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Mathematical Analysis Chapter 12 – Sequences of Functions in Metric Spaces

Overview

In this chapter, we study properties of sequences of functions in general
metric spaces. We will only concern ourselves with number sequences when
their study advances our study of sequences of functions.

Notation: The symbol K is sometimes used to denote either R or C.

CR([0, 1]) is then R−vector space of continuous functions [0, 1] 7→ R.

FR([0, 1]) is then R−vector space of functions [0, 1] 7→ R.

RR([0, 1]) is then R−vector space of Riemann-int. functions [0, 1] 7→ R.

Cc(R,C) is the set of continuous functions with compact support.
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12.1 – Uniform Convergence

Let X be a set and let (E, d) be a metric space. A sequence (fn)n∈N
of functions fn : X → E is said to converge pointwise to a function
f : X → E (denoted by fn → f on X) if fn(x)→ f(x) for all x ∈ X.

Symbolically, fn → f on X if

∀ε > 0,∀x ∈ X,∃N = Nε,x such that n > N =⇒ d(fn(x), f(x)) < ε

(note the explicit dependence of N on x).

As we have discussed in chapters 6 and 7, pointwise convergence is quite
often not strong enough.

P. Boily (uOttawa) 3



Mathematical Analysis Chapter 12 – Sequences of Functions in Metric Spaces

Consequently, we introduce a second kind of convergence: the sequence
(fn) is said to converge uniformly to a function f : X → E (denoted by
fn ⇒ f on X) if we can remove the explicit dependence of N on x.

Symbolically, fn ⇒ f on X if

∀ε > 0,∃N = Nε such that n > N =⇒ sup
x∈X
{d(fn(x), f(x))} < ε.

Examples:

1. Let (E, d) = (R, | · |), X = [0, 1] and fn : X → E be defined by
fn(x) = xn. Then fn → f on X, where f : X → E is given by f(x) = 0
if x 6= 1 and f(1) = 1. Note that f is not continuous on X, even though
each of the fn is continuous.
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The sequence (fn) in black, the limit f in red.
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2. With the definitions as in the last example, fn 6⇒ f on X. Indeed,

sup
x∈[0,1]

{d(fn(x), f(x))} = sup
x∈[0,1]

{|xn|} = 1n = 1,

which can never be smaller than any 1 > ε > 0.

However, fn ⇒ f on [0, a] for all a ∈ [0, 1) (see Chapter 6).

Proposition 139. (Cauchy’s Criterion)
Let (E, d) be a complete metric space and let (fn) be a sequence of
functions fn : X → E. Then, fn ⇒ f on X if and only if

∀ε > 0,∃N = Nε > 0 s.t. n,m > N =⇒ sup
x∈X
{d(fn(x), fm(x))} < ε.
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Proof. Suppose that fn ⇒ f on X and let ε > 0. By hypothesis, ∃N1, N2

such that

sup
x∈X
{d(fn(x), f(x))} <

ε

2
, sup

x∈X
{d(fm(x), f(x))} <

ε

2

whenever n > N1 and n > N2. Set N = max{N1, N2}.

Then, whenever n,m > N , we have

sup
x∈X
{d(fn(x), fm(x))} ≤ sup

x∈X
{d(fn(x), f(x)) + d(fm(x), f(x))}

≤ sup
x∈X
{d(fn(x), f(x))}+ sup

x∈X
{d(fm(x), f(x))} < ε.
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Conversely, suppose that the ε−statement holds. Then, for any x ∈ X,
(fn(x)) is a Cauchy sequence in E and thus converges to a f(x) ∈ E, as E is
complete. As a result, fn → f on X. It remains to show that fn ⇒ f on X.

Let ε > 0. By hypothesis, ∃N > 0 such that supx∈X{d(fn(x), fm(x))} < ε
2

whenever n,m > N . Now, fix n > N and let

am(x) = d(fn(x), fm(x)) and a(x) = d(fn(x), f(x)).

Then am(x)→ a(x) Since am(x) <
ε
2 for all x ∈ X, then a(x) ≤ ε

2 for all
x ∈ X. Hence,

sup
x∈X
{d(fn(x), f(x))} ≤ sup

x∈X
{a(x)} ≤ ε

2
< ε.

As such, fn ⇒ f on X. �
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In order to lighten the text, we will sometimes write ‖d(fn, fm)‖∞ for

sup
x∈X
{d(fn(x), fm(x))}.

Similar notions exist for series. Let (E, d) be a metric space and let (un)
be a sequence of functions un : X → E.

For any m ∈ N, define the partial sum fm : X → E by

fm(x) = u1(x) + · · ·+ um(x) =

m∑
n=1

un(x).

The sequence (fm) is the series generated by (un), and it is usually

denoted by
∑
n∈N

un.
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If fm → f on X, we say that the series converges (pointwise) on X.

If fm ⇒ f on X, we say that the series converges uniformly on X.

In both cases, f is said to be the sum of the series.

If (fm) does not converge, we say that the series diverges.

Let E be a Banach space and let (gn) be a sequence of functions
gn ∈ B(X,E). The series

∑
gn converges absolutely on X if

∑
‖gn‖∞

converges (note that there is no need to stipulate the type of convergence
in the latter case).

Proposition 140. If
∑
gn converges absolutely on X, then

∑
gn

converges uniformly on X.
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Proof. According to the Cauchy criterion, it suffices to show that ∀ε > 0,
∃N ∈ N such that ∥∥∥ m∑

k=n

gk

∥∥∥
∞
< ε.

But according to the Triangle Inequality,∥∥∥ m∑
k=n

gk

∥∥∥
∞
≤

m∑
k=n

‖gk‖∞.

Since
∑
gk converges absolutely, ∀ε > 0, ∃N > 0 such that

m∑
k=n

‖gk‖∞ < ε

whenever n > N . �
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12.1.1 – Properties

The two main types of convergence are not created equal, however. We
establish the superiority of uniform convergence over pointwise convergence
in a series of well-known theorems.

Theorem 141. Let (E, d) and (F, d̃) be metric spaces. If (fn) ⊆ C(E,F )
is such that fn ⇒ f on E, then f ∈ C(E,F ).

Proof. Let ε > 0 and x0 ∈ E.

Since fn ⇒ f on E, then ∃n > N for which supx∈E{d(fn(x), f(x))} < ε
3.

