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Mathematical Analysis Chapter 10 – Metric Spaces and Topology

Overview

One of the natural ways we can extend the concepts we have discussed in
the previous chapters is by moving from R to Rm.

Some of the notions that generalize nicely to vectors and functions on
vectors include compactness and connectedness.

Notation: The symbol K is sometimes used to denote either R or C.

CR([0, 1]) represents the R−vector space of continuous functions [0, 1]→ R.

FR([0, 1]) represents the R−vector space of functions [0, 1]→ R.
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10.1 – Compact Spaces

Let A be a finite set. A function f : A→ K is necessarily bounded (in the
sense that ∃M ∈ K such that |f(a)| ≤M for all a ∈ A).

Might this be due to the finiteness of A? While finiteness is sufficient, it
is not a necessary condition for boundedness: the function χQ : [0, 1] → R
is bounded, even though its domain is the infinite set [0, 1].

Might it be due to the boundedness of the domain of the function?
This is neither sufficient nor necessary, as can be seen from the functions

f : [0, 1]→ R, f(x) =
1

x
for x > 0, and f(0) = 0,

and g : R→ R defined by g(x) = exp(−x2).
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Might it be due to the continuous nature of the function? We have
examples of continuous function being bounded, others being unbounded;
and non-continuous functions being bounded, others being unbounded.

A condition on the domain of the function alone cannot guarantee
boundedness; and neither can one on the nature of the function.

However, a combination of two conditions, one each on the domain
and on the function, can provide such a guarantee.

In this section, we study the appropriate property on the domain, that
of compactness, which generalizes the property of finiteness.

The definition is due to Borel and Lebesgue, and is applicable to metric and
general topological spaces alike.

P. Boily (uOttawa) 4



Mathematical Analysis Chapter 10 – Metric Spaces and Topology

10.1.1 – The Borel-Lebesgue Property

A space E is compact if any family of open subsets covering E contains a
finite sub-family which also covers E.

In other words, E is compact if, for any collection U = {Ui}i∈I of open
subsets Ui ⊆O E with E ⊆

⋃
i∈I Ui, ∃ a finite J ⊆ I s.t. E ⊆

⋃
j∈J Uj.

Examples:

1. Every finite metric space (E, d) is compact.

Proof. Let U be an open cover of E = {x1, . . . ,xn}. Thus, for
each 1 ≤ i ≤ n, ∃Ui ∈ U such that xi ∈ Ui. Then {U1, . . . , Un} is a
finite subcover of E. �
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2. In the standard topology, R is not compact.

Proof. Consider the open cover R =
⋃
n∈N

(−n, n).

Any finite subcollection {(−n1, n1), . . . , (−nm, nm)} is bounded by
M = max{nj | 1 ≤ j ≤ m}, and thus cannot be a cover of R
according to the Archimedean Property. Consequently, no such finite
subcover exists and R is not compact. �

3. Show that R is compact in the indiscrete topology.

Proof. The only open cover of R in the indiscrete topology is {R},
which is already a finite sub-cover of R (the only other open subset of R
in the indiscrete topology is ∅). �
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4. Show that any compact metric (E, d) space is bounded.

Proof. Consider the open cover E =
⋃
x∈E

B(x, 1).

Since E is compact, ∃x1, . . . ,xn such that E =

n⋃
i=1

B(xi, 1).

Consequently, E has a finite diameter ≤ n and is thus bounded. �

By abuse of notation, we will often write: “let
⋃
Ui be an open cover of E”

rather than “let {Ui} be an open cover of E,” as in the examples above.

Incidentally, does the fourth example contradict the third one? What
does that imply about the indiscrete topology?
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The duality open/closed, union/intersection yields an equivalent definition:
a space E is compact if any family of closed subsets of E with an empty
intersection contains a finite sub-family whose intersection is also empty.

In other words, E is compact if, for any collection W = {Vi}i∈I of closed
subsets Vi ⊆C E with

⋂
i∈I Vi = ∅, ∃ a finite J ⊆ I s.t.

⋂
j∈J Vj = ∅.

Proposition 115. Let (Fn)n≥1 be a decreasing sequence of non-empty
closed subsets of a compact space E. Then

⋂
n≥1Fn 6= ∅.

Proof. If
⋂
n≥1Fn = ∅, then E =

⋃
n≥1E \Fn, where E \F ⊆O E. Since

E is compact, ∃ a finite subsequence of indices n1 < · · · < nk s.t.

E =

k⋃
i=1

E \ Fni.
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Consequently,
⋂k
i=1Fni = ∅. But the original sequence is decreasing, so

that
k⋂
i=1

Fni = Fnk = ∅,

which contradicts the hypothesis that all Fn are non-empty. As a result, we
conclude that

⋂
n≥1Fn 6= ∅. �

Continuous functions on compact domains have quite useful properties.

Proposition 116. Let f : (E, d) → (F, δ) be any continuous function
over a compact metric space. Then f is uniformly continuous.

Proof. Let x ∈ E. Since f is continuous at x ∈ E, ∀ε > 0, ∃Mx(ε) > 0
such that

f(B(x,Mx)) ⊆ B(f(x), ε).
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Furthermore, E =
⋃

x∈E B(x,Mx) is an open cover of E, which is compact.
Consequently, ∃x1, . . . ,xn ∈ E such that E =

⋃n
i=1B(xi,Mxi). Set

M = M(ε) = 1
2 ·min{Mx1, . . . ,Mxn} > 0.

Then, ∀ε>0, ∃M(ε) > 0 such that f(B(x,M)) ⊆ B(f(x), ε) for all x ∈ E.
As M does not depend on x, f is uniformly continuous. �

A subset A ⊆ E is deemed to be a compact subset of E, which we
denote by A ⊆K E, if any family of open subsets of E covering A contains
a finite sub-family which also covers A.

Proposition 117. A finite union of compact subsets of E is itself compact.

