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Mathematical Analysis Chapter 2 – The Real Numbers

Overview

In a course on real analysis, the fundamental object of study is the set of
real numbers.

In this chapter, we

introduce R and some of its important properties,

discuss the cardinality of sets, and

provide a first analytical result, whose proof will serve as an introduction
to the discipline.
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2.1 – Hierarchy of Number Systems

In this first course, analysis is a theory on real numbers R, that is, the
objects with which we work are real numbers, real sets, and real functions.

We will see at a later stage that we can conduct analysis on any metric
space (such as Rn and C, for instance).

There is a natural hierarchy amongst number sets, which you have no
doubt encountered in your courses:

N× ( N ( Z ( Q ( A ( R ( C.
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The positive integers N× are the counting numbers; zero is added to N×
to form N, in which all equations x+ a = b, b ≥ a ∈ N× have a solution.

Similarly, the integers Z are built by adding new numbers to N in order for
all equations of the form x+ a = b, a, b ∈ N to have solutions.

For the rational numbers Q, the equations in question have the form
ax+ b = 0, a, b ∈ Z, b 6= 0.

For the algebraic numbers A, we are looking at equations of the form

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0, ai ∈ Q,

and for complex numbers C, equations of the form

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0, ai ∈ R.
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In other words, number sets are generally easy to construct once we have
the right building blocks... except when it comes to the real numbers R.

In this chapter and the next, we will introduce concepts that will allow
us to formally define R.

In what follows, we will make use of the following axiom about the set N.

Axiom. (Well-Ordering Principle)
Any non-empty subset of N has a smallest element.

We shall discuss how to define the “smallest” element of a set momentarily.
We shall also discuss how to measure the “size” of a set in Section 2.2: for
the moment, we will leave you with the following tantalizing remark: Q is
infinite, but it contains infinitely more holes than it does elements.
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2.1.1 – Field and Order Properties of R; Completeness

A field F is a set endowed with two binary operations: an addition

+ : F × F → F, +(a, b) = a+ b

and a multiplication

· : F × F → F, ·(a, b) = ab,

which satisfy the 9 field properties:

P. Boily (uOttawa) 6



Mathematical Analysis Chapter 2 – The Real Numbers

(A1) commutativity of +: ∀a, b ∈ F , a + b = b + a;

(A2) associativity of +: ∀a, b, c ∈ F , (a + b) + c = a + (b + c);

(A3) existence of neutral element for +: ∃0 ∈ F , ∀a ∈ F , a + 0 = a;

(A4) inverse with respect to +: ∀a ∈ F , ∃!b ∈ F , a + b = 0;

(M1) commutativity of ·: ∀a, b ∈ F , ab = ba

(M2) associativity of ·: ∀a, b, c ∈ F , (ab)c = a(bc)

(M3) existence of neutral element for ·: ∃1 ∈ F , ∀a ∈ F , 1a = a

(M4) inverse with respect to ·: ∀a ∈ F×, ∃!b ∈ F , ab = 1

(D1) distributivity of · over +: ∀a, b, c ∈ F , a(b + c) = ab + ac

Examples: Q is a field; N is not a field since (A4) is not satisfied for
x = 1 ∈ N, say; Z is not a field since (M4) is not satisfied for x = 2, say.
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An order on a set F is a binary relation “<” satisfying the order properties:

(O1) trichotomy: ∀a, b, c ∈ F , a < b or a = b or b < a;

(O2) transitivity: ∀a, b, c ∈ F , if a < b and b < c, then a < c.

(O3) ∀a, b, c ∈ F , if a < b, then a + c < b + c.

(O4) (specific to R): ∀a, b, c ∈ R, if a < b and c > 0, then ac < bc.

Examples:

1. the relation “is smaller than” is an order relation on N,Z,Q;

2. the relation “is a subset of” is not an order on ℘(N) since

{1, 2} 6⊆ {1, 3}, {1, 2} 6= {1, 3}, {1, 3} 6⊆ {1, 2}.
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Let (F,<) be an ordered set and S ⊆ F . If a < b or a = b, we write a ≤ b.

The element u ∈ F is an upper bound of S if s ≤ u for all s ∈ S.
In that case, we say that S is bounded above.

If u is the smallest upper bound of S, we say that it is the supremum of S,
denoted u = supS.

The element v ∈ F is a lower bound of S if v ≤ s for all s ∈ S.
In that case, we say that S is bounded below.

If v is the largest lower bound of S, we say that it is the infimum of
S, denoted u = inf S.

If the set S is bounded both above and below, we say that it is bounded.
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Example: If S = {x ∈ Q | 2 < x < 3}, then inf S = 2.

Proof. The rational number v = 2 is a lower bound of S since 2 = v < x
for all x ∈ S (but so are v = −1 and v = 1.5). Hence inf S ≥ 2.

To show that 2 is indeed the greatest lower bound, we suppose that
u = inf S > 2 and derive a contradiction. As we already know that
inf S ≥ 2, this will only leave one possibility: inf S = 2.

By assumption, there exists 0 < ε < 1 in Q such that u = 2 + ε. Find a
rational number u∗ ∈ (2, u). By definition, u∗ ∈ S, since 3 > u∗ > 2. But
u > u∗, and so u cannot be a lower bound of S, which contradicts the
hypothesis that u = inf S. Thus inf S 6> 2 and inf S = 2. �
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This “proof” rests on thin ice: it assumes that

1. the infimum exists in the first place;

2. if the infimum exists, it is a rational number, and

3. a rational number can be found between any two distinct rationals.

These are valid in this specific case, but not in general. More on this later.

Example: If S = N, then inf S = 1.

Proof. The integer v = 1 is a lower bound since 1 = v ≤ n for all
n ∈ N, so inf N ≥ 1. But any number above 1 cannot be a lower bound of
N since it would not be smaller than 1. Thus, inf S = 1. �
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A set (F,<) is complete if any non-empty bounded subset S ⊆ F has a
supremum and an infimum.

Example: Q is not complete.

Proof. Consider the subset S = {x ∈ Q+ | 2 < x2 < 3}. Since 1.5 ∈ Q+,
then 1.52 = 2.25 ∈ Q+. We have 2 < 1.52 = 2.25 < 3, so 1.5 ∈ S, and
thus S 6= ∅. Furthermore, S is bounded above by 3 since 32 > 3 and
bounded below by 1 since 12 < 1, so S is bounded.

We will see shortly that S has no supremum/infimum in Q (since no
rational x is such that x2 = 2 or x2 = 3). Thus Q is not complete. �

The set R of real numbers is the smallest complete ordered field containing N,
with order a < b⇐⇒ b− a > 0.
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2.1.2 – Archimedean Property

Classically, R is constructed using Dedekind cuts or Cauchy sequences:
in effect, R is constructed by “filling the holes” of Q.

We will discuss Cauchy sequences in Chapter 3 and provide the outline
of R’s construction in an interlude.

For now, we assume that R is available and that is satisfies the properties
mentioned previously.

The course’s first result seems intuitively “obvious” but its proof is not.

Theorem 1. (Archimedean Property)
Let x ∈ R. Then ∃nx ∈ N× such that x < nx.
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Proof. Suppose that there is no such integer. Then x ≥ n ∀n ∈ N.

Consequently, x is an upper bound of N×. But N× is a non-empty
subset of R. Since R is complete, α = supN× exists.

By definition of the supremum (the smallest upper bound), α − 1 is
not an upper bound of N× (otherwise α would not be the smallest upper
bound, as α− 1 < α would be a smaller upper bound).

Since α− 1 is not an upper bound of N×, ∃m ∈ N× such that α− 1 < m.
Using the properties of R, we must then have α < m+ 1 ∈ N×; that is, α
is not an upper bound of N×.

This contradicts the fact that α = supN×, and so, since N× 6= ∅, x
cannot be an upper bound of N×. Thus ∃nx ∈ N× such that x < nx. �
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Example: Show that inf{1n | n ∈ N
×} = 0.

Proof. Since 0 ≤ 1
n for all n ∈ N×, 0 is a lower bound of the set.