Furthermore, since fn is continuous at x0, ∃δ > 0 such that

d̃(fn(x), fn(x0)) <
ε

3
whenever d(x,x0) < δ.
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Then

d̃(f(x), f(x0)) = d̃(f(x), fn(x)) + d̃(fn(x), fn(x0)) + d̃(fn(x0), f(x))

<
ε

3
+
ε

3
+
ε

3
= ε

whenever d(x,x0) < δ, hence f is continuous at x0. �

We have already seen an example showing that this does not necessarily
hold for pointwise convergence.

Theorem 142. (Limit Interchange; R-Integrable Functions)
Let (E, ‖ · ‖) be a Banach space. If (fn) ⊆ F([a, b], E) is such that fn ⇒ f
on [a, b], and if fn is Riemann-integrable over [a, b] for all n, then f is

Riemann-integrable and
∫ b
a
fn(x) dx→

∫ b
a
f(x) dx.

Proof. Left as an exercise (see chapter 6). �
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The fact that the limit interchange is not necessarily valid if fn → f instead
of fn ⇒ f on [a, b] could be seen as an indictment of the Riemann-integral
rather than as an indictment of pointwise convergence. In a coming chapter,
we will take the former position and introduce the Lebesgue integral to
circumvent this difficulty.

The next result is a companion to Theorem 142.

Theorem 143. (Limit Interchange; Fundamental Theorem)
Let (E, ‖ · ‖) be a Banach space. If (fn) ⊆ F([a, b], E) is such that fn ⇒ f
on [a, b], and if fn is Riemann-integrable over [a, b] for all n, then f is
Riemann-integrable according to Theorem 142.

Define Fn, F : [a, b] → E by Fn(x) =
∫ x
a
fn(t) dt and F (x) =

∫ x
a
f(t) dt.

Then Fn ⇒ F on [a, b].
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Proof. Let ε > 0.

Since fn ⇒ f on [a, b], ∃N ∈ N such that ‖f − fn‖∞ < ε
2(b−a) whenever

n > N . Now,

‖Fn(x)− F (x)‖ =
∥∥∥∥∫ x

a

(fn(t)− f(t)) dt
∥∥∥∥ ≤ ∫ x

a

‖fn(t)− f(t)‖ dt

≤
∫ x

a

‖fn − f‖∞ dt <
ε

2(b− a)
(x− a) ≤ ε

2(b− a)
(b− a) = ε

2
.

Since this is true for all x ∈ [a, b], then ‖Fn−F‖∞ ≤ ε
2 < ε. By the Cauchy

criterion, Fn ⇒ F on [a, b]. �

Theorem 143 has an interesting corollary when applied to series, which is
often assumed to hold (without proof) when solving differential equations.
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Theorem 144. Let (E, ‖ · ‖) be a Banach space and let
∑
gn be a series

of functions in R([a, b], E). If
∑
gn is uniformly convergent, then

∫ b

a

(∑
n∈N

gn(t)

)
dt =

∑
n∈N

(∫ b

a

gn(t) dt

)
.

Proof. This is a direct consequence of Theorem 143. �

Theorem 145. (Limit Interchange; Differentiable Functions)
Let (E, ‖ · ‖) be a Banach space. If (fn) ⊆ C1([a, b], E) is such that
fn(x0) → f(x0) for some x0 ∈ [a, b] and if ∃g ∈ C([a, b], E) such that
f ′n ⇒ g on [a, b], then ∃f ∈ C1([a, b], E) such that fn ⇒ f on [a, b] and
f ′ = g.
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Proof. According to the Fundamental Theorem of Calculus, for all n ∈ N
we have fn(x)− fn(a) =

∫ x
a
f ′n(t) dt. Since f ′n ⇒ g, then

fn(x)− fn(a) =
∫ x

a

f ′n(t) dt⇒
∫ x

a

g(t) dt on [a, b],

according to Theorem 142. In particular, the sequence (fn(x0) − f(a))n
converges, which implies that (fn(a))n converges to some ` ∈ E. It is easy
to show that fn ⇒ f , where f : [a, b]→ E is defined by

f(x) = `+

∫ x

a

g(t) dt.

Since all the fn are continuous and the convergence is uniform, then f
is continuous. It is also differentiable, and its derivative is continuous as
f ′ = g ∈ C([a, b], E) (again, according to the FTC). �
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Examples:

1. Compute
∫∞
0
f(x) dx, where f(x) = x2

exp(x)−1.

Solution. Consider (gn) ⊆ C(R+,R+) defined by gn(x) = exp(−nx)x2
for all n ∈ N×. Then

∑
gn converges pointwise to f : R+ → R+.

Indeed,

m∑
n=1

gn(x) = x2

(
m∑
n=1

exp(−nx)

)
= x2

(
m∑
n=1

(exp(−x))n
)

= x2
(
exp(−x)− exp(−(m+ 1)x)

1− exp(−x)

)
≤ f(x),

since exp(−x) < 1 for all x ∈ R+.
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Then,

∑
n∈N×

gn(x) = lim
m→∞

m∑
n=1

gn(x) = lim
m→∞

x2
(
exp(−x)− exp(−(m+ 1)x)

1− exp(−x)

)

=
x2

exp(x)− 1
.

Furthermore,
∑
gn converges absolutely to f on [a, b] ⊆ (0,∞).

Indeed, for all x ∈ [a, b], we have |gn(x)| ≤ exp(−na)b2. Note that

∑
n∈N×

exp(−na)b2 = b2
∑
n∈N×

(exp(−a))n =
b2

exp(a)− 1
, since a > 0.
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Hence
∑
n∈N× exp(−na)b2 converges and so, according to Exercise 1,∑

gn is absolutely convergent.

Since
∫∞
0
f(t) dt converges (use the Comparison Theorem with

exp(−
√
x), for instance), then, according to Theorem 144,

∫ ∞
0

f(t) dt =

∫ ∞
0

∑
n∈N×

gn(t)

 dt =
∑
n∈N×

(∫ ∞
0

gn(t) dt

)

Repeated integration by parts shows that
∫∞
0
gn(t) dt =

2
n3

, so that∫ ∞
0

x2

exp(x)− 1
dx = 2

∑
n∈N×

1

n3
= 2ζ(3). �
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2. Show that uniform convergence is not equivalent to absolute convergence.

Proof. It will be sufficient to exhibit a series which is uniformly
convergent but not absolutely convergent. Consider (uk) a series of

constant functions from an interval I to R defined by uk(x) =
(−1)k
k for

all x ∈ I.

