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Overview

A large chunk of analysis concerns itself with problems of convergence. In
this chapter, we

* introduce sequences and limits,
= provide results that help to compute such limits, and

= identify situations when the limit can be shown to exist without having
to compute It.
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3.1 — Infinity vs. Intuition

When dealing with infinity, our intuition sometimes falters.

Achilles pursues a turtle. When he
reaches her starting point, she has
moved a certain distance. When he
crosses that distance, she has moved
yet another distance, and so forth.
Achilles is always trailing the turtle,
so he cannot catch her. Is this what
happens in reality?

Example: (ZENO’S PARADOX) r__f
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Example: (ANTI-PYTHAGOREAN THEOREM )

Consider a right-angle triangle with base a, height b, and hypotenuse c. We
can build staircase structures that each have the same constant length as
a + b, while increasing the number of stairs (see image below).

- A
C
C =\ Q,L-{\D'L b
o~
C = at—kb
??
k-
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Example: (INFINITE SuM I)
let S=1+(-1)+14+(=1)+---. Then

S=1+(-1)+1+(-1))+---=04+0+---=0
S=1-1+(-1)+1+(-1)+-)=14+5 = S=1/2
S=1+(-)+D)+((-1)+1)+---=1+0+0+---=1

Therefore 0 = % = 1. Does this make sense?

Example: (INFINITE SuM II)
Llet S=1+4+2+4+8+---. Then

S=1+21+24+4=8+4---)=14+28 = S=-1

Can a sum of positive terms yield a negative result?
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3.2 — Limit of a Sequence

A sequence of real numbers is a function X : N — R defined by X (n) = a,,
where a,, € R. We denote the sequence X by (a,)nen ofr simply by (a.,).

Examples:

In general, we let N stand for whatever countable subset of N is required
for the definition of the sequence to make sense.
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A sequence as a function on N.
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The notation used for sequences varies from one resource to the next.

We will mostly use round brackets:

1 1
(an) where ap, = 5 <—2>, <]_,

all denote the same sequence.

A sequence is an ordered set of terms a,, that is, a set of indexed
values. The set of all values taken by the sequence (a,,) is called the range

of (a,) and we denote it by {a,}.

A sequence and its range are two different notions.
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Examples:

Certain sequences are defined with the help of a recurrence relation: the
first few terms are given, and the subsequent terms are computed using the
preceding terms.

Example:
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We now examine in detail the sequence (z,) = (55) = (5,7, g 75+ - - -)-

As the index n increases, the values of x,, approach 0. But what does this
mean, mathematically?
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A sequence (x,) of real numbers is said to converge to a limit L € R,
denoted by

z, — L or lim x, =1L
n— oo

Ve >0, AN, € Nsuch that n > N. = |z, — L| < e.

A sequence (x,,) which does not converge to a limit is said to be divergent:
VL € R, Je;, >0, VN € N, dny > N such that |z,,, — L| > <.
There is only one way for a sequence to converge: its values are getting
closer and closer to the limit. But there is more than one way for a sequence

to diverge.

Can you think of some?
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]
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Examples:

1. Show that % — 0.

Proof.

2. Show that

n—+1
T 0.
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Proof.

4—2n—3n2 3
3. Show that T~ T T

Proof.
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4. Show that (n) is divergent.

Proof.
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The main benefit of the formal definition of the limit of a sequence is that
it does not call on infinity: we write n — oo, but that is a merely a notation
convenience.

On the flip side, the formal definition has 2 major inconveniences:

1. it cannot be used to determine the limit of a convergent sequence — it
can only be used to verify that a given candidate is (or is not) a limit of
a sequence;

2. it can seem artificial to some extent, especially upon a first encounter.

The goal is simple: we must determine a threshold V. that does the trick.
This often requires backtracking from the end of the string of inequalities
rather than to proceed directly from “Let ¢ > 0".
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We have been careful to refer to “a” limit when the sequence converges,
but we should really be talking about “the” limit in such cases.

Theorem 12. (UNIQUE LiMmIT) A convergent sequence (x,) of real
numbers has exactly one limit.

Proof.
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A sequence (z,,) C R is bounded by M > 0 if |z,,| < M for all n € N.
Theorem 13. Any convergent sequence (x,,) of real numbers is bounded.