Suppose that ε > 0 is also a lower bound. Then ε ≤ 1
n for all n ∈ N×,

which means that n ≤ 1
ε for all n ∈ N×. This contradicts the Archimedean

Property, so 0 is the smallest lower bound of the set. �

Theorem 2. (Variants of the Archimedean Property)
Let x, y ∈ R+. Then ∃n1, n2, n3 ≥ 1 such that

1. x < n1y;

2. 0 < 1
n2
< y, and

3. n3 − 1 ≤ x < n3.
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Proof.

1. Let z = x
y > 0. By the Archimedean property, ∃n1 ≥ 1 such that

z = x
y < n1. Then x < n1y.

2. If x = 1, then part 1 implies ∃n2 ≥ 1 such that 0 < 1 < n2y. Then
0 < 1

n2
< y.

3. Let L = {m ∈ N× : x < m}. By the Archimedean property, L 6= ∅.
Indeed, there is at least one n ≥ 1 such that x < n. By the well-ordering
principle, L has a smallest element, say m = n3. Then n3 − 1 6∈ L
(otherwise, n3 − 1 would be the least element of L, which it is not) and
so n3 − 1 ≤ x < n3.

There are other variants, but these are the ones we will use the most. �
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It is thus always possible to find an integer greater than any specified real
number. This result is extremely useful – we use it next to show the
existence of irrational numbers.

Corollary. The positive root of x2 = 2 lies in R but not in Q.

Proof. We first show that any solution of x2 = 2 cannot be rational.

Suppose the equation x2 = 2 has a rational positive root r = p/q, with
gcd(p, q) = 1. Then p2/q2 = 2, or p2 = 2q2. Hence p2 is even, and so p is
also even. Indeed, if p = 2k + 1 is odd, then so is p2 = 2(2k2 + 2k) + 1.

Set p = 2m. Then (2m)2 = 2q2, or 2m2 = q2. Thus q2 and q are even.
Consequently, both p and q are even, which contradicts the hypothesis
gcd(p, q) = 1. The equation r2 = 2 cannot then have a solution in Q.
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But we have not yet shown that the equation has a solution in R.

Consider the set S = {s ∈ R+ : s2 < 2}, where R+ denotes the set
of positive real numbers. This set in not empty as 1 ∈ S. Furthermore, S
is bounded above by 2. Indeed, if t ≥ 2, then t2 ≥ 4 > 2, whence t 6∈ S.

By completeness of R, u = supS ≥ 1 exists. It is enough to show
that neither u2 < 2 and u2 > 2 can hold. The only remaining possibility is
that u2 = 2.

If u2 < 2, then 2u+1
2−u2 > 0. By the Archimedean property, ∃n > 0 such

that 2u+1
2−u2 < n. By re-arranging the terms, we get

0 <
1

n
(2u+ 1) < 2− u2.
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Then(
u+

1

n

)2

= u2 +
2u

n
+

1

n2
≤ u2 +

2u

n
+

1

n

= u2 +
1

n
(2u+ 1) < u2 + 2− u2 = 2.

Since (u+ 1
n)

2 < 2, u+ 1
n ∈ S. But u < u+ 1

n; u is then not an upper
bound of S, which contradicts the fact that u = supS. Thus u2 6< 2.

If u2 > 3, then 2u
u2−2 > 0. By the Archimedean property, ∃n > 0 such

that 2u
u2−3 < n. By re-arranging the terms, we get

0 > −2u
n
> 2− u2.
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Then(
u− 1

n

)2

= u2 − 2u

n
+

1

n2
> u2 − 2u

n
> u2 + 2− u2 = 2.

Since (u− 1
n)

2 > 2, u− 1
n is an upper bound of S. But u > u− 1

n; u can
not then be the supremum of S, which is a contradiction. Thus u2 6> 2.

That leaves only one alternative (since we know that u ∈ R): u2 = 2, and
u =
√
2 ∈ R. �

From this point on, when we mention the Archimedean Property, we
mean one of the four variants from Theorems 1 and 2.
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2.1.3 – Absolute Value and Useful Inequalities

The real numbers enjoy another set of useful and interesting properties.

Theorem 3. (Bernoulli’s Inequality)
Let x ≥ −1. Then (1 + x)n ≥ 1 + nx, ∀n ∈ N.

Proof. We prove the result by induction on n.

If n = 1, then (1 + x)1 = 1 + x ≥ 1 + 1x.

Suppose that the result is true for n = k, that is (1 + x)k ≥ 1 + kx. We
have to show that it is also true for n = k + 1.
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But

(1 + x)k+1 = (1 + x)k(1 + x)

Ind. Hyp. ≥ (1 + kx)(1 + x)

= 1 + (k + 1)x+ kx2

≥ 1 + (k + 1)x,

which completes the proof. �

Note: at first glance, it might appear that we did not use the hypothesis
that x ≥ −1. But the assumption is essential – if 1 + x < 0, the use of the
Induction Hypothesis in the string of inqualities is invalid.
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Theorem 4. (Cauchy’s Inequality)
If a1, . . . , an and b1, . . . , bn are real numbers, then

(∑
aibi

)2
≤
(∑

a2i

)(∑
b2i

)
.

(The indices are understood to run from 1 to n in what follows.)
Furthermore, if bj 6= 0 for one of 1 ≤ j ≤ n, then equality holds if
and only if ∃s ∈ R such that ai = sbi for all i = 1, . . . , n.

Proof. For any t ∈ R,

0 ≤
∑

(ai + tbi)
2 =

∑
a2i + 2t

∑
aibi + t2

∑
b2i .

The right-hand side of this inequality is a polynomial of degree 2 in t.
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It is always greater than or equal to 0: it has at most 1 real root, i.e. its
discriminant (

2
∑

aibi

)2
− 4

(∑
a2i

)(∑
b2i

)
≤ 0,

and so (∑
aibi

)2
≤
(∑

a2i

)(∑
b2i

)
.

If all the bi are 0, the equality holds trivially, as both the left and right side
of the Cauchy inequality are 0.

So suppose bi 6= 0 for at least one of the values j between 1 and n.
We have two statements to prove.
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If ai = sbi for all i = 1, . . . , n and s ∈ R is fixed then

(∑
aibi

)2
=
(∑

sb2i

)2
= s2

(∑
b2i

)2
= s2

(∑
b2i

)(∑
b2i

)
=
(∑

s2b2i

)(∑
b2i

)
=
(∑

a2i

)(∑
b2i

)
.

On the other hand, if(∑
aibi

)2
=
(∑

a2i

)(∑
b2i

)
then

4
(∑

aibi

)2
− 4

(∑
a2i

)(∑
b2i

)
= 0.
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But the left-hand side of this expression is the discriminant of the following
polynomial of degree 2 in t:∑

(ai + tbi)
2 =

∑
a2i + 2t

∑
aibi + t2

∑
b2i .

Since the discriminant is 0, the polynomial has a unique root, say t = −s,

∴
∑

(ai − sbi)2 = 0.

Since (ai − sbi)2 ≥ 0 for all i = 1, . . . , n, then

(ai − sbi)2 = 0 for all i = 1, . . . , n

∴ ai − sbi = 0 for all i = 1, . . . , n

∴ ai = sbi for all i = 1, . . . , n. �
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Theorem 5. (Triangle Inequality) If a1, . . . , an, b1, . . . , bn ∈ R,(∑
(ai + bi)

2
)1/2

≤
(∑

a2i

)1/2
+
(∑

b2i

)1/2
.

Furthermore, if bj 6= 0 for one of 1 ≤ j ≤ n, then equality holds if and only
if ∃s ∈ R such that ai = sbi for all i = 1, . . . , n.

Proof. Taking the square root on both sides of the inequality below yields
the desired result:∑

(ai + bi)
2 =

∑
a2i + 2

∑
aibi +

∑
b2i

Cauchy Ineq. ≤
∑

a2i + 2
(∑

a2i

)1/2 (∑
b2i

)1/2
+
∑

b2i

=

((∑
a2i

)1/2
+
(∑

b2i

)1/2)2

.

