
MAT 2125 – Final Exam

You must provide complete, clear and precise solutions to the questions to score full marks. The
value of each question is indicated at the start of the question.

1. True or False: determine the veracity of the following statements. If false, provide a
counterexample. [1 mark each]

i. If S1, S2, . . . , Sn are countable sets, then S =
n⋃
i=1

Sn is countable as well.

Answer: True

ii. A sequence is bounded if and only if all subsequences are bounded.
Answer: True

iii. If lim
n→∞

xn and lim
n→∞

yn are real numbers, then lim
n→∞

xn
yn

exists as well.

Answer: False; xn ≡ 1, yn ≡ 0.y

iv. If lim
n→∞

xn and lim
n→∞

yn are real numbers, then lim
n→∞

xnyn exists as well.

Answer: True

v. If (xn) is unbounded, then
(

1
xn

)
is bounded.

Answer: False; x2n = 2n, x2n−1 = 2−n for n ∈ N.

vi. If S1, S2, . . . are compact sets, then S =

∞⋃
n=1

Sn is compact as well.

Answer: False; Sn = [−n, n] is compact in R for all n ∈ N, but S = R is not compact.

vii. A function defined on an unbounded set cannot be uniformly continuous.
Answer: False; f : R→ R, f ≡ 0 is uniformly continuous.

viii. If f is differentiable at c, then f is continuous at c.
Answer: True

ix. If A is open in R and f : A→ R is continuous, then f(A) = {f(a) | a ∈ A} is open in R.
Answer: False; A = R, f(x) ≡ 0.

x. If (an)n, (bn)n satisfy |an| ≤ |bn| for all n ∈ N and
∞∑
n=1

bn converges, then
∑
n

an converges.

Answer: False; an = 1
n , bn = (−1)nan.

xi. Every bounded function f : [a, b]→ R is Riemann-integrable.
Answer: False; f(x) = χQ(x).

xii. If (fn) is a sequence of Riemann-integrable functions on [a, b] and fn converges uniformly
to f on [a, b], then f is Riemann-integrable on [a, b].
Answer: True.

xiii. If fn converges uniformly to f on [a, a+ 1] for all a ∈ Z, then fn converges uniformly to
f on R.
Answer: False; (x+ 1

n)2 ⇒ x2 on [a, a+ 1] for all a ∈ Z, but (x+ 1
n)2 6⇒ x2 on R.

xiv. Let f : R → R be infinitely differentiable, and define an = f (n)(0). If
∑∞

n=1
an
n! x

n

converges uniformly to a function g on an interval [−C,C], then f(x) = g(x) for all
x ∈ (−C,C).

Answer: False; f(x) = e−
1
x2 for x 6= 0, f(0) = 0.
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xv. Let fn : [0, 1]→ R, n ∈ N be a sequence of continuous functions that converges uniformly
to f on [0, 1]. Then f is uniformly continuous on [0, 1].
Answer: True

2. Examples: For each set of conditions, provide an example satisfying the conditions. It
should be easy to see by inspection that the examples are correct. [1 mark each]

i. A set A ⊆ R that has a finite supremum but not a maximum.
Answer: A = (0, 1).

ii. A sequence that has no convergent subsequence.
Answer: xn = 2n.

iii. A function f : (0, 1)→ R that is continuous but not uniformly continuous.
Answer: f(x) = x−1.

iv. A sequence of functions fn : (0, 1) → R that converge to some function f , but not
uniformly.
Answer: fn(x) = xn, f ≡ 0.

v. A point y ∈ [0, 1] and a function f : [0, 1]→ R so that F (x) =
∫ x
0 f exists for all x ∈ [0, 1],

but with at least one y ∈ [0, 1] such that F ′(y) 6= f(y).
Answer: f(x) = χ(0.5,1](x), y = 0.5.

3. Short Proofs: provide a proof for 3 of the following statements. [3 marks each]

i. Using only the field axioms, the order axioms, and/or the Archimedean Property, show
that if u, x, y are real numbers such that u > 0 and x < y, there exists r ∈ Q such that
x < ru < y.