Proof. Let A1, . . . , An ⊆K E and write A =
⋃n
k=1Ak. Let {Ui}i∈I ⊆ ℘(E)

be an open cover of A. Then {Ui}i∈I is also an open cover of Ak for each k.
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Since all Ak are compact, ∃ finite J1, . . . , Jk ⊆ I such that Ak ⊆
⋃
j∈Jk Uj

for each k. Thus, A ⊆
⋃n
k=1

⋃
j∈Jk Uj. But

⋃n
k=1{Uj}j∈Jk is a finite

sub-family of {Ui}i∈I, from which we conclude that A ⊆K E. �

The infinite union of compact subsets could be compact or not.

Examples:

1. Both [0, 1], [2, 3] ⊆K (R, d1), so [0, 1] ∪ [2, 3] ⊆K (R, d1).

2. For any x ≥ 1, [0, 1
x] ⊆K (R, d1). The union

⋃
x≥1[0, 1

x] = [0, 1] is also a
compact subset of (R, d1).

3. For any n ∈ N, [−n, n] ⊆K (R, d1), but the union
⋃
n∈N[−n, n] = R is

not a compact subset of (R, d1).
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10.1.2 – The Bolzano-Weierstrass Property

For metric spaces, compactness can also be established via a property
of sequences which is often easier to ascertain than the Borel-Lebesgue
property – !4 the two properties are not equivalent in general for
non-metric spaces.

Let (E, d) be a metric space. We say that E is precompact if ∀ε > 0,
∃x1, . . . ,xn ∈ E such that E =

⋃n
i=1B(xi, ε).

Proposition 118. A compact space is precompact.

Proof. Left as an exercise. �

Theorem 119. Let (E, d) be a metric space. Then E is compact if and
only if any sequence in E has a convergent sub-sequence in E.
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Proof. Assume E is compact and let (xn) ⊆ E. If the range of (xn) is
finite, there is a constant subsequence which would then automatically be
convergent.

We then consider sequences with infinite range A = {xn | n ∈ N}.
We show that such an A has at least one cluster point.

Suppose, instead, that there A has no cluster point. Thus for any x ∈ E,
∃rx > 0 with B(x, rx)∩A is finite. Since E is compact, there exists a finite
J ⊆ E such that E =

⋃
x∈J B(x, rx).

Then
A =

⋃
x∈J

(B(x, rx) ∩A)

is a finite union of finite sets, hence A is itself finite.
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But this contradicts the fact that A is infinite. Hence, A has at least
one cluster point x ∈ E. Such a cluster point is a limit point of (xn):
consequently, there is a subsequence of (xn) which converges to x ∈ E.

(In that case, we say that E satisfies the Bolzano-Weierstrass property.)

Conversely, assume all sequences in E have convergent subsequence in E.
First, note that any metric space (E, d) satisfying the Bolzano-Weierstrass
property is precompact.

Indeed, suppose that ∃ε > 0 such that E can not be covered with a
finite number of ε−balls. Let x0 ∈ E. By assumption, B(x0, ε) 6= E. Thus
∃x1 ∈ E such that d(x0,x1) ≥ ε.

Since B(x0, ε)∪B(x1, ε) 6= E, ∃x2 ∈ E such that d(x0,x1), d(x0,x2) ≥ ε.
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Continuing this process, we build a list x0,x1, . . . ,xn for which d(xi,xj) ≥ ε
for all i < j ≤ n.

Since
⋃n
i=0B(xi, ε) 6= E, ∃xn+1 ∈ E s.t. d(xi,xn+1) ≥ ε for all 0 ≤ i ≤ n.

By induction, there is a sequence (xn) ⊆ E such that d(xi,xj) ≥ ε whenever
i 6= j. Consequently, this sequence has no convergent subsequence, since
no subsequence is a Cauchy sequence. This contradicts the hypothesis that
E satisfies the Bolzano-Weierstrass property, thus E is precompact.

Next, we show that if the metric space (E, d) satisfies the Bolzano-
Weierstrass property and if {Ui}i∈I is an open cover of E, then

∃α > 0,∀x ∈ E,∃i ∈ I =⇒ B(x, α) ⊆ Ui. (1)
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Indeed, suppose that

∀α > 0,∃x ∈ E,∀i ∈ I =⇒ B(x, α) 6⊆ Ui. (2)

In particular,

∀n ∈ N×,∃xn ∈ E,∀i ∈ I =⇒ B(x, 1
n) 6⊆ Ui.

Let (xϕ(n)) be a convergent subsequence of (xn) (such a sequence exists
since E satisfies the Bolzano-Weierstrass property).

Write xϕ(n) → x. Since {Ui}i∈I covers E, ∃i ∈ I such that x ∈ Ui.
But Ui ⊆O E, so ∃r > 0 such that B(x, 2r) ⊆ Ui.

Accordingly, ∃N ∈ N s.t. d(xϕ(n),x) < r and ϕ(n) > 1
r for all n > N .
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Consequently, ∀n > N and ∀y ∈ B(xϕ(n),
1

ϕ(n)), we have

d(x,y) ≤ d(x,xϕ(n)) + d(xϕ(n),y) < r + r = 2r.

Thus ∀n > N , B(xϕ(n),
1

ϕ(n)) ⊆ Ui, which contradicts (2), and so (1) holds.

To show E is compact, let {Ui}i∈I be an open cover of E. We know
from (1) that

∃α > 0,∀x ∈ E,∃i ∈ I =⇒ B(x, α) ⊆ Ui.

But E is precompact, so ∃x1, . . . ,xn ∈ E such that E =
⋃n
j=1B(xj, α).

Let i1, . . . , in be the indices for which B(xj, α) ⊆ Uij, 1 ≤ j ≤ n.
Then E =

⋃n
j=1Uij is a finite subcover of E; E is indeed compact. �
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The following result has a similar flavour.

