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Overview

The main aim of this chapter is to show that linear transformations between
finite-dimensional normed vector spaces (n.v.s.) over K are continuous.
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11.1 – Normed Vector Spaces

Normed vector spaces were introduced in chapter 9.

Let p ≥ 1 and A ∈Mm,n(K). Define

‖A‖p = sup
‖x‖p≤1

‖Ax‖p.

It is not too hard to show that

‖A‖∞ = max
1≤i≤m

{ n∑
j=1

|aij|
}
, ‖A‖1 = max

1≤j≤n

{ m∑
i=1

|aij|
}

(1)

‖A‖2 = largest singular value of A (2)
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The operations of a normed vector space behave extremely well.

Proposition 139. Let E be a normed vector space over K. The maps
+ : E × E → E and · : K× E → E are continuous.

Proof. Left as an exercise. �

Let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be normed vector spaces over K.

A map T : E → F is linear if

T (0E) = 0F and T (ax+ by) = aT (x) + bT (y), ∀a, b ∈ K,x,y ∈ E.

The set of all linear maps from E to F is denoted by L(E,F ). For instance,
if E = Kn and F = Km, then L(E,F ) 'Mm,n(K).
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Theorem 140. Let (E, ‖·‖E) and (F, ‖·‖F ) be two normed vector spaces
over K and let f ∈ L(E,F ). The following conditions are equivalent:

1. f is continuous over E

2. f is continuous at 0 ∈ E

3. f is bounded over B(0, 1)

4. f is bounded over S(0, 1)

5. ∃M > 0 such that ‖f(x)‖F ≤M‖x‖E for all x ∈ E.

6. f is Lipschitz continuous

7. f is uniformly continuous
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Proof. The implications 1. =⇒ 2., 3. =⇒ 4., 5. =⇒ 6. =⇒ 7. =⇒ 1.
are clear.

2. =⇒ 3.: Let ε = 1. By continuity at 0, ∃δ > 0 such that

‖f(x)− f(0)‖F = ‖f(x)‖F ≤ 1

whenever ‖x − 0‖E = ‖x‖E ≤ δ. Now, let y ∈ B(0, 1). Since f is linear,
we have

‖f(y)‖F = ‖f(1δδy)‖F = 1
δ‖f(δy)‖F .

Since ‖δy‖E ≤ δ‖y‖E ≤ δ. Consequently, ‖f(δy)‖F ≤ 1 and

‖f(y)‖F = 1
δ‖f(δy)‖F ≤

1
δ .

But y ∈ B(0, 1) is arbitrary, so that f is bounded by 1
δ over B(0, 1).
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4. =⇒ 5.: Since f is bounded over S(0, 1), ∃N > 0 s.t. ‖f(x)‖F ≤ N
whenever ‖x‖E = 1.

Suppose y 6= 0E ∈ E. Then, since f is linear we have

‖f(y)‖F =
∥∥∥f (‖y‖E y

‖y‖E

)∥∥∥
F
= ‖y‖E

∥∥∥f ( y
‖y‖E

)∥∥∥
F
. (3)

However,
∥∥∥ y
‖y‖E

∥∥∥
E
= 1 so that

∥∥∥f ( y
‖y‖E

)∥∥∥
F
≤ N .

Substituting this last result in (3), we get that ‖f(y)‖F ≤ N‖y‖E for
all 0 6= y ∈ E.

When y = 0, the inequality remains valid since f(0E) = 0F and
0 = ‖0F‖F ≤ N‖0E‖E = 0. This completes the proof. �
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If f ∈ L(E,F ) is continuous (that is, if f ∈ Lc(E,F )), it then makes sense
to define

‖f‖ = sup
‖x‖E=1

‖f(x)‖F = sup
‖x‖E≤1

‖f(x)‖F .

With this definition, (Lc(E,F ), ‖ · ‖) is a normed vector space.

Furthermore, if f ∈ Lc(E,F ) and g ∈ Lc(F,G) then g ◦ f ∈ Lc(E,G) and
we have

‖(g ◦ f)(x)‖ = ‖g(f(x))‖ ≤ ‖g‖‖f(x)‖ ≤ ‖g‖‖f‖‖x‖ ≤M‖x‖

for some M > 0 and for all x ∈ E. In particular, ‖f ◦ g‖ ≤ ‖f‖‖g‖.

The composition thus defines a kind of multiplication on Lc(E,E); together
with this multiplication, Lc(E,E) is a normed algebra.

P. Boily (uOttawa) 8



Mathematical Analysis Chapter 11 – Normed Vector Spaces

Theorem 141. If F is a Banach space over K, then so is Lc(E,F ).