Proof: Note that y > x =⇒ y − x > 0 =⇒ 1
y−x > 0. By the Archimedean

Property, ∃n,m ∈ N× such that

n >
1

y − x
> 0 and m− 1 ≤ nx < m.

Since n(y − x) > 1, then

ny − nx > 1 =⇒ ny − 1 > nx.

By transitivity of the order,

ny − 1 > nx ≥ m− 1 =⇒ ny > m.

But m > nx, so since n > 0, then y > m
n > x. Select r = m

n . �

ii. Let (an) be a sequence. If lim
n→∞

a3n = lim
n→∞

a3n+1 = lim
n→∞

a3n+2 = L, show that lim
n→∞

an = L.

Proof: Let ε > 0. Then ∃N0, N1, N2 ∈ N such that

n > N0 =⇒ |a3n − L| < ε, n > N1 =⇒ |a3n+1 − L| < ε, n > N2 =⇒ |a3n+2 − L| < ε

Set Kε = 3 max{N0, N1, N2}+ 2. Then

k > Kε =⇒ |ak − L| < ε,

which is to say that ak → L. �
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iii. Suppose the sequence (xn) in Rd converges to x. Show that, for any norm ‖ · ‖, the
sequence (‖xn‖) converges to ‖x‖.

Proof: Let ‖ · ‖ be a norm on Rd and let ε > 0. Since xn → x, ∃Nε ∈ N such
that

n > Nε =⇒ ‖xn − x‖ < ε.

But for any norm we have |‖xn‖ − ‖x‖| ≤ ‖xn − x‖, so

n > Nε =⇒ |‖xn‖ − ‖x‖| ≤ ‖xn − x‖ < ε,

which is to say ‖xn| → ‖x‖. �

iv. Let f, g : [0,∞) → R be differentiable functions such that g′(x) ≥ f ′(x) for all x ≥ 0.
Give a condition on g(0) and f(0) (with proof) that will guarantee that g(x) ≥ f(x) for
all x ≥ 0.

Proof: Consider the function h : [0,∞)→ R defined by

h(x) = g(x)− f(x), for all x ∈ [0,∞).

As f and g are both differentiable on [0,∞), so is h, and

h′(x) = g′(x)− f ′(x) ≥ 0, for all x ∈ [0,∞).

Thus h is increasing on [0,∞), so that h(x) ≥ h(0) for all x ∈ [0,∞).

If furthermore h(x) ≥ 0 for all x ∈ [0,∞), then g(x) − f(x) ≥ 0 =⇒ g(x) ≥ f(x)
for all x ∈ [0,∞). It is thus sufficient to have h(0) ≥ 0, which is to say, g(0) ≥ f(0). �

v. If (fn) is a sequence of continuous functions on A such that fn converges uniformly to R
is continuous.

Proof: Let ε > 0. By definition, ∃Hε/3 ∈ N such that n > Hε/3 and x ∈ A =⇒
|fn(x)− f(x)| < ε

3 . Let c ∈ A. According to the Triangle Inequality,

n > Hε/3 =⇒ |f(x)− f(c)| ≤ |f(x)− fHε/3
(x)|+ |fHε/3

(x)− fHε/3
(c)|+ |fHε/3

(c)− f(c)|
< ε

3 + |fHε/3
(x)− fHε/3

(c)|+ ε
3

But fHε/3
is continuous at c, so ∃δε/3 > 0 such that |fHε/3

(x)− fHε/3
(c)| < ε

3 when x ∈ A
and |x − c| < δε/3. Thus |f(x) − f(c)| < ε whenever x ∈ A and |x − c| < δε/3, so f is
continuous at c. As c ∈ A is arbitrary, f is continuous on A. �

vi. Let f : R → R be such that f is differentiable at least 15 times on R. Assume further
that there exist 20 distinct points x1 < x2 < · · · < x19 < x20 with f(xi) = 1, 1 ≤ i ≤ 20.
Show that there exists some point x so that the tenth derivative of f satisfies f (10)(x) = 0.