Theorem 120. Let (E, d) be a metric space. Then E is compact if and
only if any sequence in E has a limit point if and only if every infinite subset
of E has a cluster point.

Proof. Left as an exercise. �

It is typically easier to show that the Bolzano-Weierstrass is violated than
to show that it holds.

Example: Show that the set (0, 1) is not a compact subset of R in
the usual topology.

Proof. Consider the sequence (1/n) ⊆ (0, 1). Every subsequence of
(1/n) converges to 0 6∈ (0, 1). According to Theorem 119, (0, 1) is not a
compact subset of (R, d1). �
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Compact sets really have quite useful properties.

Proposition 121. Let (E, d) be a metric space.

1. If E is compact and A ⊆C E, then A ⊆K E.

2. If A ⊆K E, then A ⊆C E and A is bounded.

Proof.

1. Since E is compact, it is precompact (see the proof of Theorem 119)
and so is A.

The set E is also complete (see exercise 1). Thus A is a closed
subset of the complete set E: A is then complete (see Proposition 110).
But A is precompact and complete, and so A ⊆K E (see exercise 2).
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2. Since A ⊆K E, it is also precompact. Hence for ε > 0, ∃x1, . . . ,xn ∈ A
such that

A ⊆
n⋃
j=1

B(xj, ε).

Thus, δ(A) ≤ nε <∞ and A is bounded.

To show that A ⊆C E, it suffices to show that any sequence in A
which converges does so in A, according to Proposition 105. So let
(xn) ⊆ A be such that xn → x ∈ E. But A is compact, so that ∃ a
convergent subsequence (xϕ(n)) which converges in A.

Since any subsequence of a sequence converging to x also converges
to x, xϕ(n) → x ∈ A and so A ⊆C E. �
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Compactness is a topological notion, unlike completeness.

Proposition 122. Let (E, d) and (F, δ) be metric spaces, together with a
continuous function f : (E, d)→ (F, δ). If A ⊆K E then f(A) ⊆K F .

Proof. Let {Uλ}λ∈Λ be an open cover of f(A). Since f is continuous, we
have that A ∩ f−1(Uλ) ⊆O A for all λ ∈ Λ.

Thus {A ∩ f−1(Uλ)}λ∈Λ is an open cover of A. But A ⊆K E so that ∃ a
finite H ⊆ Λ such that ⋃

λ∈H

(
A ∩ f−1(Uλ)

)
= A.

As such, {f(Uλ)}λ∈H is a finite sub-cover of f(A), and so f(A) ⊆K F . �
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Proposition 123. Let f : (E, d) → (F, δ) be a continuous bijection. If
(E, d) is compact, then f is a homeomorphism.

Proof. Let Y ⊆C E. We need to show that f(Y ) ⊆C F . According to
Proposition 122, f(Y ) ⊆K F . But, according to Proposition 121, part 2,
f(Y ) ⊆C F . So f is closed, meaning that f inv is continuous. �

Perhaps the most famous theorem linking continuous functions and compact
spaces is the result to which we were alluding to at the start of this section.

Proposition 124. (Min-Max Theorem)
Let f : (E, d)→ R be continuous. If (E, d) is compact, then f is bounded
and ∃a,b ∈ E such that f(a) = infx∈E f(x) and f(b) = supx∈E f(x).

Proof. Since E is compact and f is continuous, then f(E) is compact
according to Proposition 122. As such, f(E) is both closed and bounded
in R, according to Proposition 121.
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Now, set A = infx∈E f(x). By definition, for each n ≥ 1, ∃an ∈ E such
that A ≤ f(an) < A+ 1

n (otherwise infx∈E f(x) ≥ A+ 1
n > A).

But (an) is a subsequence of the compact space E (hence a subsequence of
a closed space) so ∃ a subsequence (aϕ(n)) which converges to some a ∈ A
according to Proposition 105.

As f is continuous, f(aϕ(n))→ f(a). But f(aϕ(n))→ A, since

A ≤ f(aϕ(n)) < A+
1

ϕ(n)
→ A.

The limit of a convergent sequence is unique in a metric space, so f(a) = A.

A similar argument shows ∃b ∈ E such that f(b) = supx∈E f(x). �
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The next result cannot be generalized to infinite dimensional spaces (such
as with `2(N) or other infinite dimensional Banach spaces).

Proposition 125. (Heine-Borel)
Any closed bounded subset of Kn is compact in the usual topology.

Proof. Since Cm ' R2m, we only need to verify that this is the case
for Rn. Furthermore, the proposition will be established if we can show it
to be valid for any A = [a1, b1]×· · ·×[an, bn] ⊆C Rn (why is that the case?).

Since Rn is complete and A ⊆ Rn, then A is a complete subset of Rn,
according to Proposition 110. It will then be sufficient to show that A is
precompact, according to the proof of Theorem 119.

But that is obvious (see exercise 4). �
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10.2 – Connected Spaces

Let f : A ⊆ R → R be a continuous function such that ∃a, b ∈ A with
f(a)f(b) < 0. What condition do we need on A in order to guarantee the
existence of a solution to f(x) = 0 on A?

Whether A is compact or not is irrelevant: for instance, in the standard
topology, the function f : A = [0, 1] ∪ [2, 3]→ R defined by

f(x) =

{
−1 x ∈ [0, 1]

1 x ∈ [2, 3]

is continuous over the compact set A, there are points a, b ∈ A such that
f(a)f(b) < 0, yet f(x) 6= 0 for all x ∈ A.
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On the other hand, f : A = [−1, 1] → R defined by f(x) = x is such that
f(−1)f(1) < 0 and ∃x ∈ A such that f(x) = 0 (namely, x = 0).

The key notion is that of connectedness.

Let (E, d) be a metric space. A partition of E is a collection of two
disjoint non-empty subsets U, V ⊆ E such that E = U ∪ V .

