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Overview

We now look at sequences of functions, which arise naturally in analysis
and its applications.

In particular, we will

= discuss two types of convergence (pointwise and uniform), and

= prove some limit interchange theorems.
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Outline

6.1 — Pointwise and Uniform Convergence (p.3)
6.2 — Limit Interchange Theorems (p.14)

6.3 — Exercises (p.28)
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6.1 — Pointwise and Uniform Convergence

Let A C R and (f,), be a sequence of functions f, : A — R.

The sequence (f.(x)), may converge for some = € A and diverge for
others.

Let Ag = {z € A| (fn(x))n converges} C A. For each z € Agy, (fn(x))
converges to a unique limit

flz) = lim f(z),

n—oo

the pointwise limit of (f,,), which we denote by f, — f on Ajp.
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Examples:

1. Let f, : R — R be defined by f,,(x) = £ for alln € N,z € R, and let f

T on

be the zero function on R. Show that f,, — f on R.

Proof.

2. Let f,, : R — R be defined by f,(z) = 2" for all n € N,z € R, and let
f be the zero function on R, except at z = 1 where f(1) = 1. Show
that f,, — f on (—1,1].
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Proof.
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3. Let f,, : R — R be defined by f,(z) = 1t for all n € N,z € R, and
let f be the identity function on R. Show that f,, — f on R.

Proof. |

A sequence of functions (f, : A — R) converges uniformly on Ay C A
to f: Ap — R, denoted by f,, = f on Ay, if the threshold N, , € N in the
pointwise definition is in fact independent of x € Ajy:

Ve >0, dN. € Nsuch that n > N. and z € Ag = |fn(z) — f(2)| < e.
The distinction between pointwise and uniform convergence is not unlike

that between continuity and uniform continuity: convergence is uniform if
the threshold is the same for all z € Ay.
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Clearly, if f,, = f on Ag, then f,, — f on Ay, but the converse is not
necessarily true.

Examples:

1. Show that the sequence f, : [1,2] — R defined by f,(z) = 22Z for
n € N converges uniformly to the zero function on [1, 2].

Proof.
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2. Let f,, : R — R be defined by f,(z) = 2" for all n € N,z € R, and let
f be the zero function on R, except at z = 1 where f(1) = 1. Show

that f,, & f on (—1,1].

Proof.

A sequence of functions f,, does not converge uniformly to f on Ay if

Jeg > 0 with (fy,) € (fn) and (zx) C Ag s.t. |fn,(zr)—f(zr)| > €0, VE € N.
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The definition of uniform convergence is only ever useful if a candidate for
a uniform limit is available, a situation that we have encountered before.

Theorem 66. (CAUCHY’S CRITERION FOR SEQUENCES OF FUNCTIONS)
Let f, : A — R, for alln € N. Then, f, = f on Ay C A if and only
if Ve > 0, AN, € N (indep. of x € Ay) such that |f,.(x) — fu(x)| < €
whenever m >n > N. € N and x € Ay.

Proof.
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Example: Let f, : [0,1] — R be the sequence of functions defined by

’

nr, xr € (0,1/n]
folx)=<2—nx, z€[l/n,2/n]
L0 xr € (2/n,1]

for all n € N. Let f :]0,1] — R be the zero function on [0, 1]. Show that
fn — fon[0,1] but f,, & f on [0, 1].

Proof.
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The fact that we have to separate the proof for pointwise convergence
into distinct argument depending on the value of = is a strong indication
that the convergence cannot be uniform (although it could be that it was
possible to do a one-pass proof and that the insight escaped us...)

Intuitively, we can think of the convergence process in the last example as
being a flattening process: what happens to the tents’ peak as n — oco0?

The fact that we have to “break” the tents in order to get to the pointwise
limit is another indication that the convergence cannot be uniform.
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6.2 — Limit Interchange Theorems

It is often necessary to know if the limit f of a sequence of functions (f,)
is continuous, differentiable, or Riemann-integrable. It is not always the
case, even when the f,, are continuous, differentiable, or Riemann-integrable.

Examples:
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Note that none of the “convergences” in the previous example are uniform
on [0,1]. When the convergence f,, = f on A is uniform, then if the f,, are

= continuous on A, so is f;

= differentiable on A, so is f, with

= A ] = g [] = g

€T Ln—oo n— 00

= Riemann-integrable on A, then so is f, with

/f:/ lim f, = lim fn.
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We finish this chapter by proving three Limit Interchange Theorems.

Theorem 67. Let f, : A — R be continuous on A for all n € N. If
fn= f on A, then f is continuous on A.

Proof.
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Theorem 68. Let f, : [a,b] — R be a sequence of differentiable functions
on [a,b] such that 3xy € |a,b] with f,(xq) — 29, and f!! = g on [a,b].
Then f, = f on |a,b] for some function f : [a,b] — R such that f' = g.

Proof.
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Theorem 69. Let f, : [a,b] — R be Riemann-integrable on |a,b| for all
n € N. If f, = f on|a,b], then f is Riemann-integrable on |a,b| and

f_ lim fn

n—oo
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Proof.
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6.3 — Exercises

1. Show that lim e = 0O for all x € R.
n—oo 1 + n2x?2

2. Show that if f,(z) =z + + and f(z) =z forallz € R, n € N, then f,, =% f on
R but fﬁ 2 g on R for any function g.

3. Let fo(x) = W for z € [0, 1]. Denote by f the pointwise limit of f,, on [0, 1].
Does f, = f on [0, 1]7

4. Let (f,) be the sequence of functions defined by f,(x) = %, for x € [0, 1] and

n € N. Show that (f,) converges uniformly to a differentiable function f : [0, 1] —
R, and that the sequence (f,) converges pointwise to a function g : [0, 1] — R, but
2

that g(1) # f'(1).
2

5. Show that lim e dx = 0.
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T sin(nx)

6. Show that lim dxr = 0.

n— 00 /2 nx
7. Show that if f, = f on [a,b], and each f, is continuous, then the sequence of
functions (F),),, defined by

() = / £ (1) dt

also converges uniformly on [a, b].
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Solutions

1. Proof.
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2. Proof.
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3. Proof.
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4. Proof.
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5. Proof.
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6. Proof.
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7. Proof.
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