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Mathematical Analysis Chapter 3 – Sequences

Overview

A large chunk of analysis concerns itself with problems of convergence. In
this chapter, we

introduce sequences and limits,

provide results that help to compute such limits, and

identify situations when the limit can be shown to exist without having
to compute it.
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3.1 – Infinity vs. Intuition

When dealing with infinity, our intuition sometimes falters.

Example: (Zeno’s Paradox)
Achilles pursues a turtle. When he
reaches her starting point, she has
moved a certain distance. When he
crosses that distance, she has moved
yet another distance, and so forth.
Achilles is always trailing the turtle,
so he cannot catch her. Is this what
happens in reality?
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Example: (Anti-Pythagorean Theorem)
Consider a right-angle triangle with base a, height b, and hypotenuse c. We
can build staircase structures that each have the same constant length as
a+ b, while increasing the number of stairs (see image below).

P. Boily (uOttawa) 4



Mathematical Analysis Chapter 3 – Sequences

Example: (Infinite Sum I)
Let S = 1 + (−1) + 1 + (−1) + · · · . Then

S = (1 + (−1)) + (1 + (−1)) + · · · = 0 + 0 + · · · = 0

S = 1− (1 + (−1) + 1 + (−1) + · · · ) = 1 + S =⇒ S = 1/2

S = 1 + ((−1) + 1) + ((−1) + 1) + · · · = 1 + 0 + 0 + · · · = 1

Therefore 0 = 1
2 = 1. Does this make sense?

Example: (Infinite Sum II)
Let S = 1 + 2 + 4 + 8 + · · · . Then

S = 1 + 2(1 + 2 + 4 = 8 + · · · ) = 1 + 2S =⇒ S = −1.

Can a sum of positive terms yield a negative result?
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3.2 – Limit of a Sequence

A sequence of real numbers is a function X : N→ R defined by X(n) = an,
where an ∈ R. We denote the sequence X by (an)n∈N or simply by (an).

Examples:

1. X : N→ R, n 7→ 2n is the sequence with X(1) = 2, X(2) = 4, etc. We
may write (an) = (2, 4, 6, . . .).

2. X : N→ R, n 7→ 1
n is the sequence with X(1) = 1

2, X(2) = 1
2, etc. We

may write (an) = (1, 12,
1
3, . . .).

In general, we let N stand for whatever countable subset of N is required
for the definition of the sequence to make sense.
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A sequence as a function on N.
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The notation used for sequences varies from one resource to the next.

We will mostly use round brackets:

(an) where an =
1

n2
,
( 1

n2

)
,
(
1,

1

4
,
1

9
, . . .

)
all denote the same sequence.

A sequence is an ordered set of terms an, that is, a set of indexed
values. The set of all values taken by the sequence (an) is called the range
of (an) and we denote it by {an}.

A sequence and its range are two different notions.
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Examples:

1. The terms of the sequence ( 1
n2
) are (1, 14,

1
9, . . .), while its range is

{1, 14,
1
9, . . .}.

2. The terms of the sequence (1+(−1)n
n ) are (0, 1, 0, 12, 0,

1
3, . . .), while its

range is {0, 1, 12,
1
3, . . .}.

Certain sequences are defined with the help of a recurrence relation: the
first few terms are given, and the subsequent terms are computed using the
preceding terms.

Example: The Fibonacci sequence given by x1 = 1, x2 = 1, and
xn = xn−1 + xn−2 for n ≥ 3 is the classic example: (1, 1, 2, 3, 5, 8, 13, . . .).

P. Boily (uOttawa) 9



Mathematical Analysis Chapter 3 – Sequences

We now examine in detail the sequence (xn) = ( 1
2n) = (12,

1
4,

1
6,

1
78, . . .).

As the index n increases, the values of xn approach 0. But what does this
mean, mathematically?

Let ε > 0. In theory, ε could take on any positive value, but in practice we
are interested in small values ε � 1. Then the real number 1

2ε is positive,
i.e. 1

2ε > 0.

According to the Archimedean Property, there exists a threshold Nε ∈ N
such that Nε >

1
2ε.

Different values of ε lead to different thresholds: for instance, if ε = 1
100,

then Nε >
1

2(1/100) = 50. If ε = 1
1000, then Nε > 500, and so forth.
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No matter what value ε > 0 takes, if we look at indices past the threshold
(i.e. when n > Nε), we have

n > Nε >
1

2ε
=⇒ n >

1

2ε
⇐⇒ ε >

1

2n
.

Thus, for all indices n after the threshold Nε (i.e. ∀n > Nε),

|xn − 0| = |xn| =
∣∣∣∣ 12n
∣∣∣∣ = 1

2n
< ε =⇒ 0− ε < xn < 0 + ε.

The interval (−ε, ε) thus contains all the terms of the sequence after the
Nεth term, which is to say xn ∈ (−ε, ε) for all n > Nε.

Another way to say this is that the interval (−ε, ε) contains all the terms of
the sequence (xn), except maybe for a finite number of terms x1, . . . , xNε.
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If ε = 1
100, according to the Archimedean Property, ∃N1/100 >

1
2(1/100) = 50

(N1/100 = 51 does the trick) such that

n > 51 =⇒ |xn − 0| = |xn| =
∣∣∣∣ 12n
∣∣∣∣ = 1

2n
<

1

2(51)
=

1

102
<

1

100
.

In other words, the interval (−1/100, 1/100) contains all the terms of the
sequence from n = 52 onward.

The threshold N1/100 = 51 does not work for ε values smaller than 1/100,
however.

If ε = 1/1000, for instance, we need N1/1000 >
1

2(1/1000) = 500 to guarantee

that all the terms after the threshold fall in the interval (−1/1000, 1/1000),
and so on.
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A sequence (xn) of real numbers is said to converge to a limit L ∈ R,
denoted by

xn → L or lim
n→∞

xn = L

if
∀ε > 0, ∃Nε ∈ N such that n > Nε =⇒ |xn − L| < ε.

A sequence (xn) which does not converge to a limit is said to be divergent:

∀L ∈ R, ∃εL > 0, ∀N ∈ N, ∃nN > N such that |xnN − L| ≥ εL.

There is only one way for a sequence to converge: its values are getting
closer and closer to the limit. But there is more than one way for a sequence
to diverge.

Can you think of some?
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Examples:

1. Show that 1
n → 0.

Proof. Let ε > 0. By the Archimedean Property, ∃Nε > 1
ε, so

ε > 1
Nε

. If n > Nε, then 1
n <

1
Nε

and

∣∣∣∣1n − 0

∣∣∣∣ = ∣∣∣∣1n
∣∣∣∣ = 1

n
<

1

Nε
< ε.

This completes the proof. �

2. Show that n+1
n2+1

→ 0.
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Proof. Let ε > 0. By the Archimedean Property, ∃Nε > 2
ε, so ε > 2

Nε
.

If n > Nε, then 1
n <

1
Nε

and∣∣∣∣ n+ 1

n2 + 1
− 0

∣∣∣∣ = n+ 1

n2 + 1
≤ 2n

n2 + 1
<

2n

n2
=

2

n
<

2

Nε
< ε.

This completes the proof. �

3. Show that 4−2n−3n2
2n2+n

→ −3
2.

Proof. Let ε > 0. By the Archimedean Property, ∃Nε > 2
ε, so

ε > 2
Nε

. If n > Nε, then 1
n <

1
Nε

and∣∣∣∣4− 2n− 3n2

2n2 + n
−
(
− 3

2

)∣∣∣∣ = ∣∣∣∣2(4− 2n− 3n2) + 3(2n2 + n)

2(2n2 + n)

∣∣∣∣ = |8− n|
4n2 + 2n

.
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Note that 8 − n ≤ 8n if 1 ≤ n ≤ 8, and that n − 8 ≤ 8n if n ≥ 8, so
that |8− n| ≤ 8n for all n ≥ 1. Thus

|8− n|
4n2 + 2n

≤ 8n

4n2 + 2n
<

8n

4n2
=

2

n
<

2

Nε
< ε

when n > Nε, which completes the proof. �

4. Show that (n) is divergent.

Proof. Suppose instead that (xn) converges to a ∈ R. Let ε > 0.
By definition, ∃Nε ∈ N such that |xn − a| = |n − a| < ε whenever
n > Nε, which implies that n < a+ ε for all n > Nε, or that a+ ε is a
an upper bound for N. This contradicts the Archimedean Property, so
the sequence (n) must diverge. �
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The main benefit of the formal definition of the limit of a sequence is that
it does not call on infinity: we write n→∞, but that is a merely a notation
convenience.

