Mathematical Analysis

Chapter 11 Normed Vector Spaces

P. Boily (uOttawa)

Winter 2022

P. Boily (uOttawa)

Overview

The main aim of this chapter is to show that linear transformations between finite-dimensional normed vector spaces (n.v.s.) over \mathbb{K} are continuous.

Outline

- 11.1 Normed Vector Spaces (p.3)
- 11.2 Exercises (p.18)

11.1 – Normed Vector Spaces

Normed vector spaces were introduced in chapter 9.

Let $p \geq 1$ and $A \in \mathbb{M}_{m,n}(\mathbb{K})$. Define

$$||A||_p = \sup_{\|\mathbf{x}\|_p \le 1} ||A\mathbf{x}||_p.$$

It is not too hard to show that

$$\|A\|_{\infty} = \max_{1 \le i \le m} \left\{ \sum_{j=1}^{n} |a_{ij}| \right\}, \quad \|A\|_{1} = \max_{1 \le j \le n} \left\{ \sum_{i=1}^{m} |a_{ij}| \right\}$$
(1)
$$\|A\|_{2} = \text{ largest singular value of } A$$
(2)

The operations of a normed vector space behave extremely well.

Proposition 139. Let *E* be a normed vector space over \mathbb{K} . The maps $+: E \times E \to E$ and $\cdot: \mathbb{K} \times E \to E$ are continuous.

Proof.

Let $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ be normed vector spaces over \mathbb{K} .

A map $T: E \to F$ is **linear** if

 $T(\mathbf{0}_E) = \mathbf{0}_F$ and $T(a\mathbf{x} + b\mathbf{y}) = aT(\mathbf{x}) + bT(\mathbf{y}), \ \forall a, b \in \mathbb{K}, \mathbf{x}, \mathbf{y} \in E.$

The set of all linear maps from E to F is denoted by L(E, F). For instance, if $E = \mathbb{K}^n$ and $F = \mathbb{K}^m$, then $L(E, F) \simeq \mathbb{M}_{m,n}(\mathbb{K})$.

P. Boily (uOttawa)

Theorem 140. Let $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ be two normed vector spaces over \mathbb{K} and let $f \in L(E, F)$. The following conditions are equivalent:

- 1. f is continuous over E
- 2. f is continuous at $\mathbf{0} \in E$
- 3. f is bounded over $\overline{B(\mathbf{0},1)}$
- 4. f is bounded over $S(\mathbf{0}, 1)$
- 5. $\exists M > 0$ such that $\|f(\mathbf{x})\|_F \leq M \|\mathbf{x}\|_E$ for all $\mathbf{x} \in E$.
- 6. f is Lipschitz continuous
- 7. f is uniformly continuous

Proof.

If $f \in L(E, F)$ is continuous (that is, if $f \in L_c(E, F)$), it then makes sense to define

$$||f|| = \sup_{\|\mathbf{x}\|_E = 1} ||f(\mathbf{x})||_F = \sup_{\|\mathbf{x}\|_E \le 1} ||f(\mathbf{x})||_F.$$

With this definition, $(L_c(E, F), \|\cdot\|)$ is a normed vector space.

Furthermore, if $f \in L_c(E,F)$ and $g \in L_c(F,G)$ then $g \circ f \in L_c(E,G)$ and we have

$$||(g \circ f)(\mathbf{x})|| = ||g(f(\mathbf{x}))|| \le ||g|| ||f(\mathbf{x})|| \le ||g|| ||f|| ||\mathbf{x}|| \le M ||\mathbf{x}||$$

for some M > 0 and for all $\mathbf{x} \in E$. In particular, $||f \circ g|| \le ||f|| ||g||$.

The composition thus defines a kind of multiplication on $L_c(E, E)$; together with this multiplication, $L_c(E, E)$ is a **normed algebra**.

P. Boily (uOttawa)

Theorem 141. If F is a Banach space over \mathbb{K} , then so is $L_c(E, F)$.