Since ‖uk‖∞ = 1
k, and since

∑
1
k diverges (it is the harmonic series,

after all), then
∑
uk is not absolutely convergent. However,∥∥∥∥∥

m∑
k=n

uk

∥∥∥∥∥
∞

=

∣∣∣∣∣
m∑
k=n

(−1)k

k

∣∣∣∣∣ ≤ 1

n
→ 0 as n,m→∞,

so that
∑
uk is uniformly convergent. �
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12.1.2 – Abel’s Criterion

A number of tests can be used to gauge the convergence of series (whether
numerical series or series of functions).

From calculus, you may remember the following tests:

p−test;

comparison test;

alternating series test;

integral test;

d’Alembert test (also known as the ratio test), or

Cauchy test (also known as the root test).

In this section, we present a new test for convergence of a series.
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Proposition 146. (Abel’s Criterion)
Let (an) ⊆ E, where E is a Banach space over R. Suppose that we can
write an = εnbn with

1. εn ↘ 0 a sequence in R, and

2. ∃σ ∈ R such that ‖
∑

n≤N bn‖ ≤ σ for all N ∈ N.

Then
∑

an is pointwise convergent and ‖
∑
n≥N an‖ ≤ 2σεN for all N ∈ N.

Proof. For any q > p, let Sqp = bp+1 + · · ·+ bq.

Since Sqp =
∑
n≤q bn −

∑
n≤pbn, we have

∥∥Sqp∥∥ ≤ 2σ. If we write

bp+1 = Sp+1
p , bp+2 = Sp+2

p − Sp+1
p , · · · , bq = Sqp − Sq−1p ,

then
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εp+1bp+1 + · · ·+ εqbq = εp+1S
p+1
p + εp+2

(
Sp+2
p − Sp+1

p

)
+ · · ·+ εq

(
Sqp − Sq−1p

)
= Sp+1

p (εp+1 − εp+2) + · · ·+ Sq−1p (εq−1 − εq) + εqS
q
p,

whence

∥∥∥ q∑
k=p+1

ak

∥∥∥ = ‖εp+1bp+1 + · · ·+ εqbq‖

≤
∥∥Sp+1

p

∥∥ |εp+1 − εp+2|+ · · ·+
∥∥Sq−1p

∥∥ |εq−1 − εq|+ |εq|∥∥Sqp∥∥
≤ 2σ (εp+1 − εp+2) + · · ·+ 2σ (εq−1 − εq) + 2σεq

= 2σεp+1 → 0 as p, q →∞

Hence,
∑

ak converges by the Cauchy Criterion. �
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We can easily generalize this result to sequences of functions.

Proposition 147. (Abel’s Criterion (Reprise))
Let

∑
fn be a series of functions fn = εngn ∈ F([a, b], E), where E is a

Banach space over R. If

1. εn(x)↘ 0 for all x ∈ [a, b];

2. ∃σ ∈ R such that ‖
∑

n≤N gn(x)‖ ≤ σ for all N ∈ N and all x ∈ [a, b], and

3. ‖εn‖∞ → 0.

Then
∑
fn is uniformly convergent on [a, b].

Proof. Left as an exercise. �

The three conditions are actually independent (see Exercise 7).
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Example: Consider the series
∑
k∈N ckbk(x), where bk(x) = eikx, x ∈ R

and ck ↘ 0. Show that the series converges (pointwise) for any x ∈ (0, 2π)
and that it converges uniformly on [δ, 2π − δ] for any δ ∈ (0, π).

Proof. Since |eikx| = 1, then
∑
k∈N cke

ikx is absolutely convergent
whenever

∑
k∈N |ck| <∞. If x 6= 2kπ, k ∈ N, then

1 + eix + · · ·+ einx =
1− ei(n+1)x

1− eix
,

whence ∣∣∣∣∣
n∑
k=1

bk(x)

∣∣∣∣∣ = |1 + eix + · · ·+ einx| ≤ 2

|1− eix|
:= σx.
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According to Abel’s Criterion for numerical series,
∑
k∈N cke

ikx thus
converges pointwise for any x ∈ (0, 2π).

Now, let π > δ > 0 and x ∈ [δ, 2π − δ]. Then

|1−eix| =
∣∣∣eix/2(e−ix/2 − eix/2)∣∣∣ = 2

∣∣∣∣eix/2 − e−ix/22i

∣∣∣∣ = 2| sin(x/2)| > sin δ,

from which we can conclude that∣∣∣∣∣
n∑
k=1

bk(x)

∣∣∣∣∣ ≤ 2

sin δ
:= σ.

Consequently, again according to Abel’s Criterion applied to series of
functions,

∑
k∈N cke

ikx converges uniformly for any on [δ, 2π − δ] for any
π > δ > 0. �
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12.2 – Fourier Series

The series
∑
k∈N cke

ikx in the previous example is continuous on (0, 2π)
even though it fails to converge uniformly on (0, 2π).

It is an example of a Fourier Series, a monumental idea in the development
of modern mathematics. They were first proposed as solutions to the Heat
Equation, a partial differential equation.

In a nutshell, these infinite series gave rise to finite already-known solutions
of the Heat Equation, leading the process with which they were formed to be
accepted rather hastily as valid, even though a number of mathematicians
had an awful lot of objections concerning the use of infinity and (possibly
divergent) series (these notions were not as clearly understood back then).
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The importance of rigour in mathematics was just starting to be understood
by some of the best mathematical minds; while these objections may sound
a bit odd nowadays, it is important to remember that the current definitions
of the concepts that made some of our predecessors queasy have been
distilled of all offending material after years of polishing, which was driven
by the very objections that they brought up.

It is no exaggeration to say that Analysis would not be what it is today
without this particular episode; while it remains in fashion amongst some
mathematicians to deride engineers and physicists for “playing with tools
beyond their understanding”, let us keep in mind that analytical advances
mostly arise from the application of mathematics to so-called ‘real-world’
problems, in the grand tradition of Archimedes and Newton.

In this section, we introduce and discuss the convergence of Fourier Series.
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12.2.1 – Trigonometric Series and Periodic Functions

A trigonometric polynomial is any (finite) linear combination of positive
powers of sines and cosines:

p(t) = a0 +

n∑
k=1

(ak cos(kt) + bk sin(kt)) , where ak, bk ∈ C.