Proof. Let (fn)n∈N be a Cauchy sequence in Lc(E,F ). For all x ∈ E,
(fn(x))n∈N is a sequence in F . Fix such an x. Thus, for all p, q ∈ N,

‖fp(x)− fq(x)‖F = ‖(fp − fq)(x)‖F ≤ ‖fp − fq‖‖x‖E.

Let ε > 0. Since (fn) is a Cauchy sequence in Lc(E,F ), ∃M ∈ N such
that ‖fp − fq‖F ≤ ε whenever p, q > M .

As a result, ‖fp(x) − fq(x)‖F < ε‖x‖E whenever p, q > M , so that
(fn(x))n∈N is a Cauchy sequence in F .

But F is complete so that fn(x) → f(x) ∈ F for all x ∈ E, which
defines a map f : E → F .
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It remains only to show that f ∈ Lc(E,F ) and that fn → f in
(Lc(E,F ), ‖ · ‖).

The map f is linear as

f(ax+by) = lim
n→∞

fn(ax+by) = lim
n→∞

[afn(x) + bfn(y)] = af(x)+bf(y)

for all x,y ∈ E, a, b ∈ K.

Furthermore, f is continuous since, as the Cauchy sequence (fn) is
necessarily bounded, ∃N > 0 such that ‖fn‖ ≤ N . Fix x ∈ E to get
‖fn(x)‖F ≤ N‖x‖E for all n. As n→∞, we see that ‖f(x)‖F ≤ N‖x‖E.

Finally, we need to show that fn → f in Lc(E,F ).
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Let ε > 0. Since (fn) is a Cauchy sequence in Lc(E,F ), ∃K > 0 such that
‖fp − fq‖ < ε whenever p, q > K. Now, fix x ∈ E. Then,

‖fp(x)− fq(x)‖F ≤ ‖fp − fq‖‖x‖E < ε‖x‖E

whenever p, q > N . If we fix p and let q →∞, then we have

‖fp(x)− f(x)‖F < ε‖x‖E

whenever p > N . Since this holds for all x ∈ E, we have ‖fp − f‖ ≤ ε for
all p > N , i.e. fn → f in Lc(E,F ). �

We have seen that the metrics dp are equivalent in Kn, for p ≥ 1.
Can the same be said about the norms?

P. Boily (uOttawa) 11



Mathematical Analysis Chapter 11 – Normed Vector Spaces

In fact, we can say even more: not only are the p−norms equivalent, but
all norms on Kn are equivalent.

Proposition 142. Let E be a finite dimensional vector space over K. All
norms on E are equivalent.

Proof. Suppose dimK(E) = n < ∞. If {e1, . . . , en} is a basis of E, any
x ∈ E can be written uniquely as a linear combination x =

∑n
i=1 xiei.

It is easy to see that the function N0 : E → R, where

N0(x) = ‖ϕ(x)‖∞ = ‖(x1, . . . , xn)‖∞ = sup{|xi| | i = 1, . . . , n},

defines a norm on E. Let N : E → R be any norm on E and set
a =

∑n
i=1N(ei).
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If x ∈ E, we have

N(x) = N

(
n∑
i=1

xiei

)
≤

n∑
i=1

N(xiei) ≤
n∑
i=1

|xi|N(ei)

≤ sup
i=1,...,n

|xi|
n∑
i=1

N(ei) = N0(x) · a

so that N(x) ≤ aN0(x) for all x ∈ E.

But the map ϕ : (E,N0)→ (Kn, ‖·‖∞) is an isometry since N0(x) = ‖x‖∞
for all x ∈ E, which means that it must be continuous (why?).
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Since

S̃ = {(x1, . . . , xn) ∈ Kn | ‖(x1, . . . , xn)‖∞ = 1} ⊆K Kn,

then S = ϕ−1(S̃) = {x ∈ E|N0(x) = 1} ⊆K E.

But N : (E,N0) → (R, | · |) is also a continuous function: according
to the Max/Min Theorem, ∃x∗ ∈ S such that N(x∗) = infx∈SN(x).

Clearly, N(x∗) 6= 0; otherwise we have x∗ = 0, which contradicts the
fact that x ∈ S as N0(x

∗) = N0(0) = 0 6= 1. Hence infx∈SN(x) > 0.

Write

inf
x∈S

N(x) =
1

b
for the appropriate b > 0.
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If x = 0 ∈ E, then

N(x) = N(0) = 0 ≥ 0 =
1

b
N0(0) =

1

b
N0(x).

If x 6= 0 ∈ E, then x
N0(x)

∈ S and

N(x) = N

(
N0(x)

x

N0(x)

)
= N0(x)N

(
x

N0(x)

)
≥ N0(x) ·

1

b
.

In both cases, N0(x) ≤ bN(x) for all x ∈ E, and so any norm N on E is
equivalent to the norm N0.

By transitivity, any such norms must then be equivalent to one another. �
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In general, this result is not valid if E is infinite-dimensional.

