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Mathematical Analysis Chapter 12 — Sequences of Functions in Metric Spaces

Overview

In this chapter, we study properties of sequences of functions in general
metric spaces. We will only concern ourselves with number sequences when
their study advances our study of sequences of functions.

Notation: The symbol K is sometimes used to denote either R or C.
Cr(]0, 1]) is then R—vector space of continuous functions [0, 1] — R.
Fr([0,1]) is then R—vector space of functions [0, 1] — R.

Rr([0,1]) is then R—vector space of Riemann-int. functions [0, 1] — R.

C.(R, C) is the set of continuous functions with compact support.
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Outline

12.1 — Uniform Convergence (p.3)
= Properties (p.12)
= Abel's Criterion (p.22)

12.2 — Fourier Series (p.28)
= Trigonometric Series and Periodic Functions (p.30)
= Again, Abel’s Criterion (p.40)
= Convergence of Fourier Series (p.50)
= Dirichlet's Convergence Theorem (p.56)
= Quadratic Mean Convergence (p.73)

12.3 — Exercises (p.85)
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12.1 — Uniform Convergence

Let X be a set and let (E,d) be a metric space. A sequence (f,)nen
of functions f, : X — E is said to converge pointwise to a function
f: X — FE (denoted by f,, — f on X) if f,(x) — f(x) for all x € X.

Symbolically, f,, — f on X if
Ve > 0,Vx € X,dN = N.x such that n > N = d(fn(x), f(x)) <e¢

(note the explicit dependence of N on x).

As we have discussed in chapters 6 and 7, pointwise convergence is quite
often not strong enough.
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Consequently, we introduce a second kind of convergence: the sequence
(fn) is said to converge uniformly to a function f : X — E (denoted by
fn = f on X) if we can remove the explicit dependence of NV on x.

Symbolically, f,, = f on X if

Ve > 0,dN = N such that n > N = sup{d(f.(x), f(x))} < e.
xe X

Examples:

1. Let (E,d) = (R,] -
fn(x) = 2™

), X =10,1] and f, : X — FE be defined by
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The sequence (f,) in black, the limit f in red.
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2. With the definitions as in the last example,

Proposition 139. (CaAucHy’s CRITERION)
Let (E,d) be a complete metric space and let (f,) be a sequence of
functions f, : X — E. Then, f, = f on X if and only if

Ve > 0,dIN =N, >0s.t. nym >N = sup{d(fn(x), fm(x))} <e.
xcX
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Proof.
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In order to lighten the text, we will sometimes write ||d(fy, fim )|l for

SUP{d(fn(X)a fm(X))}

xeX

Similar notions exist for series. Let (E,d) be a metric space and let (u,,)
be a sequence of functions u,, : X — F.

For any m € N, define the partial sum f,, : X — E by
fr(%) = wa(x) 4 - + (%) = Y un(x).
n=1

The sequence (f,,) is the series generated by (u,), and it is usually
denoted by Z U,

neN
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If f,, = f on X, we say that the series converges (pointwise) on X.
If f,,, = f on X, we say that the series converges uniformly on X.
In both cases, f is said to be the sum of the series.

If (f.n) does not converge, we say that the series diverges.

Let £ be a Banach space and let (g,) be a sequence of functions
gn € B(X, E). The series ) g, converges absolutely on X if ) |g,| oo
converges (note that there is no need to stipulate the type of convergence
in the latter case).

Proposition 140. /f > g, converges absolutely on X, then ) g,
converges uniformly on X.
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Proof.
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12.1.1 — Properties

The two main types of convergence are not created equal, however. We
establish the superiority of uniform convergence over pointwise convergence
in a series of well-known theorems.

~

Theorem 141. Let (F,d) and (F,d) be metric spaces. If (f,) CC(E, F)
is such that f, = f on E, then f € C(E, F).

Proof.
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We have already seen an example showing that this does not necessarily
hold for pointwise convergence.

