have
x

1 + x2
= x

∞∑
k=0

(−x2)k =

∞∑
k=0

(−1)kx2k+1.

(b) We know that, for x ∈ (−1, 1), 1

1− x
=

∞∑
k=1

xk.

For any −1 < a < b < 1, the series
∞∑
k=1

kxk−1 converges uniformly

on [a, b].
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Indeed, let c = max{|a|, |b|} < 1. Then, for all x ∈ [a, b], we have

|kxk−1| ≤ kck−1.

Now,
(k + 1)ck

kck−1
=
k + 1

k
c→ c as k →∞.

Since c < 1, the ratio test tells us that
∞∑
k=1

kck−1 converges.

Thus,
∞∑
k=1

kxk−1 converges uniformly by the Weierstrass M -test.

P. Boily (uOttawa) 28



MAT 2125 – Elementary Real Analysis Exercises – Solutions – Q93-Q100

Consequently, we have

∞∑
k=1

kxk−1 =
d

dx

(
1

1− x

)
=

1

(1− x)2
,

and so for any x ∈ [a, b] ⊆ (−1, 1):

x

(1 + x2)2
= x

∞∑
k=1

k(−x2)k−1 =
∞∑
k=1

(−1)k−1kx2k−1.

(c) Using the geometric series, we have

x

1 + x3
= x

∞∑
k=0

(−x3)k =

∞∑
k=0

(−1)kx3k+1.
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(d) Using the geometric series, we have

x2

1 + x3
= x2

∞∑
k=0

(−x3)k =

∞∑
k=0

(−1)kx3k+2.

(e) Since

ex =

∞∑
k=0

xk

k!
,

we have

1− e−sx

s
= −1

s

∞∑
k=1

(−sx)k

k!
=

∞∑
k=1

(−1)k+1s
k−1xk

k!
.

This series converges absolutely for all s and all x (use the ratio test or
compare it to the series for ex). Therefore, viewing it as a power series
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in s (for some fixed x), its interval of convergence is ∞, and its centre
is 0. Thus the series can be integrated term by term:

∫ 1

0

1− e−sx

s
ds =

∫ 1

0

∞∑
k=1

(−1)k+1s
k−1xk

k!
ds

=

∞∑
k=1

(−1)k+1

(∫ 1

0

sk−1 ds

)
xk

k!

=

∞∑
k=1

(−1)k+1

[
sk

k

]s=1

s=0

xk

(k!)
=

∞∑
k=1

(−1)k+1 xk

k(k!)
.

This completes the exercises for the course. �
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