Corollary 143. Let E be a finite-dimensional vector space over K and let
(F, ‖ · ‖F ) be any normed vector space over K. If f : E → F is a linear
mapping, then f is continuous.

Proof. Let {e1, . . . , en} be a basis of E. For any x ∈ E, we have

‖f(x)‖F = ‖f (
∑
xiei)‖F = ‖

∑
xif(ei)‖F

≤
∑
|xi|‖f(ei)‖F ≤ N0(x) ·

∑
‖f(ei)‖F := aN0(x).

Then for any ε > 0, ∃δ = ε
a such that

‖f(x)− f(y)‖F = ‖f(x− y)‖F ≤ aN0(x− y) < aδ = ε

whenever N0(x− y) < δ, and so f is continuous. �
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Corollary 144. Any finite-dimensional vector space over K is a Banach
space.

Proof. This is an easy consequence of the facts that the map

ϕ : (E,N0)→ (Kn, ‖ · ‖∞)

is an isometry and that (Kn, ‖ · ‖∞) is a Banach space. �

Corollary 145. Any finite-dimensional subspace of a normed vector space
over K is closed.

Corollary 146. The compact subsets of a finite-dimensional normed vector
are the subsets that are both closed and bounded under the norm.
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11.2 – Exercises

1. Show that (1) and (2) define norms over Mn(K).

2. LetE be a n.v.s. over R andA,B ⊆ E. DenoteA+B = {a+b | (a, b) ∈ A×B}.
(a) If A ⊆O E, show that A+ B ⊆O E.

(b) If A ⊆K E and B ⊆C E, show that A+B ⊆C E. Is the result still true if A is

only assumed to be closed in E?

3. Let E be a normed vector space over R and ϕ : E → R be a linear functional on E.

(a) Show directly that ϕ is continuous on E if and only if kerϕ ⊆C E.

(b) i. Let F be a subspace of E. Show that the map N : E/F → R defined by

N([x]) = inf
y∈[x]
{‖y‖}

is a semi-norm on the quotient space E/F . What more can you say if F ⊆C E?

ii. Show part (a) again, using part (b)i.
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4. Prove Proposition 139.

5. Prove Corollary 145.

6. Prove Corollary 146.

7. Let E be a normed vector space with a countably infinite basis. Show that E cannot

be complete.

8. Let E be an infinite-dimensional normed vector space over R. Show that D(0, 1) is

not compact in E by showing that it is not pre-compact in E (by what name is this

result usually known?).

9. If x = (x1, . . . , xn) ∈ Rn, define ‖x‖∞ = sup{|x1|, . . . , |xn|}. Show that

x 7→ ‖x‖∞ defines a norm on Rn.

10. Let x, y ∈ Rn and define the inner product (x | y) = x1y1 + · · · + xnyn. As seen

in class, this inner product defines a norm ‖x‖ =
√

(x | x). Show the Parallelogram
Identity: ‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2), ∀x, y ∈ Rn.

11. Let x, y ∈ Rn. Is it true that ‖x + y‖∞ = ‖x‖∞ + ‖y‖∞ if and only if x = cy or

y = cx for some c ≥ 0?
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Solutions

2. Proof.

(a) We can write

A+B =
⋃
b∈B

(A+ {b}).

If A ⊆O E, we obviously have A+ {b} ⊆O E for any b ∈ B.

Indeed, if B(x, ρ) ⊆ A, then B(x+ b, ρ) ⊆ A+ {b}. Thus A+B is
a union of open sets: as a result, A+B ⊆O E.

(b) Let (zn) = (xn+ yn) ⊆ A+B be such that zn → z where (xn) ⊆ A
and (yn) ⊆ B. Since A ⊆K E, there is a convergent subsequence
(xϕ(n)) with xϕ(n) → x ∈ A.
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Since (zϕ(n)) converges to z, the sequence (yϕ(n)) ⊆ B converges to
y = z− x. But B ⊆C E so that y ∈ B. Thus, z = x+ y ∈ A+ B,
which proves the desired result.

If A is only closed (and not compact), the result is false in general. Let
E = R2, A = {(x, ex) | x ∈ R} and B = R× {0}. Both A,B ⊆C R2

but A+B = R× (0,∞) is not closed in R2. �
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3. Proof.

(a) If ϕ is continuous, then kerϕ = ϕ−1({0}) ⊆C E since {0} ⊆C R.

Conversely, suppose that kerϕ ⊆C E. If ϕ is not continuous, ϕ is
unbounded on the unit sphere S(0, 1). Thus, ∃(xn) ⊆ E such that
‖xn‖ = 1 for all n ∈ N and for which |ϕ(xn)| → ∞.

Let u ∈ E be such that ϕ(u) = 1: such a u ∈ E necessarily exists
because ϕ is linear. Indeed, if 0 6= ϕ(w) = r ∈ R, then w 6= 0.