Theorem 142. (LiMIT INTERCHANGE; R-INTEGRABLE FUNCTIONS)

Let (E,||-||) be a Banach space. If (f,) C F(|a,b], F) is such that f, = f
n |a,b], and if f, is Riemann- integrable over [a bl for all n, then f is

Rlemann integrable and f frn(x)dr — f f(z
Proof. -
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The fact that the limit interchange is not necessarily valid if f,, — f instead
of f, = f on |a, b] could be seen as an indictment of the Riemann-integral
rather than as an indictment of pointwise convergence. In a coming chapter,
we will take the former position and introduce the Lebesgue integral to
circumvent this difficulty.

The next result is a companion to Theorem 142.

Theorem 143. (LiMIT INTERCHANGE; FUNDAMENTAL THEOREM)
Let (E,| -||) be a Banach space. If (f,,) C F(la,b], FE) is such that f,, = f

n la,b|, and if f,, is Riemann-integrable over |a,b| for all n, then f is
Riemann-integrable according to Theorem 142.

Define F,, F : [a,b] = E by F,(z) = [ fu(t)dt and F(z) = [ f(t)
Then F,, = F on |a,b].
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Proof.

Theorem 143 has an interesting corollary when applied to series, which is
often assumed to hold (without proof) when solving differential equations.
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Theorem 144. Let (E,| -||) be a Banach space and let > g,, be a series
of functions in R(|a,b]|, E). If Y g, is uniformly convergent, then

/ab (Z gn<t>> at=3" (/abgn(t) dt) |

neN neN

Proof. |

Theorem 145. (LiMIT INTERCHANGE; DIFFERENTIABLE FUNCTIONS)
Let (E,| -||) be a Banach space. If (f,) C C([a,b],E) is such that
fu(zo) = f(xg) for some xy € [a,b] and if 99 € C([a,b], ) such that
f!' = g on [a,b], then 3f € C'([a,b], E) such that f, = f on |a,b] and
ff=g.
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Proof.
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Examples:

2

1. Compute [~ f(z)dz, where f(z) = ——*

exp(x)—1-

Solution.
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2. Show that uniform convergence is not equivalent to absolute convergence.

Proof.
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12.1.2 — Abel’s Criterion

A number of tests can be used to gauge the convergence of series (whether
numerical series or series of functions).

From calculus, you may remember the following tests:

= p—test;

= comparison test;

= alternating series test;

» integral test;

= d'Alembert test (also known as the ratio test), or

= Cauchy test (also known as the root test).

In this section, we present a new test for convergence of a series.
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Proposition 146. (ABEL’S CRITERION)

Let (a,) C E, where E is a Banach space over R. Suppose that we can
write a,, = ¢,,b,, with

1. €, \( 0 a sequence in R, and
2. 3o € Rsuch that || >, .y bnl| < o forall N € N.

Then ) a,, is pointwise convergent and || > | < y an|| < 20en forall N € N.

Proof.
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We can easily generalize this result to sequences of functions.

Proposition 147. (ABEL’S CRITERION (REPRISE))
Let > f, be a series of functions f, = €,g9, € F(|a,b], E), where E is a
Banach space over R. If

1. ep(x) \(O forall x € [a,b];
2. 3o € Rsuch that || 3, «n gn(@)|| < o forall N € N and all x € [a, b], and
3. |len]|oc — O.

Then > f, is uniformly convergent on |a,b).

Proof. |

The three conditions are actually independent (see Exercise 7).
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Example: Consider the series >, ckbr(z), where by(z) = e, z € R
and ¢ \, 0. Show that the series converges (pointwise) for any x € (0, 27)
and that it converges uniformly on [§, 27 — 4] for any 6 € (0, 7).

Proof.
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12.2 — Fourier Series

The series Y, .y cke™™™ in the previous example is continuous on (0, 27)
even though it fails to converge uniformly on (0, 27).

It is an example of a Fourier Series, a monumental idea in the development
of modern mathematics. They were first proposed as solutions to the Heat
Equation, a partial differential equation.

In a nutshell, these infinite series gave rise to finite already-known solutions
of the Heat Equation, leading the process with which they were formed to be
accepted rather hastily as valid, even though a number of mathematicians
had an awful lot of objections concerning the use of infinity and (possibly
divergent) series (these notions were not as clearly understood back then).
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The importance of rigour in mathematics was just starting to be understood
by some of the best mathematical minds; while these objections may sound
a bit odd nowadays, it is important to remember that the current definitions
of the concepts that made some of our predecessors queasy have been
distilled of all offending material after years of polishing, which was driven
by the very objections that they brought up.