P. Boily (uOttawa) 27



Mathematical Analysis Chapter 2 – The Real Numbers

If all the bi are 0, the equality holds trivially, as both the left and right side

of the Triangle Inequality are
(∑

a2i
)1/2

.

So suppose bi 6= 0 for at least one of the values j between 1 and n.
If ai = sbi for all i = 1, . . . , n and s ∈ R is fixed, then equality holds since:(∑

(ai + bi)
2
)1/2

=
(∑

(sbi + bi)
2
)1/2

=
(∑

(s+ 1)2b2i

)1/2
=
(
(s+ 1)2

∑
b2i

)1/2
= (s+ 1)

(∑
b2i

)1/2
, and(∑

a2i

)1/2
+
(∑

b2i

)1/2
=
(∑

s2b2i

)1/2
+
(∑

b2i

)1/2
= s

(∑
b2i

)1/2
+
(∑

b2i

)1/2
= (s+ 1)

(∑
b2i

)1/2
.

P. Boily (uOttawa) 28



Mathematical Analysis Chapter 2 – The Real Numbers

On the other hand, if(∑
(ai + bi)

2
)1/2

=
(∑

a2i

)1/2
+
(∑

b2i

)1/2
then ∑

(ai + bi)
2 =

((∑
a2i

)1/2
+
(∑

b2i

)1/2)2

.

Developing both sides of this expression yields

∑
a2i + 2

∑
aibi +

∑
b2i =

∑
a2i + 2

(∑
a2i

)1/2 (∑
b2i

)1/2
+
∑

b2i ,

or simply ∑
aibi =

(∑
a2i

)1/2 (∑
b2i

)1/2
.
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Elevating both sides to the second power yields

(∑
aibi

)2
=
(∑

a2i

)(∑
b2i

)
.

By Cauchy’s Inequality, ∃s ∈ R such that ai = sbi for all i = 1, . . . , n. �

In the Triangle Inequality, if we set n = 1, we obtain the very useful
inequality: √

(a+ b)2 ≤
√
a2 +

√
b2,

which we usually write |a+ b| ≤ |a|+ |b| for all a, b ∈ R.

The function | · | : R → R is the absolute value, which can be used
to represent the distance between a real number and the origin.
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It is defined by

|x| =

{
x, x ≥ 0

x, x ≤ 0

Equipped with this function, R is an example of a normed space. Normed
space will be discussed at a later stage.

Theorem 6. (Properties of the Absolute Value)
If x, y ∈ R, then

1. |x| =
√
x2

2. −|x| ≤ x ≤ |x|
3. |xy| = |x||y|
4. |x+ y| ≤ |x|+ |y|
5. |x− y| ≤ |x|+ |y|
6. ||x| − |y|| ≤ |x− y|
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Remark: the following inequality will play a central role in the chapters to
come:

|x− a| < ε⇐⇒ a− ε < x < a+ ε.

We finish this section with an intriguing result about the distribution of
rationals and irrationals among the reals.
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2.1.4 – Density of Q

Theorem 7. (Density of Q)
Let x, y ∈ R be such that x < y. Then, ∃r ∈ Q such that x < r < y.

Proof. There are three distinct cases.

1. If x < 0 < y, then select r = 0.

2. If 0 ≤ x < y, then y − x > 0 and 1
y−x > 0.

By the Archimedean property, ∃n ≥ 1 such that

n >
1

y − x
> 0.
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By that same property, ∃m ≥ 1 such that m − 1 ≤ nx < m. Since
n(y − x) > 1, then ny − 1 > nx and nx ≥ m− 1.

By transitivity of <, ny − 1 > m− 1, that is ny > m. But m > nx, so
ny > m > nx and y > m

n > x. Select r = m
n .

3. If x < y ≤ 0, then y−x > 0 and 1
y−x > 0. By the Archimedean property,

∃n ≥ 1 such that

n >
1

y − x
> 0.

Note that −nx > 0. By that same property, ∃m ≥ 0 such that
m < −nx ≤ m+ 1 or −m− 1 ≤ nx < −m.

Since n(y−x) > 1, then ny−1 > nx ≥ −m−1, that is ny > −m. But
−m > nx, so ny > −m > nx and y > −m

n > x. Select r = −m
n . �
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Corollary. Let x, y ∈ R with x < y. Then, ∃z 6∈ Q such that x < z < y.

Proof. We will prove the case xy > 0, the other cases are left as
an exercise.

According to the Density Theorem, ∃r 6= 0 ∈ Q such that

x√
2
< r <

y√
2
.

Hence x < r
√
2 < y. Set z = r

√
2. Then z 6∈ Q – indeed, if

z = r
√
2 = p

q ∈ Q, then
√
2 = p

qr ∈ Q, a contradiction. �

It is thus possible to find rationals and irrationals between any two
real numbers x < y. In spite of this, Q is much “smaller” than R \Q.
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2.2 – Cardinality of Sets

In the set hierarchy N ( Z ( Q ( R, the first three sets are of the same
size, while the last one is “infinitely” larger.

For all n ∈ N×, define the set Nn = {1, 2, . . . , n}.

A set S is finite if S = ∅ or if there exists a bijection f : Nn → S
for some n ∈ N×. If S is not finite, it is infinite.

If S is infinite and there exists a bijection f : N→ S, then S is countable.
Otherwise, it is uncountable.

Note: in some references, finite sets are called finitely countable sets, and
countable sets are called infinitely countable sets.
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Consider two sets Sn and Tn, both with n distinct elements:

Sn = {s1, . . . , sn}, Tn = {t1, . . . , tn}.

These two finite sets have the same size: there is a bijection f : Sn → Tn,
f(si) = ti for 1 ≤ i ≤ n (it is not the only such bijection).

In general, two sets S, T are said to have the same cardinality, denoted
|S| = |T |, if there exists a bijection f : S → T .

If S, T are finite, |S| = |T | means that the two sets have the same
number of elements: |S| = |T | = |Nn| = n for some n ∈ N.

If S, T are infinite, the ”number of elements” is not a well-defined, which
can lead to counter-intuitive results.
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Examples:

1. The set 2N = {2, 4, . . .} is countable because f : N → 2N defined by
f(n) = 2n is a bijection. We would then write |N| = |2N| = ω.

2. The set Z = {. . . ,−2,−1, 0, 1, 2, . . .} is countable since f : Z → N
defined by

f(z) =

{
2z, z ≥ 0

−2z − 1, z < 0

is a bijection. Thus |Z| = |N| = ω.

So two sets can have equal cardinality even when one is strictly contained
in the other (this can only happen with infinite sets, however).
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Theorem 8. If S is an infinite subset of a countable set A, then S is
countable.

Proof. As A is countable, we can list all its elements:

A = {a1, a2, . . . , }.

Let n1, n2, . . . be integers obtained by the following algorithm:

Set K1 = {n ∈ N | an ∈ S}. According to the Well-Ordering Principle,
∃n1 ∈ K1 which is minimal. Then an1 ∈ S and am 6∈ S for all m < n1.

Set K2 = K1 \K1. According to the WOP, ∃n2 ∈ K2 which is minimal,
with n1 < n2. Then an2 ∈ S and am 6∈ S for all m < n1 with m 6= n1.

etc.
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Repeating this process, we obtain the set

S′ = {an1, an2, . . .}.

But every element of S must be in S′ (why?), so S = S′. The function
f : N→ S defined by k 7→ ank

is thus a bijection, and so S is countable. �

General Remark: if you find it difficult to follow a proof, it is never
a bad idea to try it with specific examples satisfying the hypotheses.

!4 If you have to give a proof, an example only works if you are trying to
show that some statement is false. A direct proof never uses examples.

The contrapositive of Theorem 8 gives a useful way to show that a set is
uncountable: if S ⊆ A is uncountable, then A is uncountable.
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2.2.1 – Cardinality of Q

Another way to think of countable sets is that they could be enumerated,
at least conceptually, in an infinite list.

Theorem 9. The set Q is countable.