Proof: Since f is at least 15 times differentiable on R, then f, f ′, f ′′, . . . , f (14) are con-
tinuous on R. By the Mean Value Theorem, for all 1 ≤ i ≤ 19, ∃x′i ∈ (xi, xi+1) such
that

f ′(x′i) =
f(xi+1)− f(xi)

xi+1 − xi
= 0.
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For every 1 ≤ i ≤ 19, f ′ is continuous on [x′i, x
′
i+1], differentiable on (x′i, x

′
i+1), and

f ′(x′i) = f ′(x′i+1); consequently, ∃x′′i ∈ (x′i, x
′
i+1) such that f ′′(x′′i ) = 0, according to

Rolle’s Theorem.

For every 1 ≤ i ≤ 18, f ′′ is continuous on [x′′i , x
′′
i+1], differentiable on (x′′i , x

′′
i+1), and

f ′′(x′′i ) = f ′′(x′′i+1); consequently, ∃x′′′i ∈ (x′′i , x
′′
i+1) such that f ′′′(x′′′i ) = 0, according to

Rolle’s Theorem.

Continuing on this way, we see that for every 1 ≤ i ≤ 11, f (9) is continuous on [x
(9)
i , x

(9)
i+1],

differentiable on (x
(9)
i , x

(9)
i+1), and f (9)(x

(9)
i ) = x

(9)
i+1; consequently, ∃x(10)i ∈ (x

(9)
i , x

(9)
i+1)

such that f (10)(x
(10)
i ) = 0, according to Rolle’s Theorem. Set x = x

(10)
1 . This completes

the proof. �

4. Computations and Applications: answer 3 of the following questions. [3 marks each]

i. Let f : [−1, 1]→ R be defined by

f(x) =

{
x4 sin

(
1
x4

)
, x 6= 0

0, x = 0

Show f is differentiable on [−1, 1] and find f ′. Is f ′ continuous on [−1, 1]?

Proof: If x 6= 0, then f(x) is differentiable, being the product of two differentiable
functions, and

f ′(x) = 4x3 sin
(

1
x4

)
− 4x cos

(
1
x4

)
.

If x = 0, then f ′(0) = 0. Indeed, ∀ε > 0, set δε = ε1/3. Then for x ∈ [−1, 1],

0 < |x| < δε =⇒

∣∣∣∣∣x4 sin
(

1
x4

)
− 0

x− 0
− 0

∣∣∣∣∣ = |x3 sin
(

1
x4

)
| ≤ |x|3 < δ3ε = ε,

and so

f ′(x) =

{
4x3 sin

(
1
x4

)
− 4x cos

(
1
x4

)
, x 6= 0

0, x = 0

The derivative f ′ is continuous at all x ∈ [−1, 1] \ {0}, being the sum and product of
continuous functions there. But lim

x→0
f ′(x) does not exist (and so is not equal to f ′(0)):

indeed, let xn = ( 1
nπ )1/4. Then xn → 0, xn 6= 0, and the sequence

f ′(xn) = 4( 1
nπ )1/3 sin(nπ)− 4(nπ)1/4 cos(nπ) = −4(nπ)1/4(−1)n

diverges as it is not bounded. Thus f ′ is not continuous on [−1, 1]. �

ii. Let f : [0, 2]→ R be defined by

f(x) =


1, x ∈ [0, 1)

3, x = 1

−3, x ∈ (1, 2]

Show directly that f is Riemann-integrable on [0, 2] and compute
∫ 2
0 f .
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Proof: Let ε > 0 and define the partition Pε = {0, 1 − ε, 1 + ε, 2}. Since f is bounded
on [0, 2], L(f) ≤ U(f) exist and

L(f) ≥ L(Pε; f) = 1 · (1− ε) + (−3) · (2ε) + (−3) · (1− ε) = −2− 4ε, and

U(f) ≤ U(Pε; f) = 1 · (1− ε) + (3) · (2ε) + (−3) · (1− ε) = −2 + 2ε.