On the flip side, the formal definition has 2 major inconveniences:

1. it cannot be used to determine the limit of a convergent sequence – it
can only be used to verify that a given candidate is (or is not) a limit of
a sequence;

2. it can seem artificial to some extent, especially upon a first encounter.

The goal is simple: we must determine a threshold Nε that does the trick.
This often requires backtracking from the end of the string of inequalities
rather than to proceed directly from “Let ε > 0”.
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We have been careful to refer to “a” limit when the sequence converges,
but we should really be talking about “the” limit in such cases.

Theorem 12. (Unique Limit) A convergent sequence (xn) of real
numbers has exactly one limit.

Proof. Suppose that xn → x′ and xn → x′′. Let ε > 0. Then there exist 2
integers N ′ε, N

′′
ε ∈ N such that

|xn − x′| < ε whenever n > N ′ε and |xn − x′′| < ε whenever n > N ′′ε .

Set Nε = max{N ′ε, N ′′ε }. Then whenever n > Nε, we have

0 ≤ |x′ − x′′| = |x′ − xn + xn − x′′| ≤ |xn − x′|+ |xn − x′′| < ε+ ε = 2ε.

Thus 0 ≤ |x
′−x′′|
2 < ε. As ε > 0 was arbitrary, |x

′−x′′|
2 = 0 and x′ = x′′. �
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A sequence (xn) ⊆ R is bounded by M > 0 if |xn| ≤M for all n ∈ N.

Theorem 13. Any convergent sequence (xn) of real numbers is bounded.

Proof. Let (xn) ⊆ R converge to x ∈ R. Then for ε = 1, say, ∃N ∈ N
such that

|xn − x| < 1 when n > N.

Thanks to the reverse triangle inequality, we also have

|xn| − |x| ≤ |xn − x| < 1 when n > N,

so that |xn| < |x|+ 1 when n > N .

Now, set M = max{|x1|, . . . , |xN |, |x| + 1}. Then |xn| ≤ M for all n
and so (xn) is bounded. �
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We can prove theorems directly, as in Theorem 13, by induction, as in
Bernouilli’s Inequality, or by contradiction, as in the Archimedean Property.

The contrapositive of a statement P =⇒ Q is ¬Q =⇒ ¬P . These two
statements are logically equivalent to one another; it may be that it is
easier to demonstrate the contrapositive than the original statement.

The converse of a statement P =⇒ Q is Q =⇒ P . There is no
general link between a statement and its converse: sometimes they are both
true, sometimes they are both false, sometimes only of them is true.

Example: The contrapositive of Theorem 13 is “Any unbounded sequence
is divergent”, which is valid since Theorem 13 is true. Its converse is “Any
bounded sequence is convergent” – we have to try to prove it (if we think
it is true), or to find a counter-example (if we think it is false).
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3.3 – Operations on Sequences

The following result removes the need to use the formal definition.

Theorem 14. (Operations on Convergent Sequences)
Let (xn), (yn) be convergent, with xn → x and yn → y. Let c ∈ R. Then

1. |xn| → |x|;

2. (xn + yn)→ (x+ y);

3. xnyn → xy and cxn → cx;

4. xn
yn
→ x

y , if yn, y 6= 0 for all n.

Proof. We show each part using the definition of the limit of a sequence.
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1. Let ε > 0. As xn → x, ∃N ′ε such that |xn − x| < ε whenever n > N ′ε.
But ||xn| − |x|| ≤ |xn − x|, according to Theorem 6. Hence, for ε > 0,
∃Nε = N ′ε such that

||xn| − |x|| ≤ |xn − x| < ε

whenever n > Nε, i.e. |xn| → |x|.

2. Let ε > 0. Then ε
2 > 0. As xn → x and yn → y, ∃Nx

ε
2
, Ny

ε
2

such that

|xn − x| <
ε

2
and |yn − y| <

ε

2
(1)

whenever n > Nx
ε
2

and n > Ny
ε
2

respectively. Set Nε = max
{
Nx
ε
2
, Ny

ε
2

}
.
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Then, whenever n > Nε (so whenever n is strictly larger than Nx
ε/2 and

Ny
ε/2 at the same time),

|(xn + yn)− (x+ y)| = |(xn − x) + (yn − y)| ≤ |xn − x|+ |yn − y|

by (1) <
ε

2
+
ε

2
= ε,

i.e. (xn + yn)→ (x+ y).

3. According to Theorem 13, (xn) and (yn) are bounded since they are
convergent sequences. Then ∃Mx,My ∈ N such that

|xn| < Mx and |yn| < My

for all n.
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Let ε > 0. Then ε
2Mx

, ε
2My

> 0. As xn → x, yn → y, ∃Nx
ε

2My
, Ny

ε
2Mx
∈ N

such that

|xn − x| <
ε

2My
and |yn − y| <

ε

2Mx
(2)

whenever n > Nx
ε

2My
and n > Ny

ε
2Mx

respectively. Moreover, |y| ≤ My

(otherwise
|y|−My

2 > 0. Then, for ε =
|y|−My

2 , we get

|yn − y| ≥ ||y| − |yn|| ≥ |y| −My = 2ε > ε

for all n ∈ N, which contradicts the definition of yn → y).
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Set Nε = max

{
Nx

ε
2Mx

, Ny
ε

2My

}
. Then, whenever n > Nε,

|xnyn − xy| = |xnyn − xny + xny − xy| = |xn(yn − y) + y(xn − x)|
≤ |xn||yn − y|+ |y||xn − x|
< Mx|yn − y|+My|xn − x|

by (2) < Mx
ε

2Mx
+My

ε

2My

=
ε

2
+
ε

2
= ε,

i.e. xnyn → xy.

Furthermore, if the sequence (yn) is given by yn = c for all n, then
the preceding result yields cxn → cx, since yn = c→ c (You should show this).
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4. It is enough to show 1
yn
→ 1

y under the hypotheses above; then the result

will hold by part 3. Since y 6= 0, |y|2 > 0. Hence, as yn → y, ∃N|y|/2 ∈ N
such that |yn − y| < |y|2 , whenever n > N|y|

2
. According to Theorem 6,

|y| − |yn| < |y − yn| <
|y|
2
, and so

|y|
2
< |yn| or

1

|yn|
<

2

|y|
(3)

whenever n > N|y|/2 (these expressions make sense as neither yn nor y
is 0 for all n).
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Let ε > 0. Then |y|2ε2 > 0. As yn → y, ∃N|y|2ε2 ∈ N such that

|yn − y| < |y|2
ε

2
(4)

whenever n > N|y|2ε2. Set Nε = max
{
N|y|

2
, N|y|2ε2

}
. Then, whenever

n > Nε,∣∣∣∣ 1yn − 1

y

∣∣∣∣ = ∣∣∣∣y − ynyny

∣∣∣∣ =
|y − yn|
|yny|

by (3) <
2|y − yn|
|y|2

by (4) <
2

|y|2
· |y|2ε

2
= ε, i.e.

1

yn
→ 1

y
. �
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Can the limit of a sequence whose terms are all near 2 be −19? 0? 1? 2?

Theorem 15. (Comparison Theorem for Sequences)
Let (xn), (yn) be convergent sequences of real numbers with xn → x,
yn → y, and xn ≤ yn ∀n ∈ N. Then x ≤ y.

Proof. Suppose that it is not the case, namely, that x > y. Then x−y > 0.
Set ε = x−y

2 > 0. Since xn → x and yn → y, ∃Nx
ε , N

y
ε ∈ N s.t.

|xn − x| < ε whenever n > Nx
ε and |yn − y| < ε whenever n > Ny

ε .

Let Nε = max{Nx
ε , N

y
ε }. Then, if n > Nε, we have

yn < y + ε = y +
x− y
2

=
x+ y

2
= x− x− y

2
= x− ε < xn.

But this contradicts the assumption that xn ≤ yn for all n, ∴ x ≤ y. �
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!4 The “≤“s in the statement of Theorem 15 cannot be replaced by “<“s
throughout. For instance, if (xn) = ( 1

n+1) and (yn) = (1n), then xn < yn
for all n ∈ N, but xn → x = 0, yn → y = 0, and 0 = x 6< y = 0.

