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Mathematical Analysis Chapter 