It is no exaggeration to say that Analysis would not be what it is today
without this particular episode; while it remains in fashion amongst some
mathematicians to deride engineers and physicists for “playing with tools
beyond their understanding’, let us keep in mind that analytical advances
mostly arise from the application of mathematics to so-called ‘real-world’
problems, in the grand tradition of Archimedes and Newton.

In this section, we introduce and discuss the convergence of Fourier Series.
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12.2.1 — Trigonometric Series and Periodic Functions

A trigonometric polynomial is any (finite) linear combination of positive
powers of sines and cosines:

p(t) = ap + Z (ag cos(kt) + b sin(kt)), where ag, b € C.

k=1
Since | | | |
ezt + e—zt 67’t . G_Zt
COS 5 . sin 5 ’
we can write
n mn
p(t) = ag + Z (ak cos(l-ct) + by, Sin(kt)) _ Z ckezkt7
k=1 M
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with
ag =co, ar=ck+c_, and by =1i(cky —c_k),
or

aj —-ibk
co=ag, Cp=——— and c_;

2
forall 1 <k <n.

_a + by
==

A trigonometric series is a formal expression of the form

Z cretft = qq + Z (ag cos(kt) + by sin(kt)) .

keZ keN

We say that a series indexed by Z converges if both the series indexed by
the non-negative integers AND the series indexed by the negative integers
converges.
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Proposition 148. If ), _, cre'™ converges absolutely for some t, then
> _rez |kl < oo. Furthermore, if ), ; |ck| < oo, then 3f € C(R,C) such
that Y, ., cke™ =2 f on R.

Proof. |

Example: Let b € (—1,1). Consider the trigonometric series Z b* sin(kt).

k=1
What is its complex form? Does it converge anywhere? If so, what to?

Solution.
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1
0.5
> 4 6
-0.5
_—’I
—% sin ¢
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0.5

—2sint + (—3)?sin(2¢)
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0.5

-1

_% sint + (—%)2 sin(2t) + (—3)3 sin(3t)

2
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0.5

sin t

"~ 2(1+cost+(1/2)%)
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0.5

sin t

"~ 2(1+cost+(1/2)%)

P. Boily (uOttawa) 39



Mathematical Analysis Chapter 12 — Sequences of Functions in Metric Spaces

12.2.2 — Again, Abel’s Criterion

Proposition 149. Let ZkeZ cre'™t be such that ¢, > 0 and c;, \, 0 both
as k — oo and as k — —oo. Then } , ., cre'™t converges uniformly on

6,27 — 8] for any § € (0,). Consequently, the sum f(t) = >, , cke™ is
continuous on (0, 2m).

Proof.
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Abel’'s Criterion can be used in this case even if c; is not always positive.
For instance, let >, ,(—1)¥cie’** where the coefficient ¢ are as in the
statement of Proposition 149. What does the fact that

1)n—|-1ei(n—|-1)t _ 2
1ot STt e

Z(_l)k(_l)keikt _ 1+ (_

keZ

tell you?

These results also apply to the real part and the imaginary part of
> wez Cke™, i.e. to the series

ag + Z aj cos(kt) and Z by sin(kt).

k>1 k>1
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For instance, >, <, Sin,(ckt) converges uniformly on [d, 27 — §] for any ¢ > 0.

As a result, the sum is continuous on (0, 27).

However, even though Zk>1w converges for t = 0 and ¢t = 2m,

the function is not continuous on [0, 27] (see Exercise 9).

Let T > 0. A function f : R — C is T—periodic if f(t +T) = f(t)
for all t € R. The smallest positive T' for which this holds is the period of
the function.

Examples:

1. The functions cos and sin are 2w —periodic.

2. The function tan is m—periodic.
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3. The function defined by e**? is ——perlodlc for any k € Z.
4. The function defined by etkwt \where w = 2% and k£ € Z, is T'—periodic.