Theorem 16. (Squeeze Theorem for Sequences)
Let (xn), (yn), (zn) ⊆ R be such that xn, zn → α and xn ≤ yn ≤ zn,
∀n ∈ N. Then yn → α.

Proof. Let ε > 0. By convergence of (xn), (zn) to α, ∃Nx
ε , N

z
ε ∈ N s.t.

|xn − α| < ε whenever n > Nx
ε and |zn − α| < ε whenever n > Nz

ε .

Let Nε = max{Nx
ε , N

z
ε }. When n > Nε, α − ε < xn ≤ yn ≤ zn < α + ε,

which is to say, that |yn − α| < ε. Consequently, yn → α. �
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We can use these various results to compute the following limits.

Examples:

1. Compute lim
n→∞

3n+ 1

n
, if the limit exists.

Solution. Note that 3n+1
n = 3 + 1

n. According to Theorem 14, if the
limit exists we must have

lim
n→∞

3n+ 1

n
= lim
n→∞

(
3 +

1

n

)
= lim
n→∞

3 + lim
n→∞

1

n
= 3 + 0 + 3.

Reading the string of equality backwards, we see that the original limit
must exist and be equal to 3. �
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2. Compute lim
n→∞

sin(n2 + 212)

n
, if the limit exists.

Solution. We cannot use Theorem 14 since neither the numerator
nor the denominator limit exists. This does not necessarily mean that
the limit of the quotient does not exist. In order to determine if it does,
we need to use another approach.

By definition of the sin function (which we take for granted for now), we
have −1 ≤ sinx ≤ 1, ∀x ∈ R. Thus

−1 ≤ sin(n2 + 212) ≤ 1, ∀n =⇒ −1

n
≤ sin(n2 + 212)

n
≤ 1

n
, ∀n.
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As ±1
n → 0, we can use the Squeeze Theorem to conclude that

lim
n→∞

sin(n2 + 212)

n
= 0. �

3. Compute lim
n→∞

2n− 1

n+ 7
, if the limit exists.

Solution. We cannot apply Theorem 14 directly since neither the
numerator nor the denominator limits exist.

However,

2n− 1

n+ 7
=

1/n · (2n− 1)

1/n · (n+ 7)
=

2− 1/n

1 + 7/n
when n 6= 0.
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Because each of the constituent parts converge (and because the
denominator is never equal to 0, either in the limit or in the sequence),
repeated applications of Theorem 14 yield

lim
n→∞

2n− 1

n+ 7
=

lim
n→∞

(2− 1/n)

lim
n→∞

(1 + 7/n)
=

2− lim
n→∞

1/n

1 + 7 · lim
n→∞

1/n
=

2− 0

1 + 7 · 0
= 2.

This is basically a calculus argument. �

4. Let (xn) be such that |xn| → 0. Show that xn → 0.

Proof. Since −|xn| ≤ xn ≤ |xn| for all n ∈ N according to Theorem 6,
and since −|xn|, |xn| → 0 by assumption, then xn → 0 according to the
Squeeze Theorem. �
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Note, however that if |xn| → α 6= 0, we cannot necessarily conclude that
xn → α. Consider, for instance, the sequence (xn) = (−1)n.

5. Let |q| < 1. Compute lim
n→∞

qn, if the limit exists.

Proof. If q = 0, then qn = 0→ 0.

If q 6= 0, then 1
|q| > 1. Thus, ∃t > 0 such that 1

|q| = 1 + t.

From Bernoulli’s Inequality, we have(
1

|q|

)n
= (1 + t)n ≥ 1 + nt, ∀n ∈ N,

so that 0 ≤ |qn| ≤ |q|n ≤ 1
1+nt.
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But 1
1+nt = 0 when n → ∞ (does this need to be proven?); thus

|qn| → 0 according to the Squeeze Theorem, and so qn → 0 by the
previous example. �

6. Let |q| < 1. Compute lim
n→∞

nqn, if the limit exists.

Solution. The proof that nqn → 0 is left as an exercise; it is similar
to the proof of part of the previous example, but uses an extension of
Bernoulli’s Inequality:

(1 + t)n ≥ 1 + nt+
n(n− 1)

2
t2, for t > 0, n ≥ 1,

which can be proven by induction. �
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7. Show that n
√
n→ 1.

Proof. Let ε > 0. Then 1 + ε > 1 and 0 < 1
1+ε < 1.

Claim: n
(

1
1+ε

)n
→ 0 when n→∞ (use previous example with q = 1

1+ε.

Hence, ∃M1 ∈ N such that∣∣∣∣ n

(1 + ε)n
− 0

∣∣∣∣ < 1 when n > M1 =⇒ 1 ≤ n < (1+ ε)n when n > M1.

Set Nε =M1. Then 1− ε < 1 ≤ n1/n < 1+ ε when n > Nε. But this is
precisely the same as |n1/n − 1| < ε when n > Nε; thus n1/n → 1. �
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8. Compute lim
n→∞

n!

nn
, if the limit exists.

Solution. Since

0 ≤ n!

nn
=
n · (n− 1) · · · · · 2 · 1
n · n · · · · · n · n

≤ 1

n
, ∀n ∈ N,

and 1
n → 0, the squeeze theorem implies n!

nn → 0. �

9. Let a > 0. Compute lim
n→∞

a1/n, if the limit exists.

Solution. Since a > 0, we have 1
a > 0. According to the Archimedean

Property, ∃Na ≥ max{a, 1a}. For every n ≥ Na, we then have 1
n ≤ a ≤ n.

Thus 1
n√n ≤

n
√
a ≤ n

√
n for all n ≥ Na. But n

√
n → 1 by a previous

example, so n
√
a→ 1 by the Squeeze Theorem. �
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10. Compute lim
n→∞

n
√
3n + 5n, if the limit exists.

Solution. Since

5n ≤ 3n + 5n ≤ 5n + 5n = 2 · 5n ≤ n · 5n, ∀n ≥ 2,

then
5 ≤ n
√
3n + 5n ≤ n

√
n · 5, ∀n ≥ 2.

But we have seen previously that n
√
n→ 1.

The Squeeze Theorem can then be applied to the above chain of
inequalities to conclude n

√
3n + 5n → 5. �
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Theorem 17. Let yn → y. If yn ≥ 0 ∀n ∈ N, then √yn →
√
y.

Proof. According to Theorem 15, y ≥ 0. There are 2 cases:

If y = 0, let ε > 0. Then ε2 > 0. Since yn → 0, ∃Mε2 ∈ N s.t. whenever
n > Mε2, we must have |yn − 0| = yn < ε2. Now, set Nε =Mε2.

Then whenever n > Nε, |
√
yn − 0| = √yn <

√
ε2 = ε.

If y > 0, let ε > 0. Then ε
√
y > 0. Since yn → y, ∃Mε

√
y ∈ N s.t.

whenever n > Mε
√
y, |yn − y| < ε

√
y. Now, set Nε =Mε

√
y.

Then whenever n > Nε, |
√
yn −

√
y| = |yn−y|√

yn+
√
y ≤

|yn−y|√
y <

ε
√
y√
y = ε.

In both cases, we have
√
yn →

√
y. �
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3.4 – Bounded Monotone Convergence Theorem

A sequence (xn) is increasing if

x1 ≤ x2 ≤ · · ·xn ≤ xn+1 ≤ · · · , ∀n ∈ N

and it is decreasing if

x1 ≥ x2 ≥ · · · ≥ xn ≥ xn+1 · · · , ∀n ∈ N.

If (xn) is either increasing or decreasing, we say that it is monotone. If it
is both increasing and decreasing, it is constant.

When the inequalities are strict, then the sequence is strictly increasing or
strictly decreasing, depending, and thus strictly monotone.

P. Boily (uOttawa) 43



Mathematical Analysis Chapter 3 – Sequences

Theorem 18. (Bounded Monotone Convergence)
Let (xn) be an increasing sequence, bounded above. Then (xn) converges
to sup{xn | n ∈ N}.

Proof. Since the sequence (xn) is bounded above, so it its range {xn}. By
completeness of R, x∗ = sup{xn} exists. It remains only to show xn → x∗.
Let ε > 0. By definition, x∗ − ε is not an upper bound for {xn}. Then
∃Nε ∈ N such that

x∗ − ε < xNε ≤ x∗ < x∗ + ε.

But (xn) is increasing; in particular, xNε ≤ xn when n > Nε. Thus

n > Nε =⇒ x∗ − ε < xn < x∗ + ε,

so xn → x∗. �
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A similar result holds for decreasing sequences that are bounded below.