Proof. Write Q = Q− ∪ {0} ∪Q+, with the obvious notation. As there is
a bijection f : Q+ → Q−, r 7→ −r, then |Q+| = |Q−|.

It is then sufficient to show that |Q+| = ω. Indeed, if we can enumerate the
elements of Q+, then then we can enumerate the elements of Q by starting
with 0, and alternating from Q− to Q+.

Every positive rational takes the form m
n , with m,n ∈ N×.

P. Boily (uOttawa) 41



Mathematical Analysis Chapter 2 – The Real Numbers

Arrange all such fractions in an infinite array:

There is a bijection between N× and the set F = {11,
1
2,

2
1,

3
1,

2
2, . . .}, so

|F | = ω. But Q+ ⊆ F , so Q+ is countable since it is infinite (N× ⊆ Q+).
According to Theorem 8, |Q+| = ω. This completes the proof. �
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2.2.2 – Cardinality of R

We now show that a set which would seem to be much smaller than Q at
a first glance is in fact much larger than Q from a cardinality perspective,
using the celebrated Cantor diagonal argument.

Theorem 10. The set I = [0, 1] is uncountable.

Proof. Every number x ∈ I has a (not necessarily unique) decimal
representation of the form

x = 0.a1a2a3 · · · , ai ∈ {0, . . . , 9}.

By convention, we write 1 = .0.999999 and 0 = 0.000000. When numbers
have two decimal representations, such as 0.40000 = 0.39999, we only
consider the representation with a tail of repeating 9s.
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Assume that I is countable. Then it is possible to enumerate its elements:

I = {x1, x2, . . .}.

Each of the xi ∈ I has a unique decimal representation (with the convention
given earlier):

x1 = 0.a1,1a1,2a1,3 · · · a1,n · · ·
x2 = 0.a2,1a2,2a2,3 · · · a2,n · · ·

...

xn = 0.an,1an,2an,3 · · · an,n · · ·
...

where ai,j ∈ {0, . . . , 9} for all ii, j ∈ N×.
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Define the real number y = 0.y1y2y3 · · · , where

yi =

{
2 if ai,i ≥ 5

6 if ai,i ≤ 4
for i ∈ N×.

As 0 ≤ y ≤ 1, we have y ∈ I. But for all i ∈ N×, we also have y 6= xi in
the list because yi 6= ai,i. Thus y 6∈ I, a contradiction.

Consequently, the assumption that I is countable is not valid. �

Since [0, 1] ⊆ R, then R is also uncountable. What about R \Q?

In general, is it possible for the union of two countable sets to be
uncountable? Is the intersection of two uncountable sets uncountable?
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2.3 – Nested Intervals Theorem

We end this chapter with an important result concerning nested intervals.
In style and rigour, its proof is representative of analytical reasoning.

Theorem 11. (Nested Intervals)
For every integer n ≥ 1, let [an, bn] = In be such that

I1 ⊇ I2 ⊇ · · · In ⊇ In+1 ⊇ · · ·

Then there exists ψ, η ∈ R such that ψ ≤ η and
⋂

n≥1 In = [ψ, η].

Furthermore, if inf{bn − an | n ∈ N} = 0, then ψ = η.
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Proof. Since In ⊆ I1 for all n ≥ 1, the set S = {a1, . . . , an} is bounded
above by b1. But S 6= ∅, so ψ = supS exists by completeness of R, and
thus

an ≤ ψ, for all n ≥ 1.

Fix n ≥ 1 and let k ≥ 1 be an integer:

if k ≥ n, then In ⊇ Ik and ak ≤ bk ≤ bn;

if k < n, then In ⊆ Ik and ak ≤ an ≤ bn.

In both cases, ak ≤ bn for all k ≥ 1. Thus bn is an upper bound of S for
all n ≥ 1. As ψ = supS, ψ ≤ bn for all n ≥ 1.

Combining these results, we have an ≤ ψ ≤ bn, for all n ≥ 1.
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Since In ⊆ I1 for all n ≥ 1, the set T = {b1, . . . , bn} is bounded below by
a1. But T 6= ∅, so η = inf T exists by completeness of R, and thus

bn ≥ η, for all n ≥ 1.

Fix n ≥ 1 and let k ≥ 1 be an integer:

if k ≥ n, then In ⊇ Ik and an ≤ ak ≤ bk;

if k < n, then In ⊆ Ik and an ≤ bn ≤ bk.

In both cases, an ≤ bk for all k ≥ 1. Thus an is an lower bound of T for
all n ≥ 1. As η = inf T , η ≥ an for all n ≥ 1.

Combining these results, we have an ≤ η ≤ bn, for all n ≥ 1.
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(In general, we avoid repeating nearly identical proof segments, using generic
statements like “Similarly, we can show that an ≤ inf{bi | i ≥ 1} ≤ bn, for
all n ≥ 1” while leaving the details to be worked out by the reader).

But ψ is also a lower bound of T since ψ ≤ bn for all n ≥ 1. Since
η is the largest such lower bound, ψ ≤ η, which is to say:

an ≤ ψ ≤ η ≤ bn, for all n ≥ 1,

and so [ψ, η] ⊆ In for all n ≥ 1. Consequently,

[ψ, η] ⊆
⋂
n≥1

In.

Now, suppose that γ ∈ In for all n ≥ 1. Then an ≤ γ ≤ bn for all n ≥ 1,
and so γ is an upper bound of S and a lower bound of T .

P. Boily (uOttawa) 49



Mathematical Analysis Chapter 2 – The Real Numbers

But ψ is the smallest upper bound of S, so ψ = supS ≤ γ, and η is the
largest lower bound of T , so γ ≤ inf T ≤ η, and so γ ∈ [ψ, η]. Thus⋂

n≥1

In ⊆ [ψ, η] =⇒
⋂
n≥1

In = [ψ, η].

Finally, suppose that inf{bn − an | n ≥ 1} = 0. Let ε > 0. By definition,
∃k ≥ 1 such that 0 ≤ bk− ak < ε, otherwise ε > 0 would be a lower bound
of the set, which would contradict the assumption that 0 is the largest such
upper bound.

We have seen that bk ≥ η and that ak ≤ ψ, so

ε > bk − ak ≥ η − ψ ≥ 0.

Thus, for all ε > 0, we have 0 ≤ η − ψ < ε, which is to say η − ψ = 0. �
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Why can we conclude that η − ψ = 0 if 0 ≤ η − ψ < ε for all ε > 0?

In general, if a ≤ x < a + ε for all ε > 0, then x = a. If x 6= a,
∃δ > 0 such that x = a + δ. Thus, if ε = δ, which is possible since ε can
take on any positive value, we would have δ = x−a < ε = δ, a contradiction.

Example: If In = [1 − 1
n, 1 + 1

n] for n ≥ 1, then the conditions of
the Nested Intervals Theorem are satisfied, and so

⋂
n≥1 In = [ψ, η]. As

inf{bn − an | n ≥ 1} = inf{2n | n ≥ 1} = 0, we have

ψ = sup{1− 1
n} = 1 = inf{1 + 1

n} = η, =⇒ [ψ, η] = {1}.

!4 We can only use a theorem if the hypotheses are satisfied (even though
the conclusion may hold nonetheless). The intervals In = (1 − 1

n, 1 +
1
n),

n ≥ 1 are such that their intersection is {1}, but not because of the NVT.
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2.4 – Exercises

1. Let a, b ∈ R and suppose that a ≤ b + ε for all ε > 0. Show that a ≤ b.

2. Let c > 0 be a real number.

(a) If c > 1, show that cn ≥ c for all n ∈ N and that cn > 1 if n > 1.

(b) If 0 < c < 1, show that cn ≤ c for all n ∈ N and that cn < 1 if n > 1.

3. Let c > 0 be a real number.

(a) If c > 1 and m,n ∈ N, show that cm > cn if and only if m > n.

(b) If 0 < c < 1 and m,n ∈ N, show that cm > cn if and only if m < n.