Proof.
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We can prove theorems directly, as in Theorem 13, by induction, as in
Bernouilli's Inequality, or by contradiction, as in the Archimedean Property.

The contrapositive of a statement P — () is =() — —P. These two
statements are logically equivalent to one another; it may be that it is
easier to demonstrate the contrapositive than the original statement.

The converse of a statement P — (@ is ) = P. There is no
general link between a statement and its converse: sometimes they are both

true, sometimes they are both false, sometimes only of them is true.

Example:
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3.3 — Operations on Sequences

The following result removes the need to use the formal definition.

Theorem 14. (OPERATIONS ON CONVERGENT SEQUENCES)
Let (x,,), (y.) be convergent, with x,, — x and y, — y. Let c € R. Then

1. |zn| = |

2. (xn+yn) — (x+y);

3. xpYyn — Yy and cxr, — cx;

4. z—;‘—>§ if yn,y %= 0 for all n.

Proof. We show each part using the definition of the limit of a sequence.
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Can the limit of a sequence whose terms are all near 2 be —197 07 17 27

Theorem 15. (COMPARISON THEOREM FOR SEQUENCES)
Let (x,),(yn) be convergent sequences of real numbers with x, — =,
Yo — Yy, and z, <y, Vn € N. Then x < y.

Proof.
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/N The “<"s in the statement of Theorem 15 cannot be replaced by “<"s

throughout. For instance, if () = (n%rl) and (y,,) = (&), then z, < yy

forallneN, butz, >2=0,y, >y=0,and0=2 £ y = 0.

Theorem 16. (SQUEEZE THEOREM FOR SEQUENCES)
Let (x,), (Yn),(2n) € R be such that x,,z, — « and x, < y, < zn,
Vn € N. Then y, — «.

Proof.
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We can use these various results to compute the following limits.

Examples:
3 1
1. Compute lim i If the limit exists.
n—r o0 n
Solution.
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in(n? + 212
2. Compute lim sin(n” + )

n— 00 n

~if the limit exists.

Solution.
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2n — 1
3. Compute lim n—, If the limit exists.

Solution.
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4. Let (x,) be such that |z,,| — 0. Show that z,, — 0.

Proof.
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Note, however that if |x,,| — a # 0, we cannot necessarily conclude that
x, — «. Consider, for instance, the sequence (z,) = (—1)".

5. Let |q| < 1. Compute lim ¢", if the limit exists.
n—oo

Proof.
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6. Let |¢g| < 1. Compute lim nqg", if the limit exists.

n—oo

Solution.
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7. Show that {/n — 1.

Proof.
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!

8. Compute lim —, if the limit exists.
n—oo NN

Solution.

9. Let a > 0. Compute lim al/”, if the limit exists.

n—oo

Solution.
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10. Compute lim +/3™ + 57, if the limit exists.

n—oo

Solution.
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Theorem 17. Lety, — y. Ify, > 0Vn €N, then \/y, — \/y.

Proof.
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3.4 — Bounded Monotone Convergence Theorem

A sequence (z,,) is increasing if

1< < < zpi1 <---, VneN
and it is decreasing if

X1 2>2To > 2> Xy > Tpai -+, Vn &N,

If (z,) is either increasing or decreasing, we say that it is monotone. If it
is both increasing and decreasing, it is constant.

When the inequalities are strict, then the sequence is strictly increasing or
strictly decreasing, depending, and thus strictly monotone.
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Theorem 18. (BOUNDED MONOTONE CONVERGENCE)
Let (x,,) be an increasing sequence, bounded above. Then (x,) converges
to sup{z, | n € N}.

Proof.
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A similar result holds for decreasing sequences that are bounded below.

Examples:

1

= Does the sequence (r,,) = (1 — ;) converge? If so, what is its limit?

Solution.
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» Let (x,) be defined by z,, = /2x,_1 when n > 2, with z; = 1. Does
() converge? If so, to what limit?

Solution.
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3.5 — Bolzano-Weierstrass Theorem

The main result of this section is a corner stone of analysis, concerning
bounded sequences and their subsequences.