We denote the disjoint union by E = U t V .

An open partition of E is a partition where U, V ⊆O E; a closed
partition of E is a partition where U, V ⊆C E.
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Examples:

1. There are many partitions of R in the usual topology, such as

(−∞, 0] t (0,∞) or [(−∞,−3] ∪ {0}] t [(−3, 0) ∪ (0,∞)],

but no such partition can be an open partition or a closed partition.

2. The metric space A = [0, 1]∪ [2, 3] is partitioned by [0, 1] and [2, 3]. This
is both an open partition and a closed partition in the usual subspace
topology (note that this is not the case in R, but we are only interested
in the set A, not the space in which it is embedded).

3. The singleton set E = {∗} cannot be partitioned.
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Proposition 126. Let (E, d) be a metric space. The following conditions
are equivalent:

1. E has no open partition;

2. E has no closed partition;

3. The only subsets of E that are both open and closed are ∅ and E (such
sets are rather unfortunately known as clopen sets).

Proof. 1. =⇒ 2.: Suppose that {F1, F2} forms a closed partition of E.
Then Fi = E \Fi−1 ⊆O E for i = 1, 2. Hence {F1, F2} also forms an open
partition of E, which contradicts the hypothesis that no such partition of E
exists. Thus E has no closed partition.
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2. =⇒ 3.: Let A ⊆ E be such that A ⊆C E and A ⊆O E. Then {A,E \A}
is a closed partition of E. By hypothesis, there can be no such partition of
E. Hence A = ∅ or E \A = ∅.

3. =⇒ 1.: This is clear once one realizes that any open partition is
automatically also a closed partition. �

A metric space (E, d) is said to be connected if it satisfies any of
the conditions listed in Proposition 126.

Similarly, a subset A ⊆ E is connected if its only clopen partition is
trivial, that is: whenever A = X tY , X,Y ⊆O E, either X = ∅ or Y = ∅.

We will denote such a situation with A ⊆ c© E, which is emphatically
not a notation you will find anywhere else.
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Examples:

1. In the usual topology, R is connected.

2. In the usual topology on R, A = [0, 1]∪ [2, 3] is not a connected subspace
of R.

3. The singleton set E = {∗} is vacuously connected.

4. Show that A = {1
n | n ∈ N} is not a connected subspace of R in the

usual topology.

Proof. This holds as A = {1}t{1
n | n ≥ 2} is a non-trivial open partition

of A: indeed, {1} ⊆O A since {1} = (1
2,∞) ∩ A, {1

n | n ≥ 2} ⊆O A
since {1

n | n ≥ 2} = (0, 1) ∩A. �
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As was the case with compactness, connectedness is a topological notion.

Proposition 127. Let f : (E, d) → (F, δ) be continuous. If A ⊆ c© E,
then f(A) ⊆ c© F .

Proof. Let B ⊆O,C f(A). We will show that B = ∅ or B = f(A).

Since B ⊆O f(A), then ∃U ⊆O F such that B = f(A) ∩ U . Similarly,
since B ⊆C f(A), then ∃W ⊆C F such that B = f(A) ∩W . But f is
continuous so f−1(U) ⊆O E and f−1(W ) ⊆C E. Therefore,

f−1(B) = A ∩ f−1(U) ⊆O A and f−1(B) = A ∩ f−1(W ) ⊆C A.

Thus f−1(B) ⊆O,C A. However A is a connected subset of E, so either
f−1(B) = ∅ or f−1(B) = A. Since B ⊆ f(A), that leaves only two
possibilities: B = ∅ or B = f(A), which means f(A) ⊆ c© B. �
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10.2.1 – Characterization of Connected Spaces

We now give a simple necessary and sufficient condition for connectedness.
Throughout, we endow the set {0, 1} with the discrete metric.

Proposition 128. A metric space (E, d) is connected if and only if every
continuous function f : E → {0, 1} is constant.

Proof. Assume (E, d) is connected. If f : E → {0, 1} is continuous and
not constant, then f−1(0), f−1(1) ⊆O,C E and E = f−1(0) t f−1(1).

Since f is not constant, neither f−1(0) nor f−1(1) is ∅ or all of E. Hence E
is not connected, as it contains non-trivial clopens, which contradicts our
starting assumption. Thus f is constant.
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Conversely, if E is not connected, ∃ non-trivial clopens X,Y such that
E = X tY . Consider the characteristic function χX : E → {0, 1}: we have
f−1(0) = Y ⊆O E and f−1(1) = X ⊆O E. Consequently, f is continuous.
But it is clearly not constant. �

In practice, Proposition 128 is typically easier to use to show that a
space is not connected.

Proposition 129. Let (E, d) be a metric space and A ⊆ c© E. If B ⊆ E
is such that A ⊆ B ⊆ A, then B ⊆ c© E.

Proof. If such a B is not connected, then ∃ a non-trivial open partition
{X,Y } of B. In particular, {A∩X,A∩Y } is an open (in A) partition of A.

But A is dense in B: if x ∈ B, every neighbourhood around x contains at
least a point of A.
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In particular, if x ∈ B∩X, then any neighbourhood around x must contain
at least a point of A∩X. Consequently, A∩X 6= ∅. Similarly, A∩Y 6= ∅.

Thus, {A∩X,A∩Y } is a non-trivial open partition of A, which contradicts
the fact that A is connected. So B must be connected. �

There is a series of other useful propositions about connected spaces.

Proposition 130. If (Bi)i∈I is a family of connected subsets of a metric
space (E, d) such that

⋂
i∈I Bi 6= ∅, then B =

⋃
i∈I Bi ⊆ c© E.

Proof. If {X,Y } is a non-trivial open partition of B and if b ∈
⋂
i∈I Bi,

we may assume b ∈ X without loss of generality.