4. Let S2 = {x ∈ R | x > 0}. Does S2 have lower bounds? Does S2 have upper

bounds? Does inf S2 exist? Does supS2 exist? Prove your statements.

5. Let S4 =
{
1− (−1)n

n | n ∈ N
}

. Find inf S4 and supS4.

6. Let S ⊆ R be non-empty. Show that if u = supS exists, then for every number

n ∈ N the number u− 1
n is not an upper bound of S, but the number u + 1

n is.

7. If S =
{

1
n −

1
m | m,n ∈ N

}
, find inf S and supS.
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8. Let X be a non-empty set and let f : X → R have bounded range in R. If a ∈ R,

show that

sup{a + f(x) : x ∈ X} = a + sup{f(x) : x ∈ X}

inf{a + f(x) : x ∈ X} = a + inf{f(x) : x ∈ X}.

9. Let A and B be bounded non-empty subsets of R, and let

A + B = {a + b | a ∈ A, b ∈ B}.

Prove that sup(A + B) = supA + supB and inf(A + B) = inf A + inf B.

10. Let X be a non-empty set and let f, g : X → R have bounded range in R. Show

that

sup{f(x) + g(x) | x ∈ X} ≤ sup{f(x) | x ∈ X}+ sup{g(x) | x ∈ X}

inf{f(x) | x ∈ X}+ inf{g(x) | x ∈ X} ≤ inf{f(x) + g(x) | x ∈ X}.

P. Boily (uOttawa) 53



Mathematical Analysis Chapter 2 – The Real Numbers

11. Let X and Y be non-empty sets and let h : X × Y → R have bounded range in R.

Let F : X → R and G : Y → R be defined by

F (x) = sup{h(x, y) | y ∈ Y } and G(y) = sup{h(x, y) | x ∈ X}.

Show that

sup{h(x, y) | (x, y) ∈ X × Y } = sup{F (x) | x ∈ X} = sup{G(y) | y ∈ Y }.

12. Show there exists a positive real number u such that u2 = 3.

13. Show there exists a positive real number u such that u3 = 2.

14. Let S ⊆ R and suppose that s∗ = supS belongs to S. If u 6∈ S, show that

sup(S ∪ {u}) = sup{s∗, u}.

15. Show that a non-empty finite set S ⊆ R contains its supremum.

16. If S ⊆ R is a non-empty bounded set and IS = [inf S, supS], show that S ⊆ IS.

Moreover, if J is any closed bounded interval of R such that S ⊆ J , show that

IS ⊆ J .
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17. Prove that if Kn = (n,∞) for n ∈ N, then
⋂
n∈N

Kn = ∅.

18. If S is finite and s∗ 6∈ S, show S ∪ {s∗} is finite.

19. Show directly that there exists a bijection between Z and Q.

20. Using only the field axioms of R, show that the multiplicative identity of R is unique.

21. Using only the field axioms of R, show that (2x− 1)(2x + 1) = 4x2 − 1.

22. Using only the order axioms, usual arithmetic manipulations, and inequalities between

concrete numbers, prove that if x ∈ R satisfies x < ε for all ε > 0, then x ≤ 0.

23. Show that there exists some x ∈ R satisfying x2 + x = 5.

24. Consider a set S with 0 ≤ supS = A < ∞ and A /∈ S. Show that for all ε > 0,

S ∩ [A− ε, A] 6= ∅. Using this fact, conclude that S ∩ [A− ε, A] is infinite.

25. Somebody walks up to you with a proof by induction of the statement “For any integer

N ∈ N, all collections of N sheep are the same colour,” as follows:

Notation: Let x1, x2, . . . , be the colours of all sheep in the world, in some order.

Base Case: Obviously the first sheep is a single colour, x1.
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Induction Step: Assume that the statement is true up to some integer n.

By the induction hypothesis, the collection of the first n sheep {x1, . . . , xn}
are one colour (label this “colour 1’), and the collection of the last n sheep

{x2, . . . , xn+1} are also one colour (label this “colour 2” - note that we haven’t

yet shown it is the same colour as the first collection).

Since {x2, . . . , xn} are in both sets, we must have that “colour 1” and “colour 2”

are the same, and so {x1, . . . , xn+1} are all one colour.

Explain why this “proof” fails by identifying/explaining a (significant) false statement.
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Solutions

1. Proof. Suppose that a > b. Let ε0 =
a−b
2 > 0. Then

a > b

∴ a+ a > a+ b (see Theorem, in class)

∴ a =
a+ a

2
>
a+ b

2
= b+ ε0 (same thing)

Hence, a > b + ε0, which contradicts the hypothesis that a ≤ b + ε for
all ε > 0. Consequently, the assumption a > b is false, that is, a ≯ b or
a ≤ b by trichotomy of the order on R. �
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2. Proof. The statement is clearly not true if n = 0: as a result, we
must interpret N to stand for the set N = {1, 2, 3, . . .}, without the 0.
Generally, we use whatever “version” of N is appropriate.

(a) If c > 1, ∃x ∈ R such that x > 0 and c = 1 + x. Let n ∈ N. First note
that n− 1 ≥ 0 and so (n− 1)x > 0.

Then, by Bernoulli’s Inequality,

cn = (1 + x)n ≥ 1 + nx = 1 + x+ (n− 1)x ≥ 1 + x = c.

Furthermore, n− 1 > 0 and (n− 1)x > 0 if n > 1.

In that case, the last inequality above is strict and so cn > c > 1,
which implies cn > 1 by transitivity of >.
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(b) If 0 < c < 1, there exists b > 1 such that c = 1
b. Indeed, 1

c is such that
c · 1c = 1. As c > 0, then 1

c > 0 since the product c · 1c = 1 is positive.

But c < 1, so that 1 = c · 1c <
1
c.

In particular, if we let b = 1
c, then b > 1 and so we can apply part

(a) of this question to get bn ≥ b for all n ∈ N and bn > 1 if n > 1.

Let n ∈ N. Then
1

cn
= bn ≥ b = 1

c
so that c ≥ cn and

1

cn
= bn > 1

so that 1 > cn if n > 1. �
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3. Proof.

(a) It is sufficient to show that if m ≥ n, then cm ≥ cn.

If m = n, the result is clear. So we consider m > n. In this case,
∃k ≥ 1 such that m = n + k. An easy induction exercise shows that
cn+k = cnck for for all integers n and k (from this point on, we will
assume and apply freely all the usual techniques of algebra).

In particular, using the previous problem,

cm = cn+k = cnck ≥ cn · c > cn · 1 = cn

and so cm > cn.
(b) This can be shown from part (a) using the technique from the previous

question. �
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4. Proof.

Does S2 have lower bounds? Yes.
By definition, any negative real number is a lower bound (so is 0).

Does S2 have upper bounds? No.
Assume that it does. By the completeness of R, α = supR exists.
In particular, α ≥ n for all n ∈ N, which contradicts the Archimedean
Property of R. Hence S2 has no upper bound.

Does inf S2 exist? Yes.
Consider the set −S2 = {x ∈ R | −x ∈ S2} = {x ∈ R | x < 0}. By
construction, 0 is an upper bound of −S2. Note furthermore that neither
S2 nor −S2 are empty.

By completeness of R, sup(−S2) exists. Right?
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One definition of completeness is that any non-empty bounded subset of
R has a supremum. But −S2 is only bounded above, not below. How
can we conclude that sup(−S2) exists?

That definition is one particular version of the Completeness Property
of R. An equivalent way of stating it is: The ordered set F is
complete if for any ∅ 6= S ⊂ F , S has a supremum in F whenever
S is bounded above and an infimum in F whenever S is bounded below.

But sup(−S2) = − inf S2. Indeed, let u = sup(−S2). Then u ≥ −x for
all −x ∈ −S2 and if v is another upper bound of −S2 then u ≤ v.

Note that if v is an upper bound of −S2, then v ≥ −x for all −x ∈ −S2,
i.e. −v ≤ x for all x ∈ S2: as a result, −v is a lower bound of S2.
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Similarly, if −v is a lower bound of S2, v is automatically an upper bound
of −S2. Then any lower bound of S2 is of the form −v, where v is an
upper bound of −S2.