Let (z,) C R be a sequence and ny; < ny < --- be an increasing string of
positive integers. The sequence (2, )k = (T, Tn,, --.) is a subsequence

of (,), denoted by (z,,) C (x,). Note that n;, > k for all £ € N.

Examples:

P. Boily (uOttawa) 48



MAT 2125 — Elementary Real Analysis

Chapter 3 — Sequences

Theorem 19.

Proof.

Let x,, — . If (zy,, ) C (), then z, — x as well.

P. Boily (uOttawa)
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The converse of this theorem is false: can you find a divergent sqeuence
with convergent subsequences?

The next result is surprising, deep and useful.

Theorem 20. (BOLZANO-WEIERSTRASS)
If (x,,) C R is bounded, it has (at least) one convergent subsequence.

Proof.
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We have mentioned that a sequence (x,,) which diverges is one for which
VL € R, Je;, >0, VN € N, Iny > N such that |z, — L| > ¢p.

If (x,,) does not converge to L, it is easy to construct a subsequence (z,, )
that also fails to converge to L:

= let n; € N be such that ny > 1 and |z,, — L| > €;
= let ny € N be such that no > n; and |z, — L| > ¢;
= etc.

Note that there might be some subsequences of (x,) that do converge to
some L, however: z, = (—1)" diverges, but x9, = (—=1)*" =1 — 1.
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Theorem 21. Let (z,) C R be a bounded sequence such that every one
of its proper converging subsequence converges to the same x € R. Then
Tn — T.

Proof.
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3.6 — Cauchy Sequences

A main challenge with the definition of a limit of a sequence is that we need
to know what the limit is before we can show what it is, in which case we
do not need to show what it is...

A sequence (z,,) is a Cauchy sequence if
Ve > 0, dN. € N such that m,n > N, = |z, — x,| < €.
Incidentally, (x,) is not a Cauchy sequence if

Jdeg > 0, VN € N, Imy,nny > N such that |z, — Tn,| > 0.
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Examples:

1. Show that (z,,) = (%) is a Cauchy sequence.

Proof.

2. Show that (z,) = (1+ 3+ -+ <) is not a Cauchy sequence.
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Proof.

In essence, a Cauchy sequence is a sequence for which the terms can get
as close to one another as one wishes, after a threshold (which depends on
the desired distance).

The next result shows that Cauchy sequences behave like convergent
sequences in R — we will soon see that the similarity is in fact not pure
happenstance.
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Theorem 22. [If (x,,) is a Cauchy sequence, then it is bounded.

Proof.

We could also show that the sum of two Cauchy sequences is a Cauchy
sequence, that every bounded Cauchy sequence admits at least one
convergent subsequence, and so forth.
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Cauchy sequences in R behave like convergent sequences in R because ...

Theorem 23. A sequence of real numbers is convergent if and only if it
is a Cauchy sequence.

Proof.

P. Boily (uOttawa) 62



MAT 2125 — Elementary Real Analysis Chapter 3 — Sequences

P. Boily (uOttawa) 63



MAT 2125 — Elementary Real Analysis Chapter 3 — Sequences

Examples:

2. Compute the limit of the sequence defined by x, = %(wn_g + xp_1),
n > 2, with x1 =1 and x5 = 2.

Solution.
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Cauchy sequences illustrate the fundamental difference between R and Q.
A sequence is Cauchy if the points of the sequence “accumulate” on top of
one another. In R, every Cauchy sequence is convergent, and vice-versa.

In QQ, the converging sequences are Cauchy, but there are Cauchy sequences
that do not converge: it is possible that the points of such a sequence
“accumulate” around of the (uncountably infinitely) many holes of Q.

For instance, the sequence (1,1.4,1.41,1.414,...) is Cauchy in Q, but
does not converge in Q.

This leads to one of the ways of building R: we take all Cauchy sequences
in Q and add whatever point the sequences “accoumulates” around to R
(there is more to it than that, but that is the main idea). In this example,
we would get to add v/2 to R.
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3.7 — Exercises

1. The first few terms of a sequence (x,) are given below. Assuming that the “natural
pattern” indicated by these terms persists, give a formula for the nth term x,,.

(a) (5,7,9,11,...);

(d) (1,4,9,16,...).
2. Use the definition of the limit of a sequence to establish the following limits.