But B =
⋃
i∈I = X tY and Y 6= ∅; hence ∃i0 ∈ I such that Y ∩Bi0 6= ∅.
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Since b ∈
⋂
i∈I Bi, then b ∈ X ∩ Bi0 6= ∅ and so {X ∩ Bi0, Y ∩ Bi0} is

a non-trivial open partition of Bi0, which contradicts the hypothesis that
Bi0 ⊆ c© E. Consequently, B ⊆ c© E. �

Proposition 131. If (Cn)n∈N is a sequence of connected subsets of a
metric space (E, d) such that Cn−1 ∩ Cn 6= ∅, then C =

⋃
n∈NCn ⊆ c© E.

Proof. Left as an exercise. �

Proposition 132. Let (E1, d1), . . . , (En, dn) be metric spaces. Then

(E, d) = (E1 × · · · × En, sup{di | 1 ≤ i ≤ n})

is connected if and only if (Ei, di) is connected for all i.

Proof. Left as an exercise. �
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Let (E, d) be a metric space once more. We define an equivalence relation
on E as follows:

xRy⇐⇒ ∃C ⊆ c© E such that x,y ∈ C. (3)

The equivalence class

[x] = {y ∈ E | yRx} =
⋃

C⊆ c©E
x∈C

C

is a connected subset of E, which we call the connected component of x.

It is not hard to show that [x] ⊆C E and that if a metric space only has a
finite number of connected components, then each of those components is
a clopen subset of E (see exercises 9 and 10).
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Proposition 133. Consider R with the usual topology. Then, A ⊆ c© R if
and only if A is an interval.

Proof. Let A ⊆ c© R. If A is not an interval, ∃a, b ∈ A for which ∃c ∈ (a, b)
with c 6∈ A. Thus, A ⊆ (−∞, c) ∪ (c,∞).

Hence {A ∩ (−∞, c), A ∩ (c,∞)} is a non-trivial open partition of A,
which implies that A is not a connected subset of R, a contradiction as
A ⊆ c© E, and so A is an interval.

Conversely, if A = {∗}, we have already shown that A ⊆ c© R. According
to Proposition 129, it is sufficient to verify that A = (a, b) ⊆ c© R for any
a < b. We will show that any continuous map f : (a, b)→ {0, 1} is constant.

Suppose otherwise that ∃x, y ∈ (a, b) such that x < y and f(x) 6= f(y).
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Without loss of generality, let f(x) = 0 and f(y) = 1. Set

Γ = {z | z ≥ x and f(t) = 0∀t ∈ [x, z]}.

Clearly, Γ 6= ∅ since x ∈ Γ. Furthermore Γ is bounded above by y. Thus,
since R is complete, ∃c ∈ [x, y] ⊆ (a, b) such that c = sup Γ.

By continuity of f at c, f(c) = 0 and ∃δ > 0 such that

s ∈ (c− δ, c+ δ) =⇒ |f(s)| = |f(s)− f(c)| < 1
2.

As such, f(s) < 1
2 for all s ∈ (c− δ, c+ δ). But f can only take two values:

0 or 1. Consequently, f(s) = 0 for all s ∈ (c− δ, c+ δ).

This in turn implies that c + δ
2 ∈ Γ, which contradicts the fact that

c = sup Γ. Thus, f is constant, and (a, b) ⊆ c© R. �
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We can now give a general proof of the remark that was made
after Theorem 36.

Corollary 134. (Bolzano’s Theorem)
Consider R with the usual topology and a continuous function f : R→ R.
The image of any interval by f is an interval.

Proof. Let A ⊆ c© R. By the preceding proposition, A is an interval. Since
f is continuous, f(A) ⊆ c© R. But the only connected subsets of R are the
intervals. Consequently, f(A) is an interval. �
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10.2.2 – Path-Connected Spaces

Let (E, d) be a metric space. We say that E is path-connected if for any
two points x,y ∈ E, there is a continuous function γ : [0, 1]→ E such that
γ(0) = x and γ(1) = y.

The segment between x and y is [x,y] = {tx + (1− t)y | t ∈ [0, 1]}.

The continuous function associated to this segment is the function
fx,y : [0, 1]→ E defined by fx,y(t) = tx + (1− t)y.

If [x,y] and [z,w] are two segments, define their sum to be

[x,y]+[z,w] = {2tx+(1−2t)y | t ∈ [0, 1
2]}∪{(2t−1)z+(2−2t)w | t ∈ [12, 1]}.
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If y = z, the continuous function associated to this sum of segment is the
function gx,y,w : [0, 1]→ E defined by

gx,y,w(t) =

{
2tx + (1− 2t)y if t ∈ [0, 1

2]

(2t− 1)y + (2− 2t)w if t ∈ [12, 1]

Examples:

1. In (R2, d2), B(0, 1) is path-connected.

Proof. Let a 6= b ∈ B(0, 1). Then [a,0], [0,b] ⊆ B(0, 1). Indeed,
if x ∈ [a,0], then x = ta for t ∈ [0, 1]. But ‖x‖ = |t|‖a‖ ≤ ‖a‖ < 1, so
that x ∈ B(0, 1). Then ga,0,b ∈ CB(0,1)([0, 1]) is such that ga,0,b(0) = a
and ga,0,b(1) = b. �
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2. In any normed vector space (E, ‖ · ‖) over K, any open ball B(x, ρ) is
path-connected (see exercise 12).

Proposition 135. If (E, d) is path-connected, then it is also connected.

Proof. Let f : E → {0, 1} be a continuous function and a,b ∈ E. Since E
is path-connected, ∃ a continuous path γ : [0, 1] → R such that γ(0) = a
and γ(1) = b.

Since the composition f ◦ γ : [0, 1] → {0, 1} is continuous and since
[0, 1] ⊆ c© R, then f ◦ γ is constant: in particular,

f(a) = f(γ(0)) = f(γ(1)) = f(b),

so that f itself is constant. Consequently, E is connected. �
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Proposition 136. If A ⊆ c© Kn in the usual topology, then A is path-
connected.