Then, −u ≤ x for all x ∈ S2 and −v ≤ −u whenever −v is a lower
bound of S2. Hence −u = inf S2 and so u = − inf S2.

As sup(−S2) = − inf S2 exists, so does inf S2.

Does supS2 exist? No.
See second item. �
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5. Proof. The first few elements of S4 are

2,
1

2
,
4

3
,
3

4
,
6

5
,
5

6
, · · · .

This gives us the idea that S4 is bounded above by 2 and below by 1
2.

To show that this is indeed the case, note that (−1)n only takes on the
values −1 and 1, whatever the integer n.

Technically, this also has to be shown. One proceeds by induction.

The base case is clear: when n = 1, (−1)1 = −1 ∈ {1,−1}.

Now, on to the induction step: suppose (−1)k ∈ {1,−1}.
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Then

(−1)k+1 = (−1)k(−1) =

{
1(−1) = −1
(−1)(−1) = 1

.

Hence (−1)k+1 ∈ {1,−1}.

By induction, (−1)n ∈ {−1, 1} for all n ∈ N.

Thus −1 ≤ (−1)n ≤ 1 for all n ≥ 1. (In practice, we need only
show it once and refer to the result if we need it in the future.)

For any n ≥ 2, we then have −n ≤ −1 ≤ (−1)n and n
2 ≥ 1 ≥ (−1)n,

that is
−n ≤ (−1)n ≤ n

2
.

A quick check shows the inequalities also hold for n = 1.
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Then, for n ≥ 1,

−n ≤ (−1)n ≤ n

2

∴ −1 ≤ (−1)n

n
≤ 1

2

∴ 1 ≥ −(−1)
n

n
≥ −1

2

∴ 2 ≥ 1− (−1)n

n
≥ 1

2
.

Hence 2 ≥ s ≥ 1
2 for all s ∈ S4, i.e. 2 is an upper bound and 1

2 is a lower
bound of S4.
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By completeness of R, S4 possesses a supremum and an infimum in R.
If u = supS4 < 2, there is a contradiction as u 6≥ s for all s ∈ S4 (it
“misses” the element 2 in S4).

Thus, supS4 ≥ 2. But 2 is already an upper bound so supS4 ≤ 2.
Consequently supS4 = 2. Similarly, inf S4 =

1
2. �
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6. Proof. Let n ≥ 1. Then 1
n > 0 and u < u + 1

n. Since s ≤ u for all
s ∈ S, s < u+ 1

n for all s ∈ S by transitivity of <. Consequently, u+ 1
n

is an upper bound of S.

Furthermore, u − 1
n < u. Since u is the least upper bound, u − 1

n
cannot be an upper bound (as it would then be lesser upper bound than
u, a contradiction). This completes the proof. Or does it?

We haven’t used the hypothesis S 6= ∅. Where does it fit?

The definition of an upper bound implies that every real number is
an upper bound of the empty set. Indeed, if v ∈ R, then v ≥ s for all
s ∈ ∅ automatically as there is no s ∈ ∅.

The proof rests on the fact that u = supS. But sup∅ does not exist as
we just discussed. OK. Now it’s the end for real. �
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7. Proof. The set S =
{
1
n −

1
m | n,m ∈ N

}
is bounded above by 1 and

below by −1 since

1

n
≤ 1 ≤ 1+

1

m
and

1

m
≤ 1 ≤ 1+

1

n
=⇒ −1 ≤ 1

n
− 1

m
≤ 1, ∀m,n ∈ N.

Note that S is not empty as 0 = 1
2 −

1
2 is in S, say.

By completeness of R, S thus has a supremum and an infimum.

By definition, s∗ = supS ≤ 1. Suppose that s∗ < 1. Then ∃ε > 0 such
that s∗ = 1− ε. Furthermore,

1

n
− 1

m
≤ 1− ε, ∀m,n ∈ N.
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In particular, if n = 1, then

1− 1

m
≤ 1− ε, ∀m ∈ N.

Equivalently, ε ≤ 1
m for all integers m so that 1

ε is an upper bound for N.

This contradicts the Archimedean Property of R. Hence s∗ ≮ 1 and so
s∗ = 1.

To prove that inf S = −1, proceed along the same lines. �
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8. Proof. Let f(X) = {f(x) | x ∈ X}. By hypothesis, f(X) is bounded
and not empty and so has a supremum in R, say u∗.

We need to show sup{a+ f(x);x ∈ X} = a+ u∗.

To do so, first note that a+u∗ is an upper bound of sup{a+f(x) | x ∈ X}
since u∗ ≥ f(x) for all x ∈ X; as a result a + u∗ ≥ a + f(x) for all
x ∈ X.

(By completeness of R, this means that sup{a + f(x) | x ∈ X} does
indeed have a supremum.)

Next, we need to show that a + u∗ is the smallest upper bound of
{a+ f(x) | x ∈ X}.

Suppose v is another upper bound of {a + f(x) | x ∈ X}. Then
v ≥ a + f(x) for all x ∈ X; in particular, v − a is an upper bound of
f(X).
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By hypothesis, v − a ≥ u∗, hence v ≥ a + u∗. Consequently, a + u∗ is
the least upper bound of {a+ f(x) | x ∈ X}, i.e.

sup{a+ f(x) | x ∈ X} = a+ u∗.

The proof for the other equality proceeds in a similar manner. �
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9. Proof. A and B are bounded and non-empty.

By completeness, they have infimums (in R), say a∗ and b∗, respectively.
Then a∗ ≤ a and b∗ ≤ b for all a ∈ A, b ∈ B.

The real number a∗+ b∗ is a lower bound of A+B since a∗+ b∗ ≤ a+ b
for all a ∈ A, b ∈ B.

By completeness of R, A + B has an infimum as it is also not empty.
We show that this infimum is indeed a∗ + b∗.

Let w be a lower bound of A + B. Then, w ≤ a + b for all a ∈ A and
b ∈ B, or w − b ≤ a for all a ∈ A and b ∈ B.

Thus, w − b is a lower bound of A for all b ∈ B, i.e. w − b ≤ a∗ for all
b ∈ B =⇒ w − a∗ ≤ b for all b ∈ B, so w − a∗ is a lower bound of B.

hence w− a∗ ≤ b∗. As a result, w ≤ a∗+ b∗, which concludes the proof.
The other equality is shown in the same manner. �
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10. Proof. Let f(X) = {f(x) | x ∈ X} and g(X) = {g(x) | x ∈ X}. By
hypothesis, f(X) and g(X) are both bounded and not empty, so they
each have a supremum in R, say u∗ and v∗ respectively.

Since f(x) ≤ u∗ and g(x) ≤ v∗ for all x ∈ X, then f(x)+g(x) ≤ u∗+v∗
for all x ∈ X.

Hence {f(x) + g(x) | x ∈ X} has a supremum in R, as it is a bounded
non-empty subset of R. Let w∗ be that supremum, i.e. the smallest
upper bound of {f(x) + g(x) | x ∈ X}.

Since u∗+ v∗ is also an upper bound of that set, it’s automatically larger
than w∗. Note that we can not in general say more: it is not true, in
general, that w∗ = u∗ + v∗.

P. Boily (uOttawa) 74



Mathematical Analysis Chapter 2 – The Real Numbers

Indeed, take X = [1, 2] and let f and g be defined by

f(x) =
1

x
and g(x) = −1

x
, ∀x ∈ X.

Then f(X) = {1x | x ∈ X}, g(X) = {−1
x | x ∈ X} and u∗ = 1, v∗ = −1

2
and w∗ = 0 (you should show these results!), and w∗ ≤ u∗ + v∗ but
w∗ 6= u∗ + v∗.

(Compare this result with the one from the previous question; what is
the difference?)

The other inequality is tackled in a similar manner. �
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11. Proof. Let h(X,Y ) = {h(x, y) | (x, y) ∈ X × Y }. By definition,
h(X,Y ) is bounded and not empty, so it has a supremum in R, and F
and G are well-defined.