1
(a) lim = 0;
n—oo \ N2 +1

2
(b) lim ( - >=2;
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3 1 3
(c) lim ( n ) =5 and
n—oo \ 2n + 5

d) i n’ — 1
(d) nes00 2n2 + 3 + 3
3. Show that

@ Jim (i )
b) 1i _
®) Jim (M)

(c) lim ( AL ) = 0, and

@ tim (yy) =

n— oo

1 1
4. Show that lim (— — ) =0

n n+1

P. Boily (uOttawa)
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5. Find the limit of the following sequences:

@ jm ((2+3) )

0 o (5

0 i (22) o

(d) Jim, (Zjal )

6. Let y, = v/n + 1 — y/n. Show that (y,) and (1/ny,) converge.

7. Let (x,) be a sequence of positive real numbers such that :1:71,/" — L < 1. Show
dr € (0, 1) such that 0 < x,, < r" for all sufficiently large n € N. Use this result

to show that z,, — O.

8. Give an example of a convergent (resp. divergent) sequence (x,) of positive real

1/n
n

numbers with x — 1.

9. Letxy =1, xp11 = V2 + x,, for n € N. Show that (x,,) converges; find the limit.

P. Boily (uOttawa)
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10.

11.
12,

13.

14,
15.

16.
17.
18.

19.

n

Let z,, = Z% for all n € N. Show that (x,) is increasing and bounded above.
k=1

Show that ¢'/™ — 1if0 < ¢ < 1.

Let (x,,) be a bounded sequence.

For each n € N, let s,, = sup{xr : k > n}. If S = inf{s,}, show that there is a

subsequence of (x,) that converges to S.

Suppose that x,, > 0 for all n € N and that ((—1)"x,) converges. Show that (x,)

converges.

Show that if (x,,) is unbounded, there exists a subsequence (x,, ) with 1/x,, — 0.
If x,, = # find the convergent subsequence in the proof of the Bolzano-Weierstrass
theorem, with I, = [—1,1].

Show directly that a bounded increasing sequence is a Cauchy sequence.

If0 <r < 1and|x,t1 — x| < 7" forall n €N, show that (x,) is Cauchy.

If ;1 < o and xz,, = %(a:n_l + x,_2) for all n € N, show that (x,) is convergent
and compute its limit.

Suppose that (a,,) is a bounded sequence and b,, — 0. Show that a,,b,, — O.
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20.

21.
22.

23.
24.

Consider the sequence given by the recursion an41 = 3(an, + a '), with some initial
condition a1 € (—o00,0) U (0, 00). Find and prove the limit, if it exists.

Let (a,) be a sequence with no convergent subsequences. Show that |a,| — oc.
We define the limit inferior and the limit superior of a sequence as follows:

liminf a, = lim inf{ax | kK > n}
n—oo n— oo

limsup a, = lim sup{a; | k > n}.
n— 00 n—00

Let (a,) be bounded. Show that lim inf a,, and lim sup a,, exist and are in R.

n—o0 n—00
Let (a,) be unbounded. Show that lim inf a,, = —oo or lim sup a,, = oo.
n—o0 n—00

Let (a,), (by) be two sequences. Show that

liminf a,, + limsup b,, < lim sup(a, + b,) < lim sup a,, + lim sup b,,.

n—r 00 n— 00 n— 0o n— 00 n— 0o

Furthermore, find a pair of sequences for which the second inequality is strict.
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Solutions

1. Proof.
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2. Proof.
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3. Proof.
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4. Proof.
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5. Proof.
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6. Proof.

P. Boily (uOttawa) 81



MAT 2125 — Elementary Real Analysis Chapter 3 — Sequences

7. Proof.
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8. Proof.
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9. Proof.
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10. Proof.
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11. Proof.
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12. Proof.
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13. Proof.
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14. Proof.
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15. Proof.
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16. Proof.
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17. Proof.
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18. Proof.

P. Boily (uOttawa) 97



MAT 2125 — Elementary Real Analysis Chapter 3 — Sequences

P. Boily (uOttawa) 98



MAT 2125 — Elementary Real Analysis Chapter 3 — Sequences

19. Proof.
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20. Proof.
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21. Proof.
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22. Proof.
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23. Proof.
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24. Proof.
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