Since

cos t =
eit + e−it

2
, sin t =

eit − e−it

2i
,

we can write

p(t) = a0 +

n∑
k=1

(ak cos(kt) + bk sin(kt)) =

n∑
k=−n

cke
ikt,
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with
a0 = c0, ak = ck + c−k, and bk = i(ck − c−k),

or

c0 = a0, ck =
ak − ibk

2
, and c−k =

ak + ibk
2

,

for all 1 ≤ k ≤ n.

A trigonometric series is a formal expression of the form∑
k∈Z

cke
ikt = a0 +

∑
k∈N

(ak cos(kt) + bk sin(kt)) .

We say that a series indexed by Z converges if both the series indexed by
the non-negative integers AND the series indexed by the negative integers
converges.
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Proposition 148. If
∑
k∈Z cke

ikt converges absolutely for some t, then∑
k∈Z |ck| < ∞. Furthermore, if

∑
k∈Z |ck| < ∞, then ∃f ∈ C(R,C) such

that
∑
k∈Z cke

ikt ⇒ f on R.

Proof. Left as an exercise. �

Example: Let b ∈ (−1, 1). Consider the trigonometric series
∞∑
k=1

bk sin(kt).

What is its complex form? Does it converge anywhere? If so, what to?

Solution. According to the previous formulas, we formally have

c0 = 0, ck =
0− ibk

2
=
bk

2i
and c−k =

0 + ibk

2
= −b

k

2i
,

for k ≥ 1.
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We also have

n∑
k=1

bk sin(kt) = − 1

2i

−1∑
k=−n

b−keikt +
1

2i

n∑
k=1

bkeikt,

so that, formally,

∞∑
k=1

bk sin(kt) = − 1

2i

−1∑
k=−∞

b−keikt +
1

2i

∞∑
k=1

bkeikt.

The series converges absolutely (and thus at least pointwise), as∑
k≥1

‖bk sin(kt)‖∞ =
∑
k≥1

|b|k = |b|
1− |b|

<∞, since |b| < 1.
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According to Proposition 148, ∃f ∈ C(R,C) such that the series converges
uniformly to f on R.

We can re-write the convergent series as

∞∑
k=1

bk sin(kt) =
1

2i

[ ∞∑
k=1

(
beit
)k − ∞∑

k=1

(
be−it

)k]
=

1

2i

(
beit

1− beit
− be−it

1− be−it

)

=
b

2i
· eit − e−it

1− b(eit + e−it) + b2
= b · e

it − e−it

2i︸ ︷︷ ︸
=sin t

· 1

1− 2b
eit + e−it

2︸ ︷︷ ︸
=cos t

+b2
.

Thus the series converges uniformly to f : t 7→ b sin t
1−2b sin t+b2 on R. �
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−1
2 sin t
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−1
2 sin t+ (−1

2)
2 sin(2t)
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−1
2 sin t+ (−1

2)
2 sin(2t) + (−1

2)
3 sin(3t)
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− sin t
2(1+cos t+(1/2)4)
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− sin t
2(1+cos t+(1/2)4)
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12.2.2 – Again, Abel’s Criterion

Proposition 149. Let
∑
k∈Z cke

ikt be such that ck ≥ 0 and ck ↘ 0 both
as k → ∞ and as k → −∞. Then

∑
k∈Z cke

ikt converges uniformly on
[δ, 2π − δ] for any δ ∈ (0, π). Consequently, the sum f(t) =

∑
k∈Z cke

ikt is
continuous on (0, 2π).

Proof. It suffices to show that∑
k≥0

cke
ikt and

∑
k≤−1

cke
ikt

both converge uniformly on [δ, 2π−δ] for all 0 < δ < π, and to apply Abel’s
Criterion for each of the series.
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Let δ ∈ (0, π). Since∣∣∣∣∣
n∑
k=0

eikt

∣∣∣∣∣ = ∣∣1 + · · ·+ eint
∣∣ = ∣∣∣∣1− ei(n+1)t

1− eit

∣∣∣∣ ≤ 2

|1− eit|
≤ 2

sin δ∣∣∣∣∣∣
−1∑

k=−n

eikt

∣∣∣∣∣∣ = ∣∣e−int + · · ·+ e−it
∣∣ = ∣∣e−int∣∣ ∣∣∣1 + · · ·+ ei(n−1)t

∣∣∣
=
∣∣∣1 + · · ·+ ei(n−1)t

∣∣∣ = ∣∣∣∣1− eint1− eit

∣∣∣∣ ≤ 2

|1− eit|
≤ 2

sin δ

for all t ∈ [δ, 2π − δ], the series converge uniformly on [δ, 2π − δ] and the
proposition is proven. �
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Abel’s Criterion can be used in this case even if ck is not always positive.
For instance, let

∑
k∈Z(−1)kckeikt where the coefficient ck are as in the

statement of Proposition 149. What does the fact that∣∣∣∣∣∑
k∈Z

(−1)k(−1)keikt
∣∣∣∣∣ =

∣∣∣∣1 + (−1)n+1ei(n+1)t

1− eit

∣∣∣∣ ≤ 2

|1 + eit|

tell you?

These results also apply to the real part and the imaginary part of∑
k∈Z cke

ikt, i.e. to the series

a0 +
∑
k≥1

ak cos(kt) and
∑
k≥1

bk sin(kt).
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For instance,
∑
k≥1

sin(kt)
k converges uniformly on [δ, 2π− δ] for any δ > 0.

As a result, the sum is continuous on (0, 2π).

However, even though
∑
k≥1

sin(kt)
k converges for t = 0 and t = 2π,

the function is not continuous on [0, 2π] (see Exercise 9).

Let T > 0. A function f : R → C is T−periodic if f(t + T ) = f(t)
for all t ∈ R. The smallest positive T for which this holds is the period of
the function.

Examples:

1. The functions cos and sin are 2π−periodic.

2. The function tan is π−periodic.
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3. The function defined by eikt is 2π
k −periodic for any k ∈ Z.

4. The function defined by eikwt, where w = 2π
T and k ∈ Z, is T−periodic.

5. Let f ∈ Cc(R,C), with compact support K (i.e. f(t) = 0 when t 6∈ K).
Show that ϕf : t 7→

∑
k∈Z f(t− k) is 1−periodic.

Solution. This series converges for all t since there is only a finite
set of integers k for which t− k ∈ K (because K is compact). Then

ϕ(t+ 1) =
∑
k∈Z

f(t+ 1− k) =
∑
k∈Z

f(t− k) = ϕf(t),

so ϕf is 1−periodic. �
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If f ∈ C(R,C) is a T−periodic function, then f is bounded on the interval
[0, T ], with

c0(f) =
1

T

∫ T

0

f(t) dt <∞.