Let α = suph(X,Y ). Then α ≥ h(x, y) for all x ∈ X and y ∈ Y . In
particular, if x ∈ X is fixed, α ≥ h(x, y) for all y ∈ Y . But F (x) is the
smallest upper bound of {h(x, y) | y ∈ Y }, so α ≥ F (x).

But x was arbitrary, so α ≥ F (x) for all x ∈ X. Hence α is an upper
bound of {F (x) | x ∈ X}; by completeness, {F (x) | x ∈ X} has a
supremum in R, say β. Then α ≥ β, by definition of the supremum.

Again, fix x ∈ X. Then β ≥ F (x) ≥ h(x, y) for all y ∈ Y . Hence, for
any x ∈ X, β ≥ h(x, y) for all y ∈ Y . As a result, β is an upper bound
of h(X,Y ). Then β ≥ α, by definition of the supremum.

Combining these two results yields α = β (now do the other). �
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12. Proof. We first show that u is not rational (even though that wasn’t
part of the question, it will be informative).

Suppose the equation r2 = 3 has a positive root r in Q. Let r = p/q
with gcd(p, q) = 1 be that solution. Then p2/q2 = 3, or p2 = 3q2.
Hence p2 is a multiple of 3, and so p is also a multiple of 3.

(Indeed, if p is not a multiple of 3, then neither is p2. Let p = 3k + 1 or
p = 3k + 2. Then p2 = 3(3k2 + 2k) + 1 or p2 = 3(3k2 + 4k + 1) + 1,
neither of which is a multiple of 3.)

Set p = 3m. Then (3m)2 = 3q2, which is the same as 3m2 = q2. Then
q2 is a multiple of 3, and so q is also a multiple of 3.

Consequently, p and q are both divisible by 3, which contradicts the
hypothesis gcd(p, q) = 1. The equation r2 = 3 cannot then have a
solution in Q.
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But we haven’t shown yet that the equation has a solution in R.

Consider the set S = {s ∈ R+ : s2 < 3}, where R+ denotes the set of
positive real numbers.

This set in not empty as 1 ∈ S. Furthermore, S is bounded above by 3.
(Indeed, if t ≥ 3, then t2 ≥ 9 > 3, whence t 6∈ S.)

By completeness of R, x = supS ≥ 1 exists. It will be enough to show
that neither x2 < 3 and x2 > 3 can hold. The only remaining possibility
will be that x =

√
3.

If x2 < 3, then 2x+1
3−x2 > 0. By the Archimedean property, ∃n > 0 such

that 2x+1
3−x2 < n. By re-arranging the terms, we get

0 <
1

n
(2x+ 1) < 3− x2.
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Then(
x+

1

n

)2

= x2 +
2x

n
+

1

n2
≤ x2 +

2x

n
+

1

n

= x2 +
1

n
(2x+ 1) < x2 + 3− x2 = 3.

Since (x+ 1
n)

2 < 3, x+ 1
n ∈ S. But x < x+ 1

n; x is then not an upper
bound of S, which contradicts the fact that x = supS. Thus x2 6< 3.

If x2 > 3, then 2x
x2−3 > 0. By the Archimedean property, ∃n > 0 such

that 2x
x2−3 < n. By re-arranging the terms, we get

0 > −2x
n
> 3− x2.
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Then(
x− 1

n

)2

= x2 − 2x

n
+

1

n2
> x2 − 2x

n
> x2 + 3− x2 = 3.

Since (x− 1
n)

2 > 3, x− 1
n is an upper bound of S. But x > x− 1

n; x can
not then be the supremum of S, which is a contradiction. Thus x2 6> 3.

That leaves only one alternative (since we know that x ∈ R): x2 = 3,
whence x = u =

√
3 > 0. �

P. Boily (uOttawa) 80



Mathematical Analysis Chapter 2 – The Real Numbers

13. Proof. Consider the set S = {s ∈ R+ : s3 < 2}, where R+ denotes the
set of positive real numbers.

This set in not empty as 1 ∈ S. Furthermore, S is bounded above by 2.
(Indeed, if t ≥ 2, then t3 ≥ 8 > 2, whence t 6∈ S.)

By completeness of R, x = supS ≥ 1 exists. It will be enough to show
that neither x3 < 2 and x3 > 2 can hold. The only remaining possibility
will be that x = 3

√
2.

If x3 < 2, then 3x2+3x+1
2−x3 > 0. By the Archimedean property, ∃n > 0

such that 3x2+3x+1
2−x3 < n. By re-arranging the terms, we get

0 <
1

n
(3x2 + 3x+ 1) < 2− x3.
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Then (
x+

1

n

)3

= x3 +
3x2

n
+

3x

n2
+

1

n3
≤ x3 + 3x2

n
+

3x

n
+

1

n

= x3 +
1

n
(3x2 + 3x+ 1) < x3 + 2− x3 = 2.

Since (x+ 1
n)

3 < 2, x+ 1
n ∈ S. But x < x+ 1

n; x is then not an upper
bound of S, which contradicts the fact that x = supS. Thus x3 6< 2.

If x3 > 2, then 3x2+1
x3−2 > 0. By the Archimedean property, ∃n > 0 such

that 3x2+1
x3−2 < n. By re-arranging the terms, we get

0 > −(3x
2 + 1)

n
> 2− x3.
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Then(
x− 1

n

)3

= x3 − 3x2

n
+

3x

n2
− 1

n3
≥ x3 − 3x2

n
− 1

n3
≥ x3 − 3x2

n
− 1

n

= x3 − 1

n
(3x2 + 1) > x3 + 2− x3 = 2.

Since (x− 1
n)

3 > 2, x− 1
n is an upper bound of S. But x > x− 1

n; x can
not then be the supremum of S, which is a contradiction. Thus x3 6> 2.

That leaves only one alternative (since we know x ∈ R): x3 = 2 or,
equivalently, x = u = 3

√
2 > 0.

(We could also show it is irrational, but we’ll leave it as an exercise.) �
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14. Proof. In this case, we do not need to verify if s∗ exists, as that is one
of the hypotheses.

Set v = sup{s∗, u}. Then, v is an upper bound of S ∪ {u} since v ≥ u
and v ≥ s∗ ≥ s for all s ∈ S.

Furthermore, v ∈ S ∪ {u}.

Hence, any upper bound of S ∪ {u} must be ≥ v: consequently, v is the
smallest upper bound of sup(S ∪ {u}). �

P. Boily (uOttawa) 84



Mathematical Analysis Chapter 2 – The Real Numbers

15. Proof. We use induction on the cardinality of S to show the result.

Base case: if |S| = 1, then S = {s1} for some s1 ∈ R. Clearly,
s1 = supS ∈ S.

Induction step: Suppose that the result holds for any set whose cardinality
is n = k. Let S be any set with |S| = k + 1, say

S = {s1, . . . , sk, sk+1}.

Write S = T ∪{sk+1}, with T = {s1, . . . , sk}. Note that we can assume
that sk+1 6∈ T (otherwise |S| = k).

Then T is non-empty and bounded since it is finite (exercise: a finite set
is bounded); by completeness, t∗ = supT exists.

P. Boily (uOttawa) 85



Mathematical Analysis Chapter 2 – The Real Numbers

However, |T | = k. By the induction hypothesis, then, supT ∈ T , i.e.
t∗ = sj for some j ∈ {1, . . . , k}.

According to the preceding problem,

supS = sup(T ∪ {sk+1}) = sup{t∗, sk+1} ∈ T ∪ {sk+1} = S.

By induction, any non-empty finite set contains its supremum (and
infimum too – it’s the same idea). �

P. Boily (uOttawa) 86



Mathematical Analysis Chapter 2 – The Real Numbers

16. Proof. As S is non-empty and bounded, supS and inf S exist by the
completeness of R.

Since inf S ≤ s ≤ supS for all s ∈ S, then inf S ≤ supS and so the
interval IS = [inf S, supS] is well-defined.

Furthermore, the string of inequalities above also shows that S ⊆ IS.