5. Let f € C.(R,C), with compact support K (i.e. f(t) =0 whent & K).
Show that ¢y 1t >, ., f(t — k) is 1—periodic.

Solution.
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If f € C(R,C) is a T—periodic function, then f is bounded on the interval
0, T, with

1 T
co(f) = T/ f(t)dt < oo.
0
The complex number ¢y is the mean value of f, also given by

1

a+T
Co(f):T/ f(t)dt forall a € R.

If w = 2% and k = 0, the function g : t — gtkwt g I'—periodic. Then

1 T -~ 1 eikzth
NREEY QPP i
0 0
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Hence, if f(t) = > .oz k€™ is uniformly convergent on [0,77] and
T'—periodic, then

1 T 1 g tkwt tkwt
:T./o f(t)dt:T/O (Zcek >dt Z%/ "t dt = ¢

keZ keZ

The sum and the integral can be interchanged because the series converges
uniformly on [0, T.

If f € C(R,C) is T—periodic, the sequence (cx(f)), where

Ck:(f) — ¢ ( —zkwt _ / f —zkwt dt k € Z,

is the sequence of Fourier coefficients of f.
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If w= 2% and f(t) = > ,czcke™ " is uniformly convergent on [0, 77,

Proposition 150. The mapping f +— (ci(f))kez is a linear map from the
vector space of continuous I'—periodic functions to the space of bounded
sequences indexed by 7.

More precisely,
igg{|ck(f)‘} < Ifllx < [[fllos < 00,

where | fllv = % [y 1£(£)] dt.

Proof. |
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We can improve on Proposition 150 once we show that

1/2
[ fll2 = <ch(f)2) :

keZ

Proposition 151. Let f be a 2m—periodic function such that f € C",

n > 0. Then |

ck(f) = (i) (f(n)) , k#0.

In particular,

and so |ci(f)| — 0 as |k| — oc.
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Proof.

As a corollary, if f € C? is 2r—periodic, then Y, , ci(f)e™® converges
absolutely (and so uniformly) on R.

The Fourier series of a 2r—periodic function f is the series Y, _, ¢ (f)e'*;

in this case, we write f(t) ~ Y, ., ck(f)e’™ (note that it is possible for f
not to equal its Fourier series).
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12.2.3 — Convergence of Fourier Series

The next results discuss the convergence of Fourier series.

Theorem 152. Let f be 2w—periodic. If f € C?, then the Fourier series
> ez ck(f)e™ converges absolutely (and so uniformly) to f on R.

Proof.
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The next result is a sufficient condition for a function to be equal to its
Fourier series.

Theorem 153. Let f be a continuous 2w — periodic function such that

D ler(f)l =M < .

kez

Then the Fourier series of f converges absolutely to f on R and is equal to
f on R.

Proof. |

Example: Fix a € R and let f,(t) = cos(at), |t| < 7. Extend f, to
R by periodicity. What is the Fourier series of f,? Is it equal to f, on R?
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Solution.

08

06 .

04r .

02

02 -

-15 -10 -5 0 5 10 15
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0.8+

0.6+

o
(N
|

&
o
[
|

-15 -10 -5 0 5 10 15
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12.2.4 — Dirichlet’s Convergence Theorem

Let f: R — C be a 2mr—periodic integrable function.

For k € Z, set

Let V € N. Define

SN()E) == > arl(fen(t).

k=—N

Sn(f) is the partial sum of degree N for the Fourier series of f.
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1

. . 2 2
In what follows, we will write [ := 5= [ = 4 fa—l- ™

sxJo — 21 Ja for any a € R. We
have
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where, formally,

N N » e~ Nt _ Si(N+1)t
K= Y e = Y o= E
=—N k=—N
1 1 — 1(2N+1)t . N 1/2)¢
= —= ¢ : :sm((. +1/ )), when t & 27ZZ.
e’ 1 —e" sin(t/2)

Proposition 154. The Dirichlet kernel is even, 2m—periodic, co( Ky) = 1,
[y Kn(t)dt =, and

Kn(0) =1lim Kn(t) = 2N + 1.

t—

Proof. |
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Lemma 155. (RIEMANN-LEBESGUE LEMMA)
Let f : [a,b] — C be integrable over [a,b]. Thenlim,, f; f(t)et dt = 0.