The complex number c0 is the mean value of f , also given by

c0(f) =
1

T

∫ a+T

a

f(t) dt for all a ∈ R.

If w = 2π
T and k 6= 0, the function g : t 7→ eikwt is T−periodic. Then

c0(g) =
1

T

∫ T

0

eikwt dt =
1

T

[
eikwt

ikw

]T
0

= 0.
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Hence, if f(t) =
∑
k∈Z cke

ikwt is uniformly convergent on [0, T ] and
T−periodic, then

c0(f) =
1

T

∫ T

0

f(t) dt =
1

T

∫ T

0

(∑
k∈Z

cke
ikwt

)
dt =

∑
k∈Z

ck
T

∫ T

0

eikwt dt = c0

The sum and the integral can be interchanged because the series converges
uniformly on [0, T ].

If f ∈ C(R,C) is T−periodic, the sequence (ck(f)), where

ck(f) = c0
(
fe−ikwt

)
=

1

T

∫ T

0

f(t)e−ikwt dt, k ∈ Z,

is the sequence of Fourier coefficients of f .
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If w = 2π
T and f(t) =

∑
k∈Z cke

ikwt is uniformly convergent on [0, T ],
then ck(f) = ck.

Proposition 150. The mapping f 7→ (ck(f))k∈Z is a linear map from the
vector space of continuous T−periodic functions to the space of bounded
sequences indexed by Z.

More precisely,
sup
k∈Z
{|ck(f)|} ≤ ‖f‖1 ≤ ‖f‖∞ <∞,

where ‖f‖1 = 1
T

∫ T
0
|f(t)| dt.

Proof. Left as an exercise. �
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We can improve on Proposition 150 once we show that

‖f‖2 =

(∑
k∈Z

|ck(f)|2
)1/2

.

Proposition 151. Let f be a 2π−periodic function such that f ∈ Cn,
n > 0. Then

ck(f) =
1

(ik)n
ck

(
f (n)

)
, k 6= 0.

In particular,

|ck(f)| ≤
‖f (n)‖∞
|k|n

and so |ck(f)| → 0 as |k| → ∞.
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Proof. This is easily shown by induction on n. If n = 1, we have

ck(f) =
1

2π

∫ 2π

0

f(t)e−ikt dt =
1

2π

[
f(t)e−ikt

−ik

∣∣∣∣2π
0

+
1

ik

∫ 2π

0

f ′(t)e−ikt dt

]

=
1

ik
ck(f

′).

A sequence of integrations by parts yields the result for general n. �

As a corollary, if f ∈ C2 is 2π−periodic, then
∑
k∈Z ck(f)e

ikt converges
absolutely (and so uniformly) on R.

The Fourier series of a 2π−periodic function f is the series
∑
k∈Z ck(f)e

ikt;
in this case, we write f(t) ∼

∑
k∈Z ck(f)e

ikt (note that it is possible for f
not to equal its Fourier series).
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12.2.3 – Convergence of Fourier Series

The next results discuss the convergence of Fourier series.

Theorem 152. Let f be 2π−periodic. If f ∈ C2, then the Fourier series∑
k∈Z ck(f)e

ikt converges absolutely (and so uniformly) to f on R.

Proof. According to the corollary to Proposition 151, the Fourier series
g(t) =

∑
k∈Z ck(f)e

ikt converges absolutely on R, and thus g is continuous
and 2π−periodic. We want to show that g = f .

Let h = f − g. Then h is continuous and 2π−periodic. We also have

ck(h) = ck(f)− ck(g) = 0,

so that ck(f) = ck(g) for all k ∈ Z.
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It remains only to show that when h is continuous, 2π−periodic, and
ck(h) = 0 for all k ∈ Z, then h ≡ 0.

According to a corollary of the Stone-Weierstrass Theorem (see chapter 13),
∃(pn)n∈N such that pn(t) =

∑
k∈Z ak(n)e

ikt and pn ⇒ h. Note that for a
fixed k, we must have ak(n)→ 0 when n→∞. Then

1

2π

∫ 2π

0

|h(t)|2 dt = 1

2π

∫ 2π

0

h(t)h(t) dt
thm 142
= lim

n→∞

1

2π

∫ 2π

0

h(t)pn(t) dt

thm 144
=

∑
k∈Z

(
lim
n→∞

ak(n)
1

2π

∫ 2π

0

h(t)eikt dt

)
=
∑
k∈Z

(
lim
n→∞

ak(n)c−k(h)
)
= 0.

Since |h(t)|2 is continuous, |h(t)|2 = 0 for all t ∈ [0, 2π], so that h(t) = 0
for all t ∈ [0, 2π]. �
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The next result is a sufficient condition for a function to be equal to its
Fourier series.

Theorem 153. Let f be a continuous 2π−periodic function such that∑
k∈Z

|ck(f)| =M <∞.

Then the Fourier series of f converges absolutely to f on R and is equal to
f on R.

Proof. Left as an exercise. �

Example: Fix a ∈ R and let fa(t) = cos(at), |t| ≤ π. Extend fa to
R by periodicity. What is the Fourier series of fa? Is it equal to fa on R?
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Solution. If a 6∈ Z, fa is not differentiable (see example below).
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If a ∈ Z then cos(at) is already a trigonometric polynomial so the Fourier
series of fa is simply cos(at). So assume that a 6∈ Z.

Let k ∈ Z. Then

ck(fa) =
1

2π

∫ π

−π
cos(at)e−ikt dt =

1

2π

∫ π

−π

eiat − e−iat

2
e−ikt dt =

a(−1)k sin(πa)
π(a2 − k2)

Using the comparison test with |ck(f)| ∼ 1
k2

, we see that
∑
k∈Z |ck(f)| <∞.

According to Theorem 153,

fa(t) =
∑
k∈Z

a(−1)k sin(πa)
π(a2 − k2)

eikt

converges absolutely on R. �

P. Boily (uOttawa) 54



Mathematical Analysis Chapter 12 – Sequences of Functions in Metric Spaces

P. Boily (uOttawa) 55



Mathematical Analysis Chapter 12 – Sequences of Functions in Metric Spaces

12.2.4 – Dirichlet’s Convergence Theorem

Let f : R→ C be a 2π−periodic integrable function.