Proof. Left as an exercise. �

In general, connected spaces are not path-connected (see Problem 25),
although there are many instances when they are.

Theorem 137. Let (E, ‖ · ‖) be a normed vector space over K. Then any
A ⊆O, c© E is path-connected.

Proof. Let x0 ∈ A and set

Fx0 = {x ∈ A | ∃γ ∈ CE([0, 1]) such that γ(0) = x0, γ(1) = x}.

We need to show that Fx0 = A. In order to do so, note that Fx0 6= ∅ as
x0 ∈ Fx0. If we can show that Fx0 ⊆O,C A, then we are done as A ⊆ c© E.
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Let x ∈ Fx0 ⊆ A. Since A ⊆O E, ∃ρ > 0 such that B(x, ρ) ⊆ A.
For any y ∈ B(x, ρ), [y,x] ∈ B(x, ρ) (modify the proof of exercise 12).
Since x0 ∈ Fx0, B(x, ρ) ⊆ Fx0. Consequently, Fx0 ⊆O A.

If x ∈ Fx0 ∩ A, then for any ρ > 0 we have B(x, ρ) ∩ Fx0 6= ∅. Since
A ⊆O E, ∃ρ0 > 0 such that B(x, ρ0) ⊆ A; in particular ∅ 6= B(x, ρ0) ∩
Fx0 ⊆ A. Now, let y ∈ B(x, ρ0) ∩ Fx0. Since [y,x] ⊆ B(x, ρ0), there is
a continuous path in A from y to x. Since y ∈ Fx0, there is a continuous
path in A from x0 to y. Combining these paths, there is a continuous
path in A from x0 to x. Hence, x ∈ Fx0. Consequently, Fx0 ⊆C A. �

Proposition 138. Let f : (E, d) → (F, δ) be a continuous map. If E is
path-connected, then f(E) is path-connected.

Proof. Left as an exercise (path-connectedness is topological). �
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10.3 – Exercises

1. Show that any compact metric space is precompact and complete.

2. Show that any complete precompact metric space is compact.

3. Prove Theorem 120.

4. With the usual metric, show that A ⊆ Rn is precompact if and only if A ⊆K Rn.

5. Prove Proposition 131.

6. Prove Proposition 132.

7. Let (E1, d1), . . . , (En, dn) be metric spaces. Show that

(E, d) = (E1 × · · · × En, sup{di | 1 ≤ i ≤ n})

is compact if and only if (Ei, di) is compact for all i = 1, . . . , n. [This result cannot be

generalized to infinite products (Tychonoff’s Theorem) without calling upon the Axiom of Choice,

a.k.a Zorn’s Lemma, a.k.a. the Existence of Non-Measurable Sets, a.k.a. the Banach-Tarksi

Paradox.]
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8. Show that (3) defines an equivalence relation on a metric space (E, d).

9. Let (E, d) be a metric space and let x ∈ E. Show that [x] ⊆C E.

10. Let (E, d) be a metric space with finitely many connected components. Show that

each of those components is a clopen subset of E.

11. Prove Proposition 136.

12. Show that if (E, ‖ · ‖) is a normed vector space over K, then any open ball B(x, ρ)

is path-connected.

13. Let (E, d) be a metric space, B ⊆ c© E and A ⊆ E such that

B ∩ int(A) 6= ∅ and B ∩ int(E \ A) 6= ∅.

Show that B ∩ ∂A 6= ∅.

14. Let (A, d1) and (B, d2) be two metric spaces. Let X ( A and Y ( B. Show that

(A× B) \ (X × Y ) ⊆ c© A× B.

15. Prove Proposition 138.
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16. In the usual topology, give an example of a subset A ⊆ c© R2 for which int(A) is not

connected.

17. In the usual topology, give an example of a subset A ⊆ R2 for which A ⊆ c© R2 but

A is not connected.

18. Show that if the connected components of a compact set are open, then there are

finitely many of them.

19. Let (E, d) and (F, δ) be metric spaces, together with a continuous map f : E → F

such that f−1(W ) ⊆K E for all W ⊆K F . Show that f is a closed map.

20. Let (E, d) be a metric space.

(a) If W1,W2 ⊆K E, show that ∃xi ∈ Wi such that d(x1, x2) = d(W1,W2).

(b) If W ⊆K E and F ⊆C E are such that W ⊆ F = ∅, show that d(W,F ) 6= 0.

Is the conclusion still valid when W ⊆C E is not necessarily compact?
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21. Let (E, d) = (Rn, d2).

(a) If F ⊆C E is unbounded and f : F → R is a continuous map such that

lim
‖x‖→∞

f(x) = +∞, x ∈ F,

show ∃x ∈ F such that f(x) = infy∈F f(y).

(b) If W ⊆K E and F ⊆C E, show ∃x ∈ W, y ∈ F such that d(x, y) = d(W,F ).

Is the conclusion still valid when E is an infinite-dimensional vector space over R?

22. Let (E, d) be a compact metric space with a map f : E → E such that ∀x 6= y ∈ E,

d(f(x), f(y)) < d(x, y).

(a) Show that f admits a unique fixed point α ∈ E.

(b) Let x0 ∈ E. For each n ∈ N, set xn+1 = f(xn). Show that xn → α.

(c) Are these results still valid if E is complete but not compact?

23. Let (E, d) and (F, δ) be two metric spaces, together with a injective map f : E → F .

Show that f is continuous if and only if f(W ) ⊆K F for all W ⊆K E.

24. Let (E, d) be a connected metric space and let F ⊆C E, with ∂F ⊆ c© E. Show

that F ⊆ c© E. Is the result still true if F is not necessarily closed?
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25. Let Γ =
[⋃

x∈Q({x} × (0,∞))
]
∪
[⋃

x∈R\Q({x} × (−∞, 0))
]
⊆ R2.