Proof. |

Theorem 156. (DIRICHLET’S CONVERGENCE THEOREM)
Let f : R — C be piecewise (with a finite number of discontinuities) and
2w —periodic. If the following one-sided limits exist Vx € R:

f(z®) = lim f(x £ h), f'(zF) = lim flx£h)— f(z)

hN\0 hN0 h ’
then
al T T~
Sv(N@) = 3 exlPenl) » L >;f( ) s N o
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Proof.
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|
In other words, if a periodic function f is “nice enough” (piecewise C'!), then
it is equal to its Fourier series wherever f is continuous. At discontinuities

of f, the Fourier series converges to the mean of the one-sided limits.

/\ Some piecewise C periodic functions have divergent Fourier series.
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Example: Let f: [0,27] — R be defined by f(¢) = t2. Extend f to R by
periodicity. What is the Fourier series of f. Is it equal to f on R?

Solution:
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Notice the overshooting of the partial sums as ¢t — 2w/, ¢ € Z, which
does not seem to dampen when N — oo.

This “universal” behaviour at discontinuities is termed Gibbs’ Phenomenon
(contrast the behaviour of the Fourier series of t? with that of cos(at)
discussed earlier).

The explanation of the problem is linked with the limsup and liminf
of the partial sums S,,(f)(zy) at points z that approach a discontinuity
at xg, but we will not discuss this any further.
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12.2.5 — Quadratic Mean Convergence

The set of 2r—periodic piecewise continuous functions from R to C is an

inner product space together with

1 2

(f.9) =5 0 f(t)g(t)dt,

with associated norm || f|| = \/(f, f).

Note that for u, v € Z, we have

1

27 2T
(e, ey) = eHle™ W dt = L et = §
pr €v) = . ~or = Ou,w

27

p=v
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For a given N € N and a function f in the inner product space of the
previous page, consider the partial sum

Sn(f) = D elfex(d).

|k|<N

For any |k| < N, we must have

1 27

cr(f)=5= [ ft)e™™dt = (fex).

21 Jo

But

(Sn(f)rex) = > colf)lecen) = D col £)der = cr(f).

(<N (<N
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Thus, (f — Sn(f),er) =0 for all |k| < N and we can write

f=Sn(f)+ (f = Sn(f)),

with SN(f) € Py = Span{ek}|k|§N and f — SN(f) c P]J\}

Note furthermore that since (Sy, f — Sn(f)) = 0, then

LF1I5 = (fs £) = (Sn(f) + (f = Sn(f), Sn(f) + (f = Sn(f)))
= (SN (f):SNn(f)) +2Re (Sn(f), f = Sn(f)) +(f = SN (f), f = Sn(f))

N J/
N
=0

= S (A + 1f = Sn()llz.
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For any other function g € Py, we see that

1F = gl? =11 f = Sx(f)+Sn(f) — g3

VJ_ WV
€Py €PN

= ||f = Sn(DI2+ ISn(f) = gllz = IIf = Sn(f)]I3-

Since g was arbitrary,
inf |f —gll3=I1f = Sv(Hlz = 1£15— I1Sn(HII3: (1)
9e€PN

The partial sum Sy (f) is thus the nearest trigonometric polynomial of Py
to f in the quadratic mean.
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Theorem 157. (PARSEVAL IDENTITY)
Let f be a 2m—periodic piecewise continuous function from R to C. Then

0
1 27

— [ UOPd= Y e

0 k=—o00

Proof.
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Parseval’'s Identity remains valid for functions that are locally integrable
(fK | f|dt < oo for all K Ck [0,2n]) instead of piecewise continuous.

The identity has multiple consequences: since it (also) applies (also)
to any locally integrable 2m—periodic function f : R — C, the series

D e )P

kez

converges, which shows that |c(f)|*> — 0, and thus cx(f) — 0 as k — 400
(Riemann-Lebesgue Lemma).

It can also be used to show that any 2m—periodic continuous function
f : R — C whose Fourier series converges uniformly on R must be equal to
said series (compare with Dirichlet's Convergence Theorem).
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12.3 — Exercises

1. Let (gn) be a sequence of functions. Show that > gy, converges absolutely if and only if 3(ay,) C RT
such that > ap converges and ||gnl|lco < an for all n. Use that result to show that the series of

functions > gn, where gy, : [0, 1] — R is defined by gn(x) = % is absolutely convergent on [0, 1].
n

2. For each of the theorems of Section 12.1.1 (except for Theorem 144), find an example showing that the
result does not hold if uniform convergence is replaced by pointwise convergence.