For k ∈ Z, set

ek(t) = eikt =
(
eit
)k

= (e1(t))
k.

Let N ∈ N. Define

SN(f)(t) :=

N∑
k=−N

ck(f)ek(t).

SN(f) is the partial sum of degree N for the Fourier series of f .
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In what follows, we will write
∫
:= 1

2π

∫ 2π

0
= 1

2π

∫ a+2π

a
for any a ∈ R. We

have

SN(f)(t) :=

N∑
k=−N

ck(f)ek(t) =

N∑
k=−N

ek(t)

∫
f(y)ek(−y) dy

=

∫
f(y)


N∑

k=−N

ek(t)ek(−y)

 dy

=

∫
f(y)


N∑

k=−N

ek(t− y)

 dy

=

∫
f(y)KN(t− y) dy := (D̂N ∗ f)(t),
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where, formally,

KN(t) =

N∑
k=−N

ek(t) =

N∑
k=−N

eikt =
e−iNt − ei(N+1)t

1− eit

=
1

eiNt

(
1− ei(2N+1)t

1− eit

)
=

sin((N + 1/2)t)

sin(t/2)
, when t 6∈ 2πZ.

Proposition 154. The Dirichlet kernel is even, 2π−periodic, c0(KN) = 1,∫ π
0
KN(t) dt = π, and

KN(0) = lim
t→

KN(t) = 2N + 1.

Proof. Left as an exercise. �
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Lemma 155. (Riemann-Lebesgue Lemma)

Let f : [a, b]→ C be integrable over [a, b]. Then limn→∞
∫ b
a
f(t)eint dt = 0.

Proof. Left as a (difficult) exercise. �

Theorem 156. (Dirichlet’s Convergence Theorem)
Let f : R → C be piecewise (with a finite number of discontinuities) and
2π−periodic. If the following one-sided limits exist ∀x ∈ R:

f(x±) = lim
h↘0

f(x± h), f ′(x±) = lim
h↘0

f(x± h)− f(x)
h

,

then

SN(f)(x) =

N∑
k=−N

ck(f)ek(x)→
f(x+) + f(x−)

2
, as N →∞.
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Proof. WLOG, we can assume that x = 0 by translating the variable x to
the origin as needed. Consider the sequence of partial sums

sN := SN(f)(0) =

N∑
k=−N

ck(f)ek(0) =

N∑
k=−N

ck(f).

For N ∈ N, we have

sN =
∑
|k|≤N

∫
f(t)e−ikt dt =

∫
f(t)KN(t) dt.

Since KN(t) is even, then∫ 0

−π
f(t)KN(t) dt =

∫ π

0

f(−t)KN(t) dt,
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whence (remember the notation convention for integrals)

sN =
1

2π

∫ π

0

{f(t) + f(−t)}KN(t) dt.

Write
uN = sN − f(0+)+f(0−)

2 .

Then

uN =
1

2π

∫ π

0

{f(t) + f(−t)}KN(t) dt− f(0+)+f(0−)
2 · 1

π

∫ π

0

KN(t) dt

=
1

2π

∫ π

0

{f(t) + f(−t)− f(0+)− f(0−)}KN(t) dt

=
1

2π

∫ π

0

g(t) sin((N + 1/2)t) dt,
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where

g(t) =


f(t)− f(0+) + f(−t)− f(0−)

sin(t/2)
, if t ∈ (0, π]

0, otherwise

By construction, g is clearly piecewise continuous on (0, π]. It is necessarily
bounded in a neighbourhood of t = 0 according to de l’Hôpital’s Rule:

lim
t↘0

g(t) = lim
t↘0

2(f ′(t)− f ′(−t))
cos(t/2)

= 2(f ′(0+) + f ′(0−)) <∞.

The function g is thus nicely-behaved: it is bounded and piecewise
continuous (with at most a finite number of discontinuities) over [0, π]
and so is integrable on every continuous piece of [0, π], using an easy
generalization of Theorem 54 (see Chapter 5).

P. Boily (uOttawa) 62



Mathematical Analysis Chapter 12 – Sequences of Functions in Metric Spaces

According to the Riemann-Lebesgue Lemma 155,

lim
n→∞

∫ π

0

g(t)eint dt = 0.

The relation still holds with the change of variable n = N + 1/2.

Since 2πuN is the imaginary part of
∫ π
0
g(t)ei(N+1/2)t dt, then 2πuN → 0

and sN → f(0+)+f(0−)
2 when N →∞. �

In other words, if a periodic function f is “nice enough” (piecewise C1), then
it is equal to its Fourier series wherever f is continuous. At discontinuities
of f , the Fourier series converges to the mean of the one-sided limits.

!4 Some piecewise C0 periodic functions have divergent Fourier series.
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Example: Let f : [0, 2π] → R be defined by f(t) = t2. Extend f to R by
periodicity. What is the Fourier series of f . Is it equal to f on R?

Solution: The Fourier coefficients of f are

ck(fa) =
1

2π

∫ 2π

0

t2e−ikt dt =

{
2
n2
(iπk + 1), k 6= 0

4π2

3 , k = 0

According to Dirichlet’s Theorem,

∑
k∈Z

ck(f)e
ikt =

4π2

3
+
∑
k∈Z×

2

k2
(iπk + 1)eikt

converges (at least pointwise) to t2 for t 6∈ 2πZ, and to f(2π)+f(0)
2 = 2π2

for t ∈ 2πZ, since f is piecewise C1.
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The function f .
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The partial sum S1(f).
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The partial sum S2(f).
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The partial sum S3(f).
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The partial sum S8(f).
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The partial sum S20(f).
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The partial sum S200(f).
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The convergence turns out to be uniform on [2π` + δ, 2π(` + 1) − δ], for
all δ ∈ (0, π), ` ∈ Z (more on this in the next Section), but only pointwise
over R as a whole, in keeping with Dirichlet’s Theorem. �

Notice the overshooting of the partial sums as t → 2π`, ` ∈ Z, which
does not seem to dampen when N →∞.

This “universal” behaviour at discontinuities is termed Gibbs’ Phenomenon
(contrast the behaviour of the Fourier series of t2 with that of cos(at)
discussed earlier).