Examples:

Does the sequence (xn) = (1− 1
n) converge? If so, what is its limit?

Solution. As 1
n ≥

1
n+1 for all n ∈ N,

xn − 1− 1

n
≤ 1− 1

n+ 1
≤ xn+1,

and so (xn) is increasing. Furthermore, xn ≤ 1 for all n ∈ N. Then (xn)
converges by the Bounded Monotone Convergence Theorem, and

lim
n→∞

xn = sup
n∈N
{xn} = sup

n∈N
{1−1/n} = 1+sup

n∈N
{−1/n} = 1− inf

n∈N
{1/n} = 1.
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Let (xn) be defined by xn =
√
2xn−1 when n ≥ 2, with x1 = 1. Does

(xn) converge? If so, to what limit?

Solution. We first show, by induction, that (xn) is increasing.

– Base Case: x2 =
√
2 ≥ 1 = x1.

– Induction Step: Suppose xk ≥ xk−1. Then

2xk ≥ 2xk−1 =⇒
√
2xk ≥

√
2xk−1 =⇒ xk+1 ≥ xk.

Thus xn+1 ≥ xn for all n ∈ N.

Next we show, again by induction, that (xn) is bounded above by 2.
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– Base Case: 1 ≤ x1 = 1 ≤ 2.
– Induction Step: Suppose 1 ≤ xk ≤ 2. Then

2 ≤ 2xk ≤ 2·2 = 4 =⇒ 1 ≤
√
2 ≤
√
2xk ≤

√
4 = 2 =⇒ 1 ≤ xk+1 ≤ 2.

Thus xn ≤ 2 for all n ∈ N (why did we include the lower bound 1?).

Thus, according to the Bounded Monotone Convergence Theorem,
xn → x = sup{xn | n ∈ N}. But

x = lim
n→∞

xn = lim
n→∞

xn+1 = lim
n→∞

√
2xn =

√
2 lim
n→∞

xn =
√
2x,

whence x2 = 2x. So either x = 0 or x = 2. But xn ≥ 1 for all n ∈ N,
so x ≥ 1 according to Theorem 15. Thus xn → 2. �

P. Boily (uOttawa) 47



Mathematical Analysis Chapter 3 – Sequences

3.5 – Bolzano-Weierstrass Theorem

The main result of this section is a corner stone of analysis, concerning
bounded sequences and their subsequences.

Let (xn) ⊆ R be a sequence and n1 < n2 < · · · be an increasing string of
positive integers. The sequence (xnk)k = (xn1, xn2, . . .) is a subsequence
of (xn), denoted by (xnk) ⊆ (xn). Note that nk ≥ k for all k ∈ N.

Examples:

Let (xn) = (1n). Both ( 1
2k) = (12,

1
4, . . .) and (1, 13,

1
6,

1
10,

1
15,

1
21, . . .)

are subsequences of (xn) as they sample the original sequence while
preserving the order in which the terms appear. But (1, 13,

1
2,

1
8, . . .) is not

a subsequence of (xn) as 1
3 = x3 appears before 1

2 = x2.
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The sequence (x3n) = (x3, x6, x9, . . .) is a subsequence of (xn) for any
sequence (xn).

Every sequence (xn) is a (non-proper) subsequence of itself.

If (yk) = (xnk) is a subsequence of (xn) and (zj) = (ykj) is a subsequence
of (yk), then (zj) = (xnkj) is a subsequence of (xn).

Theorem 19. Let xn → x. If (xnk) ⊆ (xn), then xnk → x as well.

Proof. Let ε > 0. Since xn → x, ∃Nε ∈ N such that |xn−x| < ε whenever
n > Nε. But (xnk) is a subsequence of (xn), so nk ≥ k for all k ∈ N.

Then |xnk − x| < ε whenever nk ≥ k > Nε, so xnk → x when k →∞. �
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The converse of this theorem is false: can you find a divergent sqeuence
with convergent subsequences?

The next result is surprising, deep and useful.

Theorem 20. (Bolzano-Weierstrass)
If (xn) ⊆ R is bounded, it has (at least) one convergent subsequence.

Proof. We build a subsequence as follows: as (xn) is bounded, there is an
interval I1 = [a, b] s.t. (xn) ⊆ I1. Let n1 = 1. Then xn1 = x1 ∈ I1 and

length(I1) = b− a =
b− a
20

.

Set I ′1 = [a, a+b2 ] and I ′′1 = [a+b2 , b],

A1 = {n ∈ N | n > n1 and xn ∈ I ′1}, B1 = {n ∈ N | n > n1 and xn ∈ I ′′1 }.
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At least one of A1, B1 must be infinite as A1 ∪B1 = {n ∈ N | n > n1}:

If A1 is infinite, set I2 = I ′1. Since A1 is an infinite set of integers, it
is not empty. By the Well-Ordering Principle, A1 contains a smallest
element, say n2.

If A1 is finite, set I2 = I ′′1 . Since B1 is an infinite set of integers, it is not
empty. By the Well-Ordering Principle, B1 contains a smallest element,
say n2.

Either way, there is an integer n2 > n1 such that xn2 ∈ I2, I1 ⊇ I2 and

length(I2) =
b− a
21

.
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Now, suppose that Ik−1 ⊇ Ik are intervals with

length(Ik−1) =
b− a
2k−2

and length(Ik) =
b− a
2k−1

,

that ∃nk−1, nk ∈ N such that nk−1 < nk, xnj−1 ∈ Ik−1, xnk ∈ Ik, and that
at least one of the corresponding sets Ak−1, Bk−1 is infinite.

Write Ik = [α, β]. Set I ′k = [α, α+β2 ] and I ′′k = [α+β2 , β],

Ak = {n ∈ N | n > nk and xn ∈ I ′k}, Bk = {n ∈ N | n > nk and xn ∈ I ′′k}.

One of Ak, Bk must be infinite as Ak∪Bk = {n ∈ N | n > nk and xn ∈ Ik}
is infinite.
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If Ak is infinite, set Ik+1 = I ′k. Since Ak is an infinite set of integers,
it is not empty. By the Well-Ordering Principle, Ak contains a smallest
element, say nk+1.

If Ak is finite, set Ik+1 = I ′′k . Since Bk is an infinite set of integers,
it is not empty. By the Well-Ordering Principle, Bk contains a smallest
element, say nk+1.

Either way, there is an integer nk+1 > nk s.t. xnk+1
∈ Ik+1, Ik ⊇ Ik+1 and

length(Ik+1) =
b− a
2k

.
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By induction, we have

1. I1 ⊇ I2 ⊇ · · · Ik ⊇ Ik+1 ⊇ · · · ;

2. for each k ∈ N, length(Ik) =
b−a
2k−1

;

3. for each k ∈ N, xnk ∈ Ik , and

4. n1 < n2 < · · · < nk < nk+1 < · · · .

Furthermore, b−a
2k
→ 0 (since it is a subsequence of b−a

n → 0). According
to the Nested Intervals Theorem, then, ∃ξ ∈ [a, b] such that⋂

k≥1

Ik = {ξ}.
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It remains to show that xnk → ξ.

Let ε > 0. By the Archimedean Property, ∃Kε ∈ N such that 2Kε−1 > b−a
ε .

Hence

k > Kε =⇒ 2Kε−1 < 2k−1 =⇒ 0 ≤ b− a
2k−1

<
b− a
2Kε−1

< ε.

Since ξ ∈ Ik for all k ∈ N, then

k > Kε =⇒ |xnk − ξ| ≤
b− a
2k−1

<
b− a
2Kε−1

< ε,

which is to say xnk → x. �
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We have mentioned that a sequence (xn) which diverges is one for which

∀L ∈ R, ∃εL > 0, ∀N ∈ N, ∃nN > N such that |xnN − L| ≥ εL.

If (xn) does not converge to L, it is easy to construct a subsequence (xnk)
that also fails to converge to L:

let n1 ∈ N be such that n1 ≥ 1 and |xn1 − L| ≥ εL;

let n2 ∈ N be such that n2 ≥ n1 and |xn2 − L| ≥ εL;

etc.

Note that there might be some subsequences of (xn) that do converge to
some L, however: xn = (−1)n diverges, but x2n = (−1)2n = 1→ 1.
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Theorem 21. Let (xn) ⊆ R be a bounded sequence such that every one
of its proper converging subsequence converges to the same x ∈ R. Then
xn → x.