Hence
−2− 4ε ≤ L(f) ≤ U(f) ≤ −2 + 2ε, for all ε > 0.

Since ε > 0 is arbitrary, then −2 ≤ L(f) ≤ U(f) ≤ −2; by definition, f is Riemann-
integrable on [0, 2] and L(f) = U(f) =

∫ 2
0 f = −2. �

iii. Assume that f is continuous at 0. Show that g(x) ≡ sin2(x)f(x) is differentiable at 0.

Proof: Let M = sup
|x|≤1
|f(x)|; by continuity of f we know M <∞. Then

lim sup
x→0

∣∣∣∣sin2(x)f(x)− sin2(0)f(0)

x− 0

∣∣∣∣ = lim sup
x→0

∣∣∣∣sin2(x)f(x)

x

∣∣∣∣ ≤M · lim
x→0

∣∣∣∣sin2(x)

x

∣∣∣∣ = 0,

so g′(0) = 0. �

iv. Show that
∞∑
k=0

(k2 + k + 1) sin(kx)xk converges uniformly on x ∈ [−a, a] for all 0 < a < 1.

Proof: Let a ∈ (0, 1). Consider the functions fk : [−a, a]→ R, x 7→ (k2+k+1) sin(kx)xk,
k ≥ 1. We have

|fk(x)| ≤Mk = (k2 + k + 1) · ak, for all x ∈ [−a, a].

Then Mk > 0 for all k ∈ N. If

∞∑
k=0

Mk converges,

∞∑
k=0

fk(x) converges uniformly on [−a, a],

according to the Weierstrass M−Test. But

lim
k→∞

∣∣∣∣Mk+1

Mk

∣∣∣∣ = lim
k→∞

∣∣∣∣((k + 1)2 + (k + 1) + 1) · ak+1

(k2 + k + 1) · ak

∣∣∣∣ = a · lim
k→∞

k2 + 3k + 3

k2 + k + 1
= a < 1.

According to the Ratio Test,
∑

kMk converges, so
∑
fk converges uniformly on [−a, a]. �

v. Let f(x) =
∞∑
k=0

(3x)k

k!
. Show that f ′(x) exists and satisfies f ′(x) = 3f(x) over some in-

terval of convergence (−R,R), without directly using the fact that d
dxe

Cx = CeCx.

Proof: Let ak = 3k

k! , k ∈ N. The radius of convergence of the power series is

R = lim sup
k→∞

∣∣∣∣ akak+1

∣∣∣∣ = lim sup
k→∞

3k

k!
· (k + 1)!

3k+1
= lim sup

k→∞

k + 1

3
=∞,

and so the power series converges uniformly on the convergence interval R = (−∞,∞).
According to the Limit Interchange Theorem for power series, we thus have

f ′(x) =
d

dx

∞∑
k=0

(3x)k

k!
=

∞∑
k=0

d

dx

(3x)k

k!
=

∞∑
k=0

k(3x)k−1 · 3
k!

=

∞∑
k=1

3
(3x)k−13

(k − 1)!
= 3f(x),

which incidentally also shows that f ′ exists. �
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vi. Show that lim
n→∞

∫ 10

5
x12 sin19(xn) dx = 0.

Proof: Let n ∈ N. Then fn : [5, 10] → R, defined by fn(x) = x12 sin19(xn), is Riemann-
integrable on [5, 10] since it is continuous on [5, 10]. However x12 sin19(xn) ⇒ 0 on [5, 10].

Indeed, let ε > 0, then ∃Nε >
19

√
1031

ε (independent of x) such that

n > Nε and x ∈ [5, 10] =⇒
∣∣x12 sin19(xn)− 0

∣∣ = x12
∣∣sin19(xn)− 0

∣∣ ≤ 1012
∣∣∣x
n

∣∣∣19 < |10|31

N19
ε

< ε.