The explanation of the problem is linked with the lim sup and lim inf
of the partial sums Sn(f)(xN) at points xN that approach a discontinuity
at x0, but we will not discuss this any further.
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12.2.5 – Quadratic Mean Convergence

The set of 2π−periodic piecewise continuous functions from R to C is an
inner product space together with

〈f, g〉 = 1

2π

∫ 2π

0

f(t)g(t) dt,

with associated norm ‖f‖2 =
√
〈f, f〉.

Note that for µ, ν ∈ Z, we have

〈eµ, eν〉 =
1

2π

∫ 2π

0

eiµte−iνt dt =
1

2π

∫ 2π

0

ei(µ−ν)t dt = δµ,ν =

{
0, µ 6= ν

1, µ = ν
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For a given N ∈ N and a function f in the inner product space of the
previous page, consider the partial sum

SN(f) =
∑
|k|≤N

ck(f)ek(t).

For any |k| ≤ N , we must have

ck(f) =
1

2π

∫ 2π

0

f(t)e−ikt dt = 〈f, ek〉.

But

〈SN(f), ek〉 =
∑
|`|≤N

c`(f)〈e`, ek〉 =
∑
|`|≤N

c`(f)δ`,k = ck(f).
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Thus, 〈f − SN(f), ek〉 = 0 for all |k| ≤ N and we can write

f = SN(f) + (f − SN(f)),

with SN(f) ∈ PN = Span{ek}|k|≤N and f − SN(f) ∈ P⊥N .

Note furthermore that since 〈SN , f − SN(f)〉 = 0, then

‖f‖22 = 〈f, f〉 = 〈SN(f) + (f − SN(f)), SN(f) + (f − SN(f))〉
= 〈SN(f), SN(f)〉+ 2Re 〈SN(f), f − SN(f)〉︸ ︷︷ ︸

=0

+〈f − SN(f), f − SN(f)〉

= ‖SN(f)‖22 + ‖f − SN(f)‖22.
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For any other function g ∈ PN , we see that

‖f − g‖2 = ‖ f − SN(f)︸ ︷︷ ︸
∈P⊥

N

+SN(f)− g︸ ︷︷ ︸
∈PN

‖22

= ‖f − SN(f)‖22 + ‖SN(f)− g‖22 ≥ ‖f − SN(f)‖22.

Since g was arbitrary,

inf
g∈PN

‖f − g‖22 = ‖f − SN(f)‖22 = ‖f‖22 − ‖SN(f)‖22. (1)

The partial sum SN(f) is thus the nearest trigonometric polynomial of PN
to f in the quadratic mean.
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Theorem 157. (Parseval Identity)
Let f be a 2π−periodic piecewise continuous function from R to C. Then

1

2π

∫ 2π

0

|f(t)|2 dt =
∞∑

k=−∞

|ck(f)|2.

Proof. By construction,

‖SN(f)‖22 =
〈 ∑
|k|≤N

ck(f)e
ikt,

∑
|`|≤N

c`(f)e
i`t
〉
=

N∑
k,`=−N

ck(f)c`(f)〈ek, e`〉

=

N∑
k,`=−N

ck(f)c`(f)δk,` =

N∑
k=−N

|ck(f)|2.

P. Boily (uOttawa) 77



Mathematical Analysis Chapter 12 – Sequences of Functions in Metric Spaces

The sequence of infimums given in (1) by

(xN) =

(
inf
g∈PN

{‖f − g‖22}
)

is bounded below by 0.

Let N ∈ N. Clearly, ‖SN(f)‖22 ≤ ‖SN+1(f)‖22, and so

xN = ‖f − SN(f)‖22 = ‖f‖22 − ‖SN(f)‖22 ≥ ‖f‖22 − ‖SN+1(f)‖22 = xN+1.

Thus (xN) is a decreasing and bounded sequence; as such, it converges
to 0 ≤ x∗ = inf{xN | N ∈ N} by the bounded monotone convergence
theorem.
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In particular, this means that

x∗ = lim
N→∞

xN = ‖f‖22− lim
N→∞

‖SN(f)‖22 =
1

2π

∫ 2π

0

|f(t)|2 dt−
∞∑

k=−∞

|ck(f)|2,

which guarantees the convergence of the series, as |f |2 is integrable over
[0, 2π] (being continuous).

Write P =
⋃
N∈NPN . Since PN ⊆ P for all N ∈ N, we have

inf
g∈P
‖f − g‖22 ≤ inf

g∈PN
‖f − g‖22 = xN , for all N ∈ N,

which implies that
0 ≤ inf

g∈P
‖f − g‖22 ≤ x∗.
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Conversely, x∗ ≤ ‖f − g‖22 for all g ∈ PN , N ∈ N. Thus x∗ ≤ ‖f − g‖22 for
all g ∈ P, so that

x∗ ≤ inf
g∈P
‖f − g‖22.

Combining these, we obtain

inf
g∈P
‖f − g‖22 =

1

2π

∫ 2π

0

|f(t)|2 dt−
∞∑

k=−∞

|ck(f)|2.

Let ε > 0. As f is a 2π−periodic piecewise continuous function, we can
find a 2π−periodic continuous function fc such that

‖f − fc‖2 < Kε, for some K > 0.

If f is constant, simply set fc = f . Do the same if f is continuous.
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Otherwise, assume that f admits m discontinuities at

x1 < . . . < xm ∈ (δ, 2π + δ), for some δ > 0,

and denote the closed ε2−neighbourhood around xα by

Bα,ε2 = [yα,ε2, yα,ε2 + 2ε2],

for α = 1, . . . ,m, and their union by Bε2 (restrict ε as needed to ensure
that the Bα,ε2 = [yα,ε2, yα,ε2 + 2ε2] do not overlap).

Outside of Bε2 but in [δ, 2π + δ], define fc ≡ f . In each of the
Bα,ε2 ∩ [δ, 2π + δ], let fc be the linear function joining the points

(yα,ε2, f(yα,ε2)) and (yα,ε2 + 2ε2, f(yα,ε2 + 2ε2)).
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The function fc : [δ, 2π + δ] → C is “clearly” continuous, and can be
extended to a 2π−periodic continuous function over R.

In particular, |f − fc|2 is real-valued and continuous over [δ, 2π + δ].
Consequently, the latter reaches its maximum M > 0 somewhere on
[δ, 2π + δ], by the Max/Min Theorem.