Proof. Let M > 0 be a bound for (xn). Then |xn| ≤M for all n ∈ N.

If (xn) does not converge to x, then ∃(xnk) ⊆ (xn) and an ε0 > 0
such that

|xnk − x| ≥ ε0 for all k ∈ N.
But (xnk) is also a bounded sequence, and so, by the Bolzano-Weierstrass
Theorem, there is convergent subsequence (xnkj) ⊆ (xnk) ⊆ (xn).

But all subsequences of (xn) converge to x, by assumption, so xnkj → x.

That is to say, for ε0 > 0, ∃Nε0 ∈ N such that |xnkj − x| < ε0 whenever

kj > j > Nε0, which contradicts the above property. Hence xn → x. �
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3.6 – Cauchy Sequences

A main challenge with the definition of a limit of a sequence is that we need
to know what the limit is before we can show what it is, in which case we
do not need to show what it is...

A sequence (xn) is a Cauchy sequence if

∀ε > 0, ∃Nε ∈ N such that m,n > Nε =⇒ |xm − xn| < ε.

Incidentally, (xn) is not a Cauchy sequence if

∃ε0 > 0, ∀N ∈ N, ∃mN , nN > N such that |xmN
− xnN | ≥ ε0.
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Examples:

1. Show that (xn) = (1n) is a Cauchy sequence.

Proof. Let ε > 0. By the Archimedean Property, ∃Nε > 2
ε. Thus

m,n > Nε =⇒
∣∣∣∣ 1m − 1

n

∣∣∣∣ ≤ 1

m
+

1

n
<

1

Nε
+

1

Nε
=

2

Nε
< ε.

Thus (xn) is Cauchy. �

2. Show that (xn) = (1 + 1
2 + · · ·+

1
n) is not a Cauchy sequence.
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Proof. Let m > n. Then 1
n ≥

1
n+1 ≥ · · · ≥

1
m and

|xm − xn| =
1

n+ 1
+ · · ·+ 1

m
≥ 1

m
+ · · ·+ 1

m︸ ︷︷ ︸
m−n terms

=
(m− n)
m

= 1− n

m
.

In particular, if m = 2n, then |xm − xn| ≥ 1
2 for every n ∈ N, and so

(xn) is not a Cauchy sequence. �

In essence, a Cauchy sequence is a sequence for which the terms can get
as close to one another as one wishes, after a threshold (which depends on
the desired distance).

The next result shows that Cauchy sequences behave like convergent
sequences in R – we will soon see that the similarity is in fact not pure
happenstance.
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Theorem 22. If (xn) is a Cauchy sequence, then it is bounded.

Proof. Let 1 > ε > 0. Since (xn) is a Cauchy sequence, ∃Nε ∈ N such
that |xm − xn| < ε whenever m,n > Nε.

Set m∗ = Nε + 1. If n > Nε, then

|xn| = |xm∗ + (xn − xm∗)| ≤ |xm∗|+ |xn − xm∗| < |xm∗|+ ε.

Set M = max{|x1|+ 1, . . . , |xNε|+ 1, |xm∗|+ 1}.

Then |xn| ≤M for all n ∈ N. �

We could also show that the sum of two Cauchy sequences is a Cauchy
sequence, that every bounded Cauchy sequence admits at least one
convergent subsequence, and so forth.
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Cauchy sequences in R behave like convergent sequences in R because ...

Theorem 23. A sequence of real numbers is convergent if and only if it
is a Cauchy sequence.

Proof. Let (xn) be the sequence under consideration.

Suppose that xn → x, say. Let ε > 0. Then ε
2 > 0 and ∃Mε/2 such

that
n > Mε/2 =⇒ |xn − x| <

ε

2
.

Set Nε =Mε/2. When n,m > Nε, we have

|xm − xn| ≤ |xm − x+ x− xn| ≤ |xm − x|+ |x− xn| ≤
ε

2
+
ε

2
= ε,

which is to say that (xn) is Cauchy.

P. Boily (uOttawa) 62



Mathematical Analysis Chapter 3 – Sequences

Now suppose that (xn) is Cauchy. According to Theorem 22, it is a bounded
sequence, and so must admit a convergent subsequence (xnk) ⊆ (xn) by
the Bolzano-Weierstrass Theorem, with xnk → x, say.

Let ε > 0. Since (xn) is Cauchy, ∃Mε/2 ∈ N such that

n,m > Mε/2 =⇒ |xm − xn| <
ε

2
.

Since (xnk) converges to x, ∃N > Mε/2 such that |xN − x| < ε
2. Set

Nε =Mε/2. Then

n > Nε =⇒ |xn−x| = |xn−xN+xN−x| ≤ |xn−xN |+|xN−x| <
ε

2
+
ε

2
= ε,

and so (xn) is convergent. �
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Examples:

1. As the sequence (xn) = (1 + 1
2 + · · · +

1
n) is not a Cauchy sequence, it

does not converge.

2. Compute the limit of the sequence defined by xn = 1
2(xn−2 + xn−1),

n > 2, with x1 = 1 and x2 = 2.

Solution. We cannot use the Bounded Monotone Convergence Theorem
as (xn) is not monotone. However, (xn) is a Cauchy sequence. Indeed,

|xn+1 − xn| =
∣∣1
2(xn−1 + xn)− xn

∣∣ = 1
2|xn − xn−1| =

1
22
|xn−1 − xn−2|

= 1
23
|xn−2 − xn−3| = · · · = 1

2n−1|x2 − x1| =
1

2n−1.
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Let ε > 0. By the Archimedean Property, ∃Nε ∈ N such that 1
2Nε−2

< ε.
Then, whenever m ≥ n > Nε,

|xm − xn| ≤ |xm − xm−1|+ · · ·+ |xn+1 − xn|

=
1

2m−2
+ · · ·+ 1

2n−1
<

1

2n−2
<

1

2Nε−2
< ε.

Being a Cauchy sequence, (xn) is convergent according to Theorem 23.
Let xn → x. From Theorem 19, we must have x2n+1 → x as well.

It is left as an induction exercise to show that

x2n+1 = 1 +
1

2
+

1

23
+ · · ·+ 1

22n−1
= 1 +

3

4

(
1− 1

4n

)
.

Then x2n+1 → 1 + 2
3 = 5

3 = x. �
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Cauchy sequences illustrate the fundamental difference between R and Q.
A sequence is Cauchy if the points of the sequence “accumulate” on top of
one another. In R, every Cauchy sequence is convergent, and vice-versa.

In Q, the converging sequences are Cauchy, but there are Cauchy sequences
that do not converge: it is possible that the points of such a sequence
“accumulate” around of the (uncountably infinitely) many holes of Q.

For instance, the sequence (1, 1.4, 1.41, 1.414, . . .) is Cauchy in Q, but
does not converge in Q.

This leads to one of the ways of building R: we take all Cauchy sequences
in Q and add whatever point the sequences “accoumulates” around to R
(there is more to it than that, but that is the main idea). In this example,
we would get to add

√
2 to R.
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3.7 – Exercises

1. The first few terms of a sequence (xn) are given below. Assuming that the “natural

pattern” indicated by these terms persists, give a formula for the nth term xn.

(a) (5, 7, 9, 11, . . .);

(b)
(
1
2,−

1
4,

1
8,−

1
16, . . .

)
;

(c)
(
1
2,

2
3,

3
4,

4
5, . . .

)
;

(d) (1, 4, 9, 16, . . .).

2. Use the definition of the limit of a sequence to establish the following limits.

(a) lim
n→∞

(
1

n2 + 1

)
= 0;

(b) lim
n→∞

(
2n

n+ 1

)
= 2;

P. Boily (uOttawa) 67



Mathematical Analysis Chapter 3 – Sequences

(c) lim
n→∞

(
3n+ 1

2n+ 5

)
=

3

2
, and

(d) lim
n→∞

(
n2 − 1

2n2 + 3

)
=

1

2
.

3. Show that

(a) lim
n→∞

(
1

√
n+ 7

)
= 0;

(b) lim
n→∞

(
2n

n+ 2

)
= 2;

(c) lim
n→∞

( √
n

n+ 1

)
= 0, and

(d) lim
n→∞

(
(−1)nn
n2 + 1

)
= 0.

4. Show that lim
n→∞

(
1

n
−

1

n+ 1

)
= 0.