3. Prove Theorem 144.

Find some examples showing that the result of Theorem 144 does not hold in general if absolute
convergence is replaced by a weaker type of convergence.

5. Let gn : R — R be defined by gn(z) = ﬁ—? for each n € N. Show that each of the following series of
functions converges absolutely on R.
(a) S=>(=1)""gan11
(b) C = E(_l)ng2n
(C) E = Z dn
6. Let S, C, E be as in the previous question. Using the appropriate theorems, show that for any x € R
show that
S'(z) = C(z), C'(x)=—-S(z), E'(z)=E(=).
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10.
11.

12,
13.

14,
15.

16.

Find examples showing that the three conditions in the statement of Proposition 147 are independent
from one another.

Prove Proposition 148.

Show that the function f : [0,27] — R defined by f(t) = > r>1 Sinlgkt) is not continuous on
[0, 27].

Prove Theorem 153.

Using the Fourier series of the cosine, show that wcot(am) = > 1oy 2 5 for all a € Z (also

known as Euler’s Formula).
Prove the properties of the Dirichlet kernel (Proposition 154).

Show that (f, g) (see page 73) defines an inner product on the set of 27t —periodic piecewise continuous
functions from R to C.

Prove the Riemann-Lebegue Lemma without using Parseval’s ldentity.

Show that any 27 —periodic continuous function f : R — C whose Fourier coefficients are all 0 must
be the zero function.

Let (an) C C be such that ap, — ¢ and let (e,) C R™ be a divergent sequence. Define a sequence
(bn) € C by
Z?—l a;&q

bn == .
Z?:l €q

Show that b, — £.
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17. (a) Let (fn) be the sequence of functions defined by

)"z € [0,n]
r>n

Jn RS_ — R, fo(z) = {(()1 -

Show that fr, =% f on R, where f : R} — R is defined by f(z) = e~ .
(b) Let U Cg C and let (fn) be the sequence of functions defined by

f:C=C, f(z):(l—l—%) .

Show that fy, = f on K, where f : C — C is defined by f(z) = e”.

X .t ; —
18. Forany n € N7, let up : Ry — R be defined by u(z) = n2f_:p2.

(a) Show that > wu, — f for some f € C(RJ,R), but that > up & f on RBL.
(b) Show that > (—1)"uy, = g on ]RE')' for some g € C(RS‘,R), but that > (—1)"uy is not
absolutely convergent on ]R(—)".
19. What can you say about a function f : R — R which is the uniform limit of a sequence of polynomials
(Pn)?
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20. Consider the sequence of functions (fn) C C([0, /2], R) defined by fn(z) = cos™ x sinx for all
n € N,

(a) Let O : [0, 7/2] — R be the zero function. Show that f;, = O on [0, 7 /2].

(b) Consider the sequence of functions (gn) defined by gn = (n + 1)fn. Let 6 > 0. Show that
gn = O on [§, 7 /2] but that

/2
/0 gn(t) dt 4 0.
21. Theses results are due to Dini.

(a) Let (fn) € C(|a, b],R) be an increasing sequence of functions (i.e. for all x € [a, b] and for all
n € N, we have fp(x) < fontr1(x)). If fn — f on [a,b] where f € C([a, b],R), show that
fn = f on|a,b].

(b) Let (frn) € C([a,b],R) be a sequence of increasing functions (i.e. for all z > y € [a, b] and for
all n € N, we have fr(z) > fn(y)). If fn — f on [a,b] where f € C([a,b],R), show that
fn = f on [a,b].

22. Determine whether > x,, converges in (RQ, | - [|2), where

(sinn)™ 1
Xp=|—F5"—,—5) -
" n? n?

If so, does > xy, converge absolutely?
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23. Compute the values of the following convergent series
0 0 o
1 1 1
23 2T 2
n=1 n n=1 (2n 1) n=1 n

using the 27 —periodic function defined by f(z) = 1 — /72 over the interval [—r, 7).
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