Thus,

lim
n→∞

∫ 10

5
x12 sin19(xn) dx =

∫ 10

5
lim
n→∞

x12 sin19(xn) dx =

∫ 10

5
0 dx = 0,

according to the Limit Interchange Theorem for integrals. �

5. Longer Proofs: answer all questions in this section. [3 marks each]

i. Let f : [a, b] → R be differentiable on [a, b] and (xn) ⊆ [a, b] be a sequence such that
xn → p. If all the xn are distinct and f(xn) = 0 for all n ∈ N, show f(p) = 0 and
f ′(p) = 0.

Proof: f is differentiable on [a, b] and so is continuous on [a, b], so

0 = lim
n→∞

f(xn) = f
(

lim
n→∞

xn
)

= f(p).

Since the derivative of f at p exists and since xn 6= p for all n ∈ N, we can use the
sequential definition to compute the derivative at p:

f ′(p) = lim
n→∞

f(xn)− f(p)

xn − p
= lim

n→∞

0− 0

xn − p
= 0.

This completes the proof. �

ii. Let f(x) =
∑∞

n=0 anx
n be given by a power series that converges uniformly on an interval

[−C,C], and for which all terms (an) are nonzero. Show that there exists some δ > 0 so
that f is monotone on [−δ, δ].

Proof: Since the power series converges uniformly, we have

f ′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n

for x ∈ (−C,C). By assumption, |a1| > 0; WLOG, assume that a1 > 0. We then have,
for x ∈ (−C,C),

|f ′(x)− a1| ≤
∞∑
n=1

(n+ 1)|an| |x|n = |x|
∞∑
n=1

(n+ 1)|an| |x|n−1

≤ |x|
∞∑
n=1

(n+ 1)|an| (0.1C)n−1 ≡ |x|A.
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Note that A < ∞, since power series are uniformly and absolutely convergent on open
intervals within their radii of convergence. Thus, for all |x| < |a1|

2A ,

f ′(x) ≥ a1 −A|x| ≥
a1
2
> 0,

so f ′ is monotone on (−|a1|2A , |a1|2A ). �

iii. Define the closure A of a set A ⊆ Rd to be the union of A and the boundary ∂A of A.
Show that:

(a) A is closed.

Answer: Let x /∈ A. Since x is not in the boundary, there exists r > 0 s.t. one of
B3r(x) ∩A, B3r(x) ∩Ac is empty. But x /∈ A, so B3r(x) ∩Ac 6= ∅, and we conclude
B3r(x) ∩A = ∅.

But Br(x)∩A = ∅. Indeed, if not, there exists y ∈ Br(x)∩A; by the last paragraph
y /∈ A but is in the boundary of A. But then Br(y)∩A ⊆ B3r(x)∩A = ∅, so in fact
y is not in boundary. �

(b) If A ⊆ Rd is bounded, then A is bounded.

Proof: Assume supa∈A ‖a‖ = M < ∞. Let b ∈ A but b /∈ A. Then B1(b) ∩ A
contains a point c, and so ‖b‖ ≤ ‖c‖ + 1 ≤ M + 1. Thus, in both cases a ∈ A, or
a ∈ A but a /∈ A, we have ‖a‖ ≤M + 1 <∞. �

(c) Fix ε > 0 and a bounded set A ⊆ Rd. Show that there exists a finite collection of
points x1, . . . ,xn ∈ Rd so that

A ⊆
n⋃
i=1

Bε(xi),

where Bε(x) = {y ∈ Rd : ‖x− y‖ < ε} is the usual open ball of radius ε around x.

Proof: By the previous two parts, A is closed and bounded (hence compact). Con-
sider the collection of sets {Bε(a)}a∈A. This is clearly an open cover of A, so it has
a finite subcover {Bε(ai)}ni=1. Thus

A ⊆ A ⊆
n⋃
i=1

Bε(ai).

This concludes the proof. �
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