(a) Show that Γ ⊆ c© R2.

(b) Show that Γ is not path-connected.

26. Let (E, d) be a metric space. If ε > 0, we say thatE is ε−chained if for all a, b ∈ E,

∃n ∈ N× and x0, . . . , xn ∈ E such that x0 = a, xn = b and d(xi, xi−1) < ε for

all i = 1, . . . , n. We say that E is well-chained if it is ε−chained for all ε > 0.

(a) If E is connected, show that E is well-chained.

(b) If E is compact and well-chained, show that E is connected. Is the result still true

if E is not necessarily compact?

27. Let (E, d) be a compact metric space and let (xn)n∈N ⊆ E be such that

d(xn, xn+1)→ 0. Show that the set of limit points of (xn)n∈N is connected.

28. Let f : R→ R2 be a bijection. Show that f cannot be a homeomorphism.

29. Prove Darboux’s Theorem: let f : R→ R be a differentiable function, not necessarily

of class C1. Let ∅ 6= I = (a, b) ⊆ R. Show that f ′(I) is an interval in R using the

set

Γ =

{
f(x)− f(y)

x− y

∣∣∣∣ (x, y) ∈ I2
, x < y

}
.
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30. Let (E, d) be a metric space, with two disjoint sets A,B ⊆C E. Show that

there exists a continuous function f : E → [0, 1] such that A = f−1({0}) and

B = f−1({1}), as well as two disjoint sets U, V ⊆O E such that A ⊆ U and

B ⊆ V .
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Solutions

20. Proof.

(a) The mapping ϕ : K1 → R defined by ϕ(x) = d(x,K2) is continuous.
Since K1 is compact, the Max/Min Theorem applies: ∃x1 ∈ K1 such
that

ϕ(x1) = d(x1,K2) = inf
x∈K1

{d(x,K2)} = d(K1,K2).

Similarly, the mapping η : K2 → R defined by η(y) = d(x1,y) is
continuous on a compact set: as such, ∃x2 ∈ K2 such that

η(x2) = d(x1,x2) = inf
y∈K2

{d(x1,K2)} = d(K1,K2).
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(b) The mapping θ : K → R defined by θ(x) = d(x, F ) is continuous on
the compact K so that ∃x0 ∈ K such that

θ(x0) = d(x0, F ) = inf
x∈K
{d(x, F )} = d(K,F ).

If d(x0, F ) = 0 then x0 ∈ F since F is closed. But that is impossible
as K ∩ F = ∅ and so d(x0, F ) 6= 0.

If K is only assumed closed, the conclusion may not hold. For instance
in R2, the sets K = {(x, y) | y ≤ 0} and F = {(x, y) | y ≥ ex} are
closed and disjoints, yet d(K,F ) = 0. �
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21. Proof.

(a) Fix a ∈ F and consider the set Γ = {x ∈ F | f(x) ≤ f(a)}. Since f
is continuous, Γ = f−1((−∞, f(a)]) ⊆C F and so Γ ⊆C E. It is also
bounded since

lim
‖x‖→∞

f(x) = +∞, x ∈ F.

Thus Γ ⊆K Rn by the Heine-Borel Theorem. Furthermore, Γ 6= ∅
since a ∈ Γ. According to the Max/Min Theorem, ∃x ∈ Γ such that
f(x) = infy∈Γ{f(y)}. By construction,

inf
y∈Γ
{f(y)} = inf

y∈F
{f(y)},

whence f(x) = infy∈F{f(y)} for some x ∈ F .
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(b) Since the mapping ϕ : K → R defined by ϕ(x) = d(x, F ) is continuous,
∃x ∈ K such that

d(x, F ) = inf
y∈K
{d(y, F )} = d(K,F ).

Note that the mapping ψx : F → R defined by ψx(y) = d(x,y) is also
continuous. If F is bounded, then F ⊆K Rn and the desired result is
derived from the result in (a).

Otherwise, if F is unbounded we have

lim
‖y‖→∞

ψx(y) =∞, y ∈ F
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so that ∃y ∈ F such that

ψx(y) = inf
z∈F
{ψx(z)} = d(x, F ) = d(K,F ),

which proves the desired result.

The result is false in general if E is infinite-dimensional: consider
for instance the vector space of bounded sequences in R, with the norm
‖(un)‖ = supn∈N{|un|}.

For any n ∈ N, let Xn be the sequence where the nth term is 1 + 2−n

and all the other terms are 0. The set F = {Xn | n ∈ N} is closed in
E since all its points are isolated points. If K = {0}, it is obvious that
d(K,F ) = 1, yet d(K,Xn) = 1 + 2−n > 1 for all n ∈ N. �
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22. Proof.

(a) First note that, being Lipschitz, f is continuous. Then, the mapping
ϕf : E → R defined by ϕf(x) = d(x, f(x)) is continuous as it is a
composition of continuous functions. But E is compact so that ∃α ∈ E
such that d(α, f(α)) = infx∈E{d(x, f(x))}. If α 6= f(α) = β, then

d(β, f(β)) = d(f(α), f(β)) < d(α, β) = d(α, f(α))

by hypothesis, which contradicts the definition of α. Thus α = f(α).

Now, suppose β = f(β) with β 6= α. Then we have

d(f(α), f(β)) = d(α, β),

which contradicts the hypothesis. Thus α = β.
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(b) Write un = d(α,xn). If ∃n0 ∈ N such that un0 = 0, then un = un0 = 0
for all n ≥ n0 and the result follows. Otherwise, for all n ∈ N we have

un+1 = d(f(α), f(xn)) < d(α,xn) = un,

i.e. (un) is a strictly decreasing sequence. As it is bounded below by 0,
it is necessarily convergent. Let un → ` ≥ 0. We need to show ` = 0.