Set u = w
ϕ(w). Then

ϕ(u) = ϕ

(
w

ϕ(w)

)
=

1

ϕ(w)
ϕ(w) = 1.
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For any n ∈ N, set un = u− xn
ϕ(xn)

. Then

ϕ(un) = ϕ(u)− ϕ
(

xn
ϕ(xn)

)
= ϕ(u)− ϕ(xn)

ϕ(xn)
= ϕ(un)− 1 = 0,

whence un ∈ kerϕ for all n ∈ N. Note that un = u − xn
ϕ(xn)

→ u since

|ϕ(xn)| → ∞ and ‖xn‖ = 1 for all n. Since kerϕ, the limit u ∈ kerϕ,
i.e. ϕ(u) = 0. But this contradicts the fact that ϕ(u) = 1. Hence ϕ is
continuous.

(b) i. Let x ∈ E and λ ∈ R. Recall that [x] = x+ F . Since [λx] = λ[x], we
have

N(λ[x]) = |λ|N([x]).

It remains only to show that N satisfies the Triangle Inequality.
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Let x,y ∈ E. For any u,v ∈ F , we have

N([x+ y]) ≤ ‖(x+ y) + (u+ v)‖ ≤ ‖x+ u‖+ ‖y + v‖.

Thus

N([x+ y]) ≤ inf
u,v∈F

{‖x+ u‖+ ‖y + v‖}

≤ inf
u∈F
{‖x+ u‖}+ inf

v∈F
{‖y + v‖} = N([x]) +N([y]).

As such, N is a semi-norm on E/F .

Since [x] = x+F for all x ∈ E, N([x]) = infy∈F{‖x−y‖} = d(x, F ).
As a result, if F ⊆C E, N([x]) = 0 if and only if x ∈ F , i.e. [x] = 0.
Consequently, if F ⊆C E, N is a norm on E/F .
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ii. Let ϕ : E → R be a linear functional for which kerϕ ⊆C E. If ϕ ≡ 0,
ϕ is clearly continuous. Otherwise, ϕ(E) = R. Indeed, let x ∈ R. If
ϕ(u) = 1 for some u ∈ E, then xu ∈ E, ϕ(xu) = x and ϕ is onto.

Let η : E → E/ kerϕ be the canonical surjection η(u) = u + kerϕ.
By the Isomorphism Theorem for vector spaces, it is possible to factor
ϕ = ψ ◦ η, where ψ : E/ kerϕ→ R is linear.

According to Corollary 143, ψ is thus continuous, being linear. If
N is the norm defined in (b)i. with F = kerϕ, we have

N([x]− [y]) = N([x− y]) ≤ ‖x− y‖ ∀x,y ∈ E

and so η is continuous Thus, φ is continuous being the composition of
two continuous functions. �
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9. Proof. There are 4 conditions to verify:

(a) ‖x‖∞ = sup{|x1|, . . . , |xn|} ≥ 0 is clear since |xi| ≥ 0 for all i.
(b) ‖x‖∞ = 0⇐⇒ sup{|x1|, . . . , |xn|} = 0⇐⇒ |xi| = 0, ∀i⇐⇒

xi = 0, ∀i⇐⇒ x = 0.
(c) If a ∈ R, then

‖ax‖∞ = sup{|ax1|, . . . , |axn|} = |a| sup{|x1|, . . . , |xn|} = |a|‖x‖∞.

(d) Let x,y ∈ Rn. Then

‖x+ y‖∞ = sup{|x1 + y1|, . . . , |xn + yn|} ≤ sup{|x1|+ |y1|, . . . , |xn|+ |yn|}
≤ sup{|x1|, . . . , |xn|}+ sup{|y1|, . . . , |yn|} = ‖x‖∞ + ‖y‖∞.

Thus, x→ ‖x‖∞ defines a norm on Rn. �
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10. Proof. We have

‖x+ y‖2 + ‖x− y‖2 = (x+ y | x+ y) + (x− y | x− y)

= (x | x) + 2(x | y) + (y | y)
+ (x | x)− 2(x | y) + (y | y)

= 2(x | x) + 2(y | y) = 2(‖x‖2 + ‖y‖2)

Now, consider a parallelogram with vertices 0,x,y,x+y. Then the sum
of squares of the lengths of the four sides is 2(‖x‖2 + ‖y‖2), while the
sum of squares of the diagonals is ‖x+ y‖2 + ‖x− y‖2. �
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11. Solution. No, it is not. Consider the following example in R2: let
x = (1, 0) and y = (1, 1). Then x+ y = (2, 1) and

‖x‖∞ + ‖y‖∞ = ‖x+ y‖∞ = 2

but x 6= cy for any c ∈ R. �
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