Thus, for any δ > 0,

‖f − fc‖22 =
1

2π

∫ 2π+δ

δ

|f(t)− fc(t)|2 dt =
1

2π

m∑
α=1

∫
B
α,ε2

|f(t)− fc(t)|2 dt

≤ 1

2π

m∑
α=1

∫
B
α,ε2

M dt =
1

2π

m∑
α=1

2ε2 ·M =
mM

π︸ ︷︷ ︸
>0

ε2 := K2ε2
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According to the Stone-Weierstrass Theorem (see Chapter 13), the set of
2π−periodic trigonometric polynomials P is dense in the set of 2π−periodic
continuous functions w.r.t. to ‖ · ‖2, and so ∃g ∈ P with ‖fc − g‖2 < ε.

Putting this together, we see that

‖f − g‖2 ≤ ‖f − fc‖2 + ‖fc − g‖2 < Kε+ ε = (K + 1)ε.

Thus

inf
g∈P
‖f − g‖2 < (K + 1)ε for all ε =⇒ inf

g∈P
‖f − g‖2 = 0.

This completes the proof. �
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Parseval’s Identity remains valid for functions that are locally integrable
(
∫
K
|f | dt <∞ for all K ⊆K [0, 2π]) instead of piecewise continuous.

The identity has multiple consequences: since it (also) applies (also)
to any locally integrable 2π−periodic function f : R→ C, the series∑

k∈Z

|ck(f)|2

converges, which shows that |ck(f)|2 → 0, and thus ck(f)→ 0 as k → ±∞
(Riemann-Lebesgue Lemma).

It can also be used to show that any 2π−periodic continuous function
f : R→ C whose Fourier series converges uniformly on R must be equal to
said series (compare with Dirichlet’s Convergence Theorem).
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12.3 – Exercises

1. Let (gn) be a sequence of functions. Show that
∑
gn converges absolutely if and only if ∃(an) ⊆ R+

such that
∑
an converges and ‖gn‖∞ ≤ an for all n. Use that result to show that the series of

functions
∑
gn, where gn : [0, 1]→ R is defined by gn(x) = xn

n2
, is absolutely convergent on [0, 1].

2. For each of the theorems of Section 12.1.1 (except for Theorem 144), find an example showing that the
result does not hold if uniform convergence is replaced by pointwise convergence.

3. Prove Theorem 144.

4. Find some examples showing that the result of Theorem 144 does not hold in general if absolute
convergence is replaced by a weaker type of convergence.

5. Let gn : R→ R be defined by gn(x) = xn

n! for each n ∈ N. Show that each of the following series of
functions converges absolutely on R.

(a) S =
∑

(−1)n+1g2n+1

(b) C =
∑

(−1)ng2n
(c) E =

∑
gn

6. Let S,C,E be as in the previous question. Using the appropriate theorems, show that for any x ∈ R
show that

S
′
(x) = C(x), C

′
(x) = −S(x), E

′
(x) = E(x).
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7. Find examples showing that the three conditions in the statement of Proposition 147 are independent
from one another.

8. Prove Proposition 148.

9. Show that the function f : [0, 2π] → R defined by f(t) =
∑
k≥1

sin(kt)
k is not continuous on

[0, 2π].

10. Prove Theorem 153.

11. Using the Fourier series of the cosine, show that π cot(aπ) =
∑
k∈Z

a
a2−k2

for all a 6∈ Z (also

known as Euler’s Formula).

12. Prove the properties of the Dirichlet kernel (Proposition 154).

13. Show that 〈f, g〉 (see page 73) defines an inner product on the set of 2π−periodic piecewise continuous
functions from R to C.

14. Prove the Riemann-Lebegue Lemma without using Parseval’s Identity.

15. Show that any 2π−periodic continuous function f : R → C whose Fourier coefficients are all 0 must
be the zero function.

16. Let (an) ⊆ C be such that an → ` and let (εn) ⊆ R+ be a divergent sequence. Define a sequence
(bn) ⊆ C by

bn =

∑n
i=1 aiεi∑n
i=1 εi

.

Show that bn → `.
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17. (a) Let (fn) be the sequence of functions defined by

fn : R+
0 → R, fn(x) =

{(
1− x

n

)n
x ∈ [0, n]

0 x > n

Show that fn ⇒ f on R+
0 , where f : R+

0 → R is defined by f(x) = e−x.
(b) Let U ⊆K C and let (fn) be the sequence of functions defined by

f : C→ C, f(z) =

(
1 +

z

n

)n
.

Show that fn ⇒ f on K, where f : C→ C is defined by f(z) = ez.

18. For any n ∈ N×, let un : R+
0 → R be defined by u(x) = x

n2+x2
.

(a) Show that
∑
un → f for some f ∈ C(R+

0 ,R), but that
∑
un 6⇒ f on R+

0 .

(b) Show that
∑

(−1)nun ⇒ g on R+
0 for some g ∈ C(R+

0 ,R), but that
∑

(−1)nun is not

absolutely convergent on R+
0 .

19. What can you say about a function f : R→ R which is the uniform limit of a sequence of polynomials
(Pn)?
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20. Consider the sequence of functions (fn) ⊆ C([0, π/2],R) defined by fn(x) = cosn x sin x for all
n ∈ N.

(a) Let O : [0, π/2]→ R be the zero function. Show that fn ⇒ O on [0, π/2].
(b) Consider the sequence of functions (gn) defined by gn = (n + 1)fn. Let δ > 0. Show that

gn ⇒ O on [δ, π/2] but that ∫ π/2

0
gn(t) dt 6→ 0.

21. Theses results are due to Dini.

(a) Let (fn) ∈ C([a, b],R) be an increasing sequence of functions (i.e. for all x ∈ [a, b] and for all
n ∈ N, we have fn(x) ≤ fn+1(x)). If fn → f on [a, b] where f ∈ C([a, b],R), show that
fn ⇒ f on [a, b].

(b) Let (fn) ∈ C([a, b],R) be a sequence of increasing functions (i.e. for all x ≥ y ∈ [a, b] and for
all n ∈ N, we have fn(x) ≥ fn(y)). If fn → f on [a, b] where f ∈ C([a, b],R), show that
fn ⇒ f on [a, b].

22. Determine whether
∑

xn converges in (R2, ‖ · ‖2), where

xn =

(
(sinn)n

n2
,
1

n2

)
.

If so, does
∑

xn converge absolutely?
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23. Compute the values of the following convergent series

∞∑
n=1

1

n2
,

∞∑
n=1

1

(2n− 1)2
,

∞∑
n=1

1

n4
,

using the 2π−periodic function defined by f(x) = 1− x2/π2 over the interval [−π, π].
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