Assume that ` > 0. Since (un) is decreasing, un ≥ ` for all n. Since (xn)
is a sequence in the compact set E, there is a convergent subsequence
(xϕ(n)), with ϕ : N→ N strictly increasing. Let β = limxϕ(n). Then

` = lim
n→∞

d(α,xϕ(n)) = d(α, β).
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Since f is continuous, we have

lim
n→∞

d(α, f(xϕ(n))) = d(α, f(β)).

But that is impossible since

d(α, f(β)) = d(f(α), f(β)) < d(α, β) = `

and
d(α, f(xϕ(n))) = d(α,xϕ(n)+1) ≥ ` ∀n.

The only remaining possibility is thus that ` = 0.
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(c) Completeness of E is not sufficient. For instance, the function f : R→ R
defined by

f(x) =

{
1 if x < 0

x+ 1
1+x if x ≥ 0

satisfies the hypothesis, but it admits no fixed point. �
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23. Proof. We already know that if f is continuous and W ⊆K E, then
f(W ) ⊆K F .

Now assume that f(W ) ⊆K F for all W ⊆K E. Let x ∈ E and
(xn) ⊆ E be such that xn → x. The set V = {xn | n ∈ N} ∪ {x} is
compact in E, according to the Borel-Lebesgue property. Thus, we have
V ′ = f(V ) ⊆K F .

Let g : V → F be such that g = f |V . Since f is injective, g is a
bijection from V to V ′. The map g−1 : V ′ → V is continuous since any
closed subset W ⊆C V is automatically compact in V .

As such (g−1)−1(W ) = g(W ) ⊆K V ′ is automatically closed in V ′.
Since V ′ is compact, (g−1)−1 = g is continuous. Thus

f(xn) = g(xn)→ g(x) = f(x) =⇒ f is continuous.
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Note that if f is not injective, the result does not hold in general. For
instance, the Heaviside function f : R→ R defined by f(x) = 0 if x < 0
and f(x) = 1 if x ≥ 0 sends any compact set to a compact set, but it is
not continuous. �
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26. Proof.

(a) Let ε > 0. We define an equivalence relation Rε on E according to the
following: xRεy if and only if ∃n ∈ N× and x0, . . . ,xn ∈ E such that
x0 = x, xn = y and d(xi,xi−1) < ε for all i = 1, . . . , n.

Let x ∈ E and y ∈ [x]. Then, for all z ∈ B(y, ε) we have z ∈ [y] = [x].
Thus B(y, ε) ⊆ [x] and so [x] ⊆O E.

Since
[x] = E \

⋃
y 6∈[x]

[y]

is the complement of an open set, [x] ⊆C E. Consequently, [x] is a
clopen subset of E. But E is connected; we must then have [x] = E
since [x] 6= ∅. Hence, every pair of point of E can be joined by an ε−
chain. As ε is arbitrary, E is well-chained.
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(b) Suppose that E is not connected. Then we can write E = F1 t F2,
where ∅ 6= F1, F2 ⊆C E. Since E is compact, F1, F2 ⊆K E.

It is left as an exercise to show that ∃a1 ∈ F1 and a2 ∈ F2 such
that d(a1,a2) = d(F1, F2).

Since F1 ∩ F2 6= ∅, a1 6= a2 and so ε = d(a1,a2) > 0; as such,
d(x,y) ≥ ε for all (x,y) ∈ F1 × F2.

Let (x,y) be such a point. Since E is well-chained, ∃ an ε−chain
(x0, . . . ,xn) ∈ En+1 such that

x0 = x, xn = y and d(xi,xi−1) < ε for all i = 1, . . . , n.

Since x0 ∈ F1 and xn ∈ F2, ∃i such that xi−1 ∈ F1 and xi ∈ F2.
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But this would imply that ε > d(xi−1,xi) ≥ d(F1, F2) = ε, which is a
contradiction. Consequently, E is connected.

If E is not compact, the result is not valid in general: Q is well-
chained when endowed with the usual metric because it is dense in R,
but it is not connected. �
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30. Proof. Let F ⊆C E. Define gF : (E, d)→ (R, | · |) by

gF (x) = d(x, F ) = inf
y∈F
{d(x,y)}

According to the Triangle Inequality, for all y ∈ F we have

gF (x) = d(x, F ) ≤ d(x,y) ≤ d(x, z) + d(z,y) ∀x, z ∈ E,

thus we must have gF (x) ≤ d(x, z) + gF (z) for all x, z ∈ E, that
is, gF (x) − gF (z) ≤ d(x, z) for all x, z ∈ E. In a similar fashion,
gF (z)− gF (x) ≤ d(x, z) for all x, z ∈ E. Thus,

|gF (x)− gF (z)| ≤ d(x, z) for all x, z ∈ E,

i.e. gF is Lipschitz (and so continuous).
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Since F ⊆C E, gF (x) = 0 if and only if x ∈ F . Let f : (E, d)→ (R, | · |)
be defined by

f(x) =
gA(x)

gA(x) + gB(x)
=

d(x, A)

d(x, A) + d(x, B)
;

it is well-defined since whenever d(x, A) + d(x, B) = 0, we must have
d(x, A) = d(x, B) = 0, i.e. x ∈ A and x ∈ B. But A ∩ B = ∅ and so
for all x ∈ E, we have d(x, A) + d(x, B) 6= 0.

Furthermore, f(x) = 0 if and only if d(x, A) = 0, i.e. x ∈ A; f(x) = 1
if and only if d(x, B) = 0, i.e. x ∈ B.

The function f is continuous since it is the composition of continuous
functions. It is clear that 0 ≤ f(x) ≤ 1, so that f : E → [0, 1].
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Finally, let

A ⊆ U = f−1([0, 1/2)) ⊆O [0, 1] and B ⊆ V = f−1((1/2, 1]) ⊆O [0, 1].

Then U ∩ V = ∅ by construction and we are done. �

P. Boily (uOttawa) 67