Now, let J = [a, b] be a closed interval containing S. Then a ≤ s ≤ b
for all s ∈ S. Thus, a is a lower bound and b is an upper bound of S.

By definition,
a ≤ inf S ≤ supS ≤ b,

and so IS = [inf S, supS] ⊆ [a, b] = J . �
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17. Proof. Suppose x ∈
⋂
Kn. Then x ∈ Kn for all n, i.e. x > n for all

n ∈ N. This implies x is an upper bound of N, which contradicts the
Archimedean property. Hence,

⋂
Kn = ∅.

If you do not like contradiction proofs, here is the same proof, but
presented as a direct proof.

Let x ∈ R. We will show that x 6∈
⋂
Kn; as x is arbitrary, this implies⋂

Kn = ∅.

By the Archimedean property, there is a positive integer N such that
N > x. Hence x 6∈ Kn for all n ≥ N . The conclusion follows. �
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18. Proof. If S = ∅, then S ∪ {s∗} = {s∗} is finite as the function
f : N1 → {s∗} defined by f(1) = s∗ is a bijection.

Now, suppose S 6= ∅. As S is finite, there exist an integer k and
a bijection f : Nk → S.

Define the associated function f̃ : Nk+1 → S ∪ {s∗} by

f̃(i) =

{
f(i) if 1 ≤ i ≤ k
s∗ if i = k + 1

.

As s∗ 6∈ S, f̃ is a bijection. Hence S ∪ {s∗} is finite. �
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19. Proof. Write Q = {mn : m,n ∈ Z, n > 0, gcd(m,n) = 1}, where
gcd(m,n) is the greatest common divisor of m,n. Define the map
f : Q → Z by f(mn ) = m. To see that this is surjective, note that for
all m ∈ Z, m

1 ∈ Q and f(m1 ) = m.

Next, we define the map g : Z → Q according to three cases: for
numbers of the form

(a) 2a3b with a, b ∈ {0, 1, 2, . . .}, set g(2a3b) = a
b .

(b) −2a3b with a, b ∈ {0, 1, 2, . . .}, set g(−2a3b) = −a
b .

(c) every other type n, set g(n) = 0.

We need to check that g is well-defined, and then that it is surjective.
To see that it is well-defined, we note that integers have unique prime
decompositions, and 2, 3 are prime.
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This means that every number can have at most one decomposition of
the form ±2a3b, so every number is in at most one case. It is also clear
that every number n must be in at least one case. Thus, every number
belongs to exactly one case, so it is well-defined.

To check that g is surjective, we consider some m
n ∈ Q and again

consider three cases:

(a) m
n > 0: g(2m3n) = m

n .
(b) m

n < 0: g(−2m3n) = m
n .

(c) m
n = 0: g(5) = m

n .

This completes the proof (there are other bijections). �
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20. Proof. Let a, b be two multiplicative identities in a field. Since a is a
multiplicative identity,

ab = b.

Since b is a multiplicative identity,

ab = a.

Combining these two equations,

b = ab = a.

This completes the proof. �
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21. Proof. Each equality is labeled with the field axiom used:

(2x− 1)(2x+ 1)
D1
= 2x(2x+ 1) + (−1)(2x+ 1)

D1
= (2x)(2x) + (1)2x+ (−1)(2x) + (−1)(1)
D1
= (2x)(2x) + (1 + (−1))2x+ (−1)(1)
A4
= (2x)(2x) + (−1)(1) A3

= (2x)(2x)− 1

M1
= ((2)(2))(x2)− 1 = ((1 + 1)(1 + 1))(x2)− 1

D1
= (1(1 + 1) + 1(1 + 1))x2 − 1

M3
= 4x2 − 1.

This completes the proof. �

P. Boily (uOttawa) 93



Mathematical Analysis Chapter 2 – The Real Numbers

22. Proof. Assume first that x > 0. By O4 (and the fact that 0 < 1
2 < 1),

this means (
1

2

)
x >

(
1

2

)
· 0 = 0

as well. By O3, since x
2 > 0,

x

2
<
x

2
+
x

2
= x.

Putting together these two sequences of inequalities, we have

0 <
x

2
< x.

But then we have found some number ε = x
2 > 0 so that x > ε; this

contradicts the original assumption. Thus, we conclude that our original
assumption x > 0 is false; by O1, we conclude x ≤ 0. �
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23. Proof. Consider the interval I = [0, 10], define S = {x ∈ I : x2 + x <
5}, and define A = supS. Note that for x ∈ [0, 1],

x2 + x− 5 ≤ 12 + 1− 5 = −3 < 0,

so A ≥ 1. Similarly, for x ∈ [9, 10],

x2 + x− 5 ≥ 92 + 9− 5 > 0,

so A ≤ 9.

Claim: A2 + A = 5. This is shown in two parts: first we show
that A2 +A ≤ 5, then we show that A2 +A ≥ 5.

We show that A2 +A ≤ 5 by contradiction. Let us assume A2 +A > 5.
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Then, by previous exercise, there exists some 0 < ε < 1 so that
A2 +A > 5 + ε. But then for all 0 < δ < ε

100, we have

(A− δ)2 + (A− δ) = A2 − 2Aδ + δ2 +A− δ

≥ A2 − (2)(10)(δ) +A− δ

≥ A2 +A− 21δ

> A2 +A− ε > 5.

Furthermore, since A ≥ 1 and δ ≤ 0.01, we know that A− δ ∈ I. Thus,
in this case A− ε

100 < A is also an upper bound on S, contradicting the
fact that A is defined to be the least upper bound on S.

We conclude that A2 +A ≤ 5.
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Next, we show that A2 + A ≥ 5 by contradiction. Let us assume
A2 + A < 5. Then, by a previous exercise, there exists some 0 < ε < 1
so that A2 +A < 5− ε. But then for all 0 < δ < ε

100, we have

(A+ δ)2 + (A+ δ) = A2 +A+ (2A+ 1 + δ)δ

≤ A2 +A+ 22δ

< A2 +A− ε > 5.

Furthermore, since A ≤ 9 and δ ≤ 0.01, we know that A+ δ ∈ I. Thus,
in this case A+ ε

100 ∈ S and A+ ε
100 > A, contradicting the fact that A

is defined to be an upper bound on S. We conclude that A2 +A ≤ 5.

Since A2 +A ≤ 5 and A2 +A ≥ 5, we conclude that A2 +A = 5. �
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24. Proof. We prove the first claim by contradiction.

Assume there exists some ε > 0 so that S ∩ [A − ε,A] is empty.
Since A is an upper bound for S, we also know that S∩ (A,∞) is empty.

Thus, S ∩ [A − ε,∞) is empty. But this means that A − ε < A is
an upper bound for s, contradicting the fact that A is the least upper
bound for S.

We conclude that in fact S ∩ [A− ε,A] is not empty.

We also prove the second part by contradiction.

Assume there exists some ε > 0 so that S ∩ [A− ε,A] is finite. Then we
can enumerate its elements, {b1, . . . , bn}. Let B = max(b1, . . . , bn}.
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Since A /∈ S, we know that b1, . . . , bn < A. Since B is a maximum of
finitely many elements, this means that B < A as well.

But then A > A − A−B
2 > B, so [A − A−B

2 , A] ∩ S is empty. But
this is impossible, by the first part of the question.

This completes the proof. �

P. Boily (uOttawa) 99



Mathematical Analysis Chapter 2 – The Real Numbers

25. Solution. The critical error is in the following part of the argument, in
the case n = 1:

“the collection of the first n sheep {x1, . . . , xn} are one colour, and
the collection of the last n sheep {x2, . . . , xn+1} are also one (possibly
different) colour. Since {x2, . . . , xn} are in both sets, both sets must
in fact be the same colour, and so {x1, . . . , xn+1} are all one colour.”

Consider the case n = 1. Then the collection {x2, . . . , xn} is actually
empty, and so we cannot conclude that the two sets {x1}, {x2} share
any sheep, and so we cannot conclude that they are the same colour. �
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