P. Boily (uOttawa) 68



Mathematical Analysis Chapter 3 – Sequences

5. Find the limit of the following sequences:

(a) lim
n→∞

((
2 +

1

n

)2
)

;

(b) lim
n→∞

(
(−1)n

n+ 2

)
;

(c) lim
n→∞

(√
n− 1
√
n+ 1

)
, and

(d) lim
n→∞

(
n+ 1

n
√
n

)
.

6. Let yn =
√
n+ 1−

√
n. Show that (yn) and (

√
nyn) converge.

7. Let (xn) be a sequence of positive real numbers such that x1/n
n → L < 1. Show

∃r ∈ (0, 1) such that 0 < xn < rn for all sufficiently large n ∈ N. Use this result

to show that xn → 0.

8. Give an example of a convergent (resp. divergent) sequence (xn) of positive real

numbers with x1/n
n → 1.

9. Let x1 = 1, xn+1 =
√
2 + xn for n ∈ N. Show that (xn) converges; find the limit.
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10. Let xn =

n∑
k=1

1

k2
for all n ∈ N. Show that (xn) is increasing and bounded above.

11. Show that c1/n → 1 if 0 < c < 1.

12. Let (xn) be a bounded sequence.

For each n ∈ N, let sn = sup{xk : k ≥ n}. If S = inf{sn}, show that there is a

subsequence of (xn) that converges to S.

13. Suppose that xn ≥ 0 for all n ∈ N and that ((−1)nxn) converges. Show that (xn)

converges.

14. Show that if (xn) is unbounded, there exists a subsequence (xnk) with 1/xnk → 0.

15. If xn = (−1)n
n , find the convergent subsequence in the proof of the Bolzano-Weierstrass

theorem, with I1 = [−1, 1].
16. Show directly that a bounded increasing sequence is a Cauchy sequence.

17. If 0 < r < 1 and |xn+1 − xn| < rn for all n ∈ N, show that (xn) is Cauchy.

18. If x1 < x2 and xn = 1
2(xn−1 + xn−2) for all n ∈ N, show that (xn) is convergent

and compute its limit.

19. Suppose that (an) is a bounded sequence and bn → 0. Show that anbn → 0.
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20. Consider the sequence given by the recursion an+1 = 1
2(an + a−1n ), with some initial

condition a1 ∈ (−∞, 0) ∪ (0,∞). Find and prove the limit, if it exists.

21. Let (an) be a sequence with no convergent subsequences. Show that |an| → ∞.

22. We define the limit inferior and the limit superior of a sequence as follows:

lim inf
n→∞

an = lim
n→∞

inf{ak | k ≥ n}

lim sup
n→∞

an = lim
n→∞

sup{ak | k ≥ n}.

Let (an) be bounded. Show that lim inf
n→∞

an and lim sup
n→∞

an exist and are in R.

23. Let (an) be unbounded. Show that lim inf
n→∞

an = −∞ or lim sup
n→∞

an =∞.

24. Let (an), (bn) be two sequences. Show that

lim inf
n→∞

an + lim sup
n→∞

bn ≤ lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

Furthermore, find a pair of sequences for which the second inequality is strict.
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Solutions

1. Proof. There is no general method. This question is a wee bit on the
easy side...

(a) Odd integers ≥ 5: xn = 2n+ 3 for all n ≥ 1;

(b) Alternating powers of 1
2: xn = (−1)n+1 1

2n for all n ≥ 1;

(c) Fractions where the denominator is one more than the numerator:
xn = n

n+1 for all n ≥ 1;

(d) Perfect squares ≥ 1: xn = n2 for all n ≥ 1. �
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2. Proof.

(a) Let ε > 0. By the Archimedean property, there is a positive integer
Nε >

1
ε. Then∣∣∣∣ 1

n2 + 1
− 0

∣∣∣∣ = 1

n2 + 1
<

1

n2
≤ 1

n
<

1

Nε
< ε,

whenever n > Nε.
(b) Let ε > 0. By the Archimedean property, there is a positive integer

Nε >
2
ε. Then∣∣∣∣ 2n

n+ 1
− 2

∣∣∣∣ = ∣∣∣∣− 2

n+ 1

∣∣∣∣ = 2

n+ 1
<

2

n
<

2

Nε
< ε,

whenever n > Nε.
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(c) Let ε > 0. By the Archimedean property, there is a positive integer
Nε >

13
4 ·

1
ε. Then∣∣∣∣3n+ 1

2n+ 5
− 3

2

∣∣∣∣ = ∣∣∣∣− 13

2(2n+ 5)

∣∣∣∣ = 13

2
· 1

2n+ 5
<

13

2
· 1
2n

=
13

4
· 1
n
<

13

4
· 1

Nε
,

which is smaller than ε whenever n > Nε.

(d) Let ε > 0. By the Archimedean property, there is a positive integer
Nε >

5
4 ·

1
ε. Then∣∣∣∣ n2 − 1

2n2 + 3
− 1

2

∣∣∣∣ = ∣∣∣∣− 5

2(2n2 + 3)

∣∣∣∣ = 5

2
· 1

2n2 + 3
<

5

2
· 1

2n2
≤ 5

4
· 1
n
<

5

4
· 1

Nε
,

which is smaller than ε whenever n > Nε. �
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3. Proof.

(a) Let ε > 0. By the Archimedean property, there is a positive integer
Nε >

1
ε2

. Then∣∣∣∣ 1√
n+ 7

− 0

∣∣∣∣ = 1√
n+ 7

<
1√
n
<

1√
Nε

< ε,

whenever n > Nε.
(b) Let ε > 0. By the Archimedean property, there is a positive integer

Nε >
4
ε. Then∣∣∣∣ 2n

n+ 2
− 2

∣∣∣∣ = ∣∣∣∣− 4

n+ 2

∣∣∣∣ = 4

n+ 2
<

4

n
<

4

Nε
< ε,

whenever n > Nε.
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(c) Let ε > 0. By the Archimedean property, there is a positive integer
Nε >

1
ε2

. Then

∣∣∣∣ √nn+ 1
− 0

∣∣∣∣ = √
n

n+ 1
<

√
n

n
=

1√
n
<

1√
Nε

< ε,

whenever n > Nε.
(d) Let ε > 0. By the Archimedean property, there is a positive integer

Nε >
1
ε. Then∣∣∣∣(−1)nnn2 + 1

− 0

∣∣∣∣ = n

n2 + 1
<

n

n2
=

1

n
<

1

Nε
< ε,

whenever n > Nε. �
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4. Proof. Let ε > 0. By the Archimedean property, there is a positive
integer Nε >

1√
ε
.

Then ∣∣∣∣1n − 1

n+ 1
− 0

∣∣∣∣ = 1

n(1 + n)
<

1

n2
<

1

N2
ε

< ε,

whenever n > Nε. �
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5. Proof. We can only use the definition if we have a candidate.
Throughout, we will assume that it is known that 1

n → 0.

(a) Note that (2 + 1
n)

2 = 4 + 2
n + 1

n2
. Then, by theorem 14 (operations on

sequences and limits),

2

n
= 2 · 1

n
→ 2 · 0 = 0 and

1

n2
=

1

n
· 1
n
→ 0 · 0 = 0,

so that 4 + 2
n + 1

n2
→ 4 + 0 + 0 = 4.

(b) Clearly,
−1
n+ 2

≤ (−1)n

n+ 2
≤ 1

n+ 2
, ∀n ∈ N.
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Note that n+ 2 ≥ n for all n so that

0 ≤ 1

n+ 2
≤ 1

n
, ∀n ∈ N;

as a result, 1
n+2 → 0 by the squeeze theorem. Then − 1

n+2 → −0 = 0 by

theorem 14, so that (−1)n
n+2 → 0 by the squeeze theorem.

(c) Re-write
√
n−1√
n+1

= 1− 2√
n+1

. Note that

0 ≤ 1√
n+ 1

<
1√
n
, ∀n ∈ N.

We have seen that 1√
n
→ 0; as a result of the squeeze theorem,

1√
n+1
→ 0. Then 1− 2√

n+1
→ 1− 2 · 0 = 1, by theorem 14.
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(d) Note that n ≤ n
√
n ≤ n2 for all n ∈ N so

1

n2
≤ 1

n
√
n
≤ 1

n
, ∀n ∈ N.