Proof.

We have seen that the metrics d_p are equivalent in \mathbb{K}^n , for $p \geq 1$. Can the same be said about the norms? In fact, we can say even more: not only are the p-norms equivalent, but all norms on \mathbb{K}^n are equivalent.

Proposition 142. Let E be a finite dimensional vector space over \mathbb{K} . All norms on E are equivalent.

Proof.

In general, this result is not valid if E is infinite-dimensional.

Corollary 143. Let E be a finite-dimensional vector space over \mathbb{K} and let $(F, \|\cdot\|_F)$ be any normed vector space over \mathbb{K} . If $f : E \to F$ is a linear mapping, then f is continuous.

Proof.

Corollary 144. Any finite-dimensional vector space over \mathbb{K} is a Banach space.

Proof.

Corollary 145. Any finite-dimensional subspace of a normed vector space over \mathbb{K} is closed.

Corollary 146. The compact subsets of a finite-dimensional normed vector are the subsets that are both closed and bounded under the norm.

11.2 – Exercises

- 1. Show that (1) and (2) define norms over $\mathbb{M}_n(\mathbb{K})$.
- 2. Let *E* be a n.v.s. over \mathbb{R} and $A, B \subseteq E$. Denote $A+B = \{\mathbf{a}+\mathbf{b} \mid (\mathbf{a}, \mathbf{b}) \in A \times B\}$.
 - (a) If $A \subseteq_O E$, show that $A + B \subseteq_O E$.
 - (b) If $A \subseteq_K E$ and $B \subseteq_C E$, show that $A + B \subseteq_C E$. Is the result still true if A is only assumed to be closed in E?
- 3. Let E be a normed vector space over \mathbb{R} and $\varphi : E \to \mathbb{R}$ be a linear functional on E.
 - (a) Show directly that φ is continuous on E if and only if ker $\varphi \subseteq_C E$.
 - (b) i. Let F be a subspace of E. Show that the map $N: E/F \to \mathbb{R}$ defined by

$$N([\mathbf{x}]) = \inf_{\mathbf{y} \in [\mathbf{x}]} \{ \|\mathbf{y}\| \}$$

is a **semi-norm** on the quotient space E/F. What more can you say if $F \subseteq_C E$? ii. Show part (a) again, using part (b)i.

- 4. Prove Proposition 139.
- 5. Prove Corollary 145.
- 6. Prove Corollary 146.
- 7. Let E be a normed vector space with a countably infinite basis. Show that E cannot be complete.
- 8. Let E be an infinite-dimensional normed vector space over \mathbb{R} . Show that D(0, 1) is not compact in E by showing that it is not pre-compact in E (by what name is this result usually known?).
- 9. If $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, define $\|\mathbf{x}\|_{\infty} = \sup\{|x_1|, \dots, |x_n|\}$. Show that $\mathbf{x} \mapsto \|\mathbf{x}\|_{\infty}$ defines a norm on \mathbb{R}^n .
- 10. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and define the inner product $(\mathbf{x} \mid \mathbf{y}) = x_1 y_1 + \cdots + x_n y_n$. As seen in class, this inner product defines a norm $\|\mathbf{x}\| = \sqrt{(\mathbf{x} \mid \mathbf{x})}$. Show the **Parallelogram Identity**: $\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} \mathbf{y}\|^2 = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2), \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- 11. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Is it true that $\|\mathbf{x} + \mathbf{y}\|_{\infty} = \|\mathbf{x}\|_{\infty} + \|\mathbf{y}\|_{\infty}$ if and only if $\mathbf{x} = c\mathbf{y}$ or $\mathbf{y} = c\mathbf{x}$ for some $c \ge 0$?

Solutions

2. **Proof.**

(a)

(b)

3. **Proof.**

(a)

(b) i.

ii.

9. **Proof.**

10. **Proof.**

11. Solution.