But 1
n,

1
n2
, 1√

n
→ 0 (see previous problems) so that 1

n
√
n
→ 0 by the

squeeze theorem. Furthermore,

n+ 1

n
√
n

=
1√
n
+

1

n
√
n
→ 0 + 0 = 0,

by theorem 14. �
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6. Proof. As

0 ≤
√
n+ 1−

√
n =

1√
n+ 1 +

√
n
≤ 1√

n
, ∀n ∈ N,

and 1√
n
→ 0, then

√
n+ 1−

√
n→ 0 by the squeeze theorem.

Note that
√
nyn =

√
n(n+ 1) − n = 1√

1+1
n+1

for all n ∈ N. Then,

according to theorem 14,

lim
n→∞

√
nyn = lim

n→∞

1√
1 + 1

n + 1
=

1

lim
n→∞

(√
1 +

1

n
+ 1

) =
1

2
,

since
√

1 + 1
n + 1 > 2 for all n ∈ N. �
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7. Proof. Since L < 1, ∃ε0 > 0 such that L < L+ε0 < 1. Then, ∃N0 ∈ N
such that

|x1/nn − L| < ε0 whenever n > N0.

Hence L − ε0 < x
1/n
n < L + ε0 for all n > N0. Set r = L + ε0. Then

r ∈ (0, 1) and
0 < xn < rn, ∀n > N0.

Let ε > 0. rn → 0 (do you know how to show this?), ∃Nε ≥ N0 such
that rn < ε whenever n > Nε, hence

|xn − 0| = xn < rn < ε

whenever n > Nε. �
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8. Proof. The sequences (xn) = 1
n and (xn) = (n) do the trick. You

should fill in the details or ask for hints if you’re not sure how to show
this – there are other solutions. �
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9. Proof. We show (xn) is increasing and bounded by induction; by a
theorem seen in class, (xn) converges.

A quick computation shows x2 =
√
3.

Initial case: Clearly, 1 ≤ x1 ≤ x2 ≤ 2.

Induction hypothesis: Suppose 1 ≤ xk ≤ xk+1 ≤ 2. Then

3 ≤ xk + 2 ≤ xk+1 + 2 ≤ 4

and so
1 ≤
√
3 ≤
√
xk + 2 ≤

√
xk+1 + 2 ≤

√
4 = 2,

i.e. 1 ≤ xk+1 ≤ xk+2 = 2.
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Hence (xn) is increasing and bounded above by 2; as such xn → x for
some x ∈ R. exists.

But

x = lim
n→∞

xn = lim
n→∞

xn+1 = lim
n→∞

√
2 + xn =

√
2 + lim

n→∞
xn =

√
2 + x,

that is, x2 = 2+x. The only solutions are x = 2 or x = −1, but x = −1
must be rejected since 1 ≤ xn for all n.

Thus, xn → 2. �
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10. Proof. As 1
(n+1)2

> 0 for all n ∈ N, we have

xn =
1

12
+ · · ·+ 1

n2
≤ 1

12
+ · · ·+ 1

n2
+

1

(n+ 1)2
= xn+1.

Furthermore, for any k ≥ 2 ∈ N, we have 1
k2
< 1

k−1 −
1
k. Then

xn =
1

12
+

1

22
+ · · ·+ 1

n2

≤ 1 +

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n− 1
− 1

n

)
= 1 + 1 + 0 + · · ·+ 0− 1

n
< 2

for all n ∈ N. Hence (xn) is increasing and bounded above by 2. �
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11. Proof. Let xn = c1/n for all n ∈ N.

Since xn+1 = c1/(n+1) > c1/n = xn for all n ∈ N (as c < 1), then (xn)
is increasing. Furthermore, 0 < c1/n < 11/n = 1 for all n ∈ N, so (xn)
is bounded above.

Hence (xn) converges, and xn → x, for some x ∈ R. As all subsequences
of a convergent sequence converge to the same limit as the convergent
sequence, x2n = c1/2n → x. As such,

x = lim
n→∞

c1/2n = lim
n→∞

√
c1/n = lim

n→∞

√
xn =

√
lim
n→∞

xn =
√
x,

and so either x = 0 or x = 1. But as xn increases to 1, there comes a
point after which all xn are “far” from 0 (you should mathematicize this
statement...), so xn → 1. �
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12. Proof. As (xn) is bounded, ∃M > 0 such that −M < xn < M for all
n ∈ N. By definition, s1 ≥ s2 ≥ · · · and sn ≥ xk for all n ∈ N, k ≥ n.

Hence sn > −M for all n and (sn) is bounded below and decreasing,
i.e. (sn) is convergent.

Furthermore, for each n ∈ N, as sn = sup{xk : k ≥ n}, ∃kn ∈ N s.t.

sn −
1

n
≤ xkn < sn

(otherwise sn is not the supremum).

The sequence (xkn) might not necessarily be a subsequence of (xn), but
by deleting the terms that are out of order, the resulting sequence, which
we will also denote by (xkn) is a subsequence of (xn).
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Then

0 ≤ |xkn − sn| ≤
1

n
, ∀n ∈ N.

By the squeeze theorem,

0 ≤ lim
n→∞

|xkn − sn| ≤ 0, so lim
n→∞

|xkn − sn| = 0.

From a theorem seen in class, this means that

lim
n→∞

xkn = lim
n→∞

sn = S,

where the last equality comes from the theorem on bounded
increasing/decreasing sequences. �
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13. Proof. Let (−1)nxn → α.

Consider its subsequences(
(−1)2nx2n

)
= (x2n) and

(
(−1)2n+1x2n+1

)
= (−x2n+1) .

Then x2n → α and (−x2n+1)→ α.

But x2n ≥ 0 ∀n ∈ N so α ≥ 0. Similarly, −x2n+1 ≤ 0 ∀n ∈ N so α ≤ 0.

Since 0 ≤ α ≤ 0, α = 0.

By Theorem 14 (operations on limits),

lim
n→∞

|(−1)nxn| = |0| = 0.

But |(−1)nxn| = xn ∀n, so xn → 0. �
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14. Proof. As (xn) is unbounded, ∃n1 ∈ N such that |xn1| ≥ 1.

Moreover, ∀k ≥ 2, ∃nk ∈ N such that |xnk| ≥ k and nk+1 > nk
(otherwise the sequence would be bounded).

Let ε > 0. By the Archimedean property, ∃Kε ∈ N such that Kε >
1
ε

and ∣∣∣∣ 1

xnk
− 0

∣∣∣∣ = 1

|xnk|
≤ 1

k
<

1

Kε
< ε

whenever k > Kε.

Thus, 1/xnk → 0. �
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15. Proof. We must first note that (xn) is bounded by −1 and 1, so the
question makes sense.

Let n1 = 1. Then xn1 = x1 = −1 and length(I1) = 2. Set I ′1 = [−1, 0]
and I ′′1 = [0, 1].

We have

A1 = {n ∈ N | n > n1 and xn ∈ I ′1} = {3, 5, 7, 9, 11, . . .}

and

B1 = {n ∈ N | n > n1 and xn ∈ I ′′1 } = {2, 4, 6, 8, 10, . . .}.

Since A1 is infinite (why?), set I2 = I ′1 = [−1, 0] and n2 = minA1 = 3,
so that xn2 = −1/3. Note that n2 > n1, I2 ⊆ I1, and length(I2) = 1.
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Set I ′2 = [−1,−1/2] and I ′′2 = [−1/2, 0].

We have
A2 = {n ∈ N | n > n2 and xn ∈ I ′2} = ∅

and

B2 = {n ∈ N | n > n2 and xn ∈ I ′′2 } = {5, 7, 9, 11, 13, . . .}.

Since A2 is finite, set I3 = I ′′2 = [−1/2, 0] and n3 = minB2 = 5, so that
xn3 = −1/5.

Note that n3 > n2 > n1, I3 ⊆ I2 ⊆ I1, and length(I3) = 1/2.
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For k ≥ 3, we set I ′k = [−1/2k−2,−1/2k−1] and I ′′k = [−1/2k−1, 0].
Then

Ak = {n ∈ N | n > nk and xn ∈ I ′k} = ∅
and

Bk = {n ∈ N | n > nk and xn ∈ I ′′k} = {2k + 1, 2k + 3, 2k + 5, . . .}.

Ak is finite, so set Ik+1 = I ′′k = [−1/2k−1, 0].

Furthermore, nk+1 = minBk = 2k + 1 so that xnk =
−1

2k+1.

Note that nk+1 > nk > · · · > n2 > n1, Ik+1 ⊆ Ik ⊆ · · · ⊆ I2 ⊆ I1 and
length(Ik+1) = 1/2k−2.

The convergent subsequence is thus is −1,−1/3,−1/5, . . .→ 0. �
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16. Proof. Let ε > 0.

By completeness of R, x∗ = sup{xn | n ∈ N} exists as {xn | n ∈ N} is
bounded and non-empty.

In particular, ∃Mε
2
∈ N such that

x∗ − ε

2
< xMε

2
≤ x∗.

But x∗ ≥ xn > xMε
2

whenever n > Mε
2
.

Let Nε =Mε
2
. Then

|xm − xn| = |xm − x∗ + x∗ − xn| ≤ |x∗ − xm|+ |x∗ − xn| <
ε

2
+
ε

2
= ε

whenever m,n > Nε. �
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17. Proof. Let ε > 0.

By the Archimedean property, ∃Nε > logr (ε(1− r))+1, i.e. rNε−1 < ε.

Then

|xm − xn| ≤ |xm − xm−1|+ · · ·+ |xn+1 − xn|

< rm−1 + · · ·+ rn <
rn−1

1− r
<
rNε−1

1− r
< ε

whenever m > n > Nε.

(The third last inequality holds since rm−1 + · · · + rn is a geometric
progression.) �
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18. Proof. We start by showing that (xn) is a Cauchy sequence. let
L = x2 − x1. Then

|xn − xn−1| ≤
L

2n−2

by induction (show this!).

Let ε > 0. By the Archimedean Property, ∃Nε ∈ N such that L
2Nε−2

< ε.
Then

|xm − xn| ≤ |xm − xm−1|+ · · ·+ |xn+1 − xn|

≤ L

2m−2
+ · · · L

2n−1
≤ L

2n−2
<

L

2Nε−2
< ε

whenever m > n > Nε. Hence (xn) is a Cauchy sequence, and so it
converges.
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Let xn → x. We can show, by induction (do this!), that

x2n+1 = x1 +
L

2
+
L

23
+ · · ·+ L

22n−1

for all n ∈ N. In particular,

x = lim
n→∞

x2n+1 = x1 + lim
n→∞

(
L

2
+
L

23
+ · · ·+ L

22n−1

)
= x1 +

L

2
lim
n→∞

(
1 +

1

22
+ · · ·+ 1

22n−2

)
= x1 +

L

2
lim
n→∞

(
1− (1/22)n

1− (1/22)

)
= x1 +

2

3
L =

1

3
(x1 + 2x2).

For instance, when x1 = 1 and x2 = 2, xn → 5/3. �
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19. Proof. Since (an) is bounded, there exists some 0 ≤ M < ∞ so that
supn |an| ≤M .

Next, we will check that anbn → 0.

Fix some ε > 0. Since bn → 0, there exists some Nε so that for
all n > Nε, |bn| ≤ ε

M . Thus, for all n > Nε,

|anbn| ≤M |bn| ≤M
ε

M
= ε.

Thus, anbn → 0. �

P. Boily (uOttawa) 99



Mathematical Analysis Chapter 3 – Sequences

20. Proof. Consider a value of n for which an ≥ 1. For this value,

an+1 =
1

2
(an + a−1n ) ≤ 1

2
(an + 1).

On the other hand, consider the function f(x) = 1
2(x+x

−1) with domain
x ∈ (0,∞). We recognize (e.g. from completing the square) that, on
this domain, the function is minimized at x = 1. In particular, f(x) ≥ 1
for all x ∈ (0,∞). Thus,

an+1 =
1

2
(an + a−1n ) ≥ 1.

Putting together the two displayed equations, for an ≥ 1 we have

1 ≤ an+1 ≤
1

2
(an + 1).

P. Boily (uOttawa) 100



Mathematical Analysis Chapter 3 – Sequences

We note that, by this bound, an ≥ 1 for all n ≥ 2 for any value of
a1 ∈ (0,∞). Iterating the upper and lower bounds, we have

1 ≤ an+1 ≤
1

2
(an + 1) ≤ 1

2

(
1

2
(an−1 + 1) + 1

)
=

1

4
an−1 +

3

4
.

Continuing to iterate, we find

1 ≤ an+1 ≤ 2−n+1a2 + (1− 2−n+1).

Applying the Squeeze Theorem, we calculate

1 ≤ lim
n→∞

an+1 ≤ lim
n→∞

(2−n+1a2 + (1− 2−n+1)) = 1.

This completes the proof. �
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21. Proof. We prove this by contradiction. Assume that |an| does not
diverge to infinity. Then there exists some M < ∞ such that the set
{n ∈ N | |an| < M} is infinite.

Let 1 ≤ m1 ≤ m2 ≤ m3 ≤ . . . be the indices satisfying |amn| < M .

Set bn = amn. Then {bn} is a bounded sequence and so has a
convergent subsequence {bkn}n by the Bolzano-Weierstrass Theorem.

But {amkn
}n = {bkn}n is in fact a convergent subsequence of (an),

contradicting the information given in the question. We conclude that
our assumption was false, and so that |an| diverges to infinity. �
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22. Proof. Define the sequence of sets Bn = {ak | k ≥ n} and the sequence
of numbers bn = sup(Bn), so that

lim sup
n→∞

an = lim
n→∞

bn.

We note that B1 ⊃ B2 ⊃ . . ., which implies sup(B1) ≤ sup(B2) ≤ . . .,
which means that {bn} is monotone decreasing.

Furthermore, since (an) is bounded, there exists some −∞ < M < ∞
so that an ≥M for all n ∈ N.

But this M is a lower bound for (an), which means it must be a
lower bound for Bn for all n ∈ N, which means bn = sup(Bn) ≥ M for
all n ∈ N as well.
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Thus, we have shown that {bn} is a monotone decreasing sequence that
is bounded from below. Hence, by the monotone convergence theorem,
it has a limit and so

lim sup
n→∞

an = lim
n→∞

bn

exists.

The proof for the lim inf statement follows a similar path. �
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23. Proof. Since (an) is unbounded, for all 0 < M < ∞ there exists
n = n(M) satisfying |an| > M .

Define the subsequence {bk} by setting bk = an(k), so that |bk| > k for
all k ∈ N. Since this is an infinite sequence, we have by the Pigeonhole
Principle that at least one of the two sets I+ = {k ∈ N | bk ≥ 0},
I− = {k ∈ N | bk ≤ 0} is infinite.

In the case that I+ is infinite, write the elements i1 < i2 < i3 < . . .
in order and define the subsequence {c`} of {bn} by the formula
c` = bi` = an(i`). But then for all n, we have

sup{ak | k ≥ n} ≥ sup{an(i`) | ` ≥ n}
= sup{ck | k ≥ n} ≥ sup{k | k ≥ n} =∞.
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Thus,

lim sup
n→∞

an =∞.

The case that I− is infinite is essentially the same, with the conclusion

lim inf
n→∞

an = −∞.

This completes the proof. �

As an aside, if I−, I+ are both infinite, then we have

lim sup
n→∞

an =∞, lim inf
n→∞

an = −∞,

which you can check holds for sequences such as an = (−n)n, say.
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24. Proof. Fix ε > 0. Then there exists some Nε ∈ N such that, for all
m > Nε, the following inequalities all hold:

ε

2
+ lim sup

n→∞
an ≥ am ≥ −

ε

2
+ lim inf

n→∞
an

ε

2
+ lim sup

n→∞
bn ≥ bm ≥ −

ε

2
+ lim inf

n→∞
bn.

Adding the left-hand sided inequalities, we get:

am + bm ≤ ε+ lim sup
n→∞

an + lim sup
n→∞

bn.

We conclude with our first desired inequality,

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.
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To obtain the reverse inequality, again fix ε > 0. Then there exists a
sequence {kn} so that

bkm ≥ −
ε

2
+ lim sup

n→∞
bn for all m.

Chopping off the finitely-many terms in the sequence occurring before
the threshold Nε and applying the above inequalities, we have, for all
m ∈ N:

akm + bkm ≥ −
ε

2
+ lim inf

n→∞
an −

ε

2
+ lim sup

n→∞
bn.

We conclude with the desired reverse inequality,

lim sup
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim sup
n→∞

bn.
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For the second question, consider the sequences

an = (−1)n, bn = (−1)n+1.

It is clear that an + bn = 0 for all n, so lim sup
n→∞

(an + bn) = 0. However,

lim sup
n→∞

an = lim sup
n→∞

bn = 1. �

P. Boily (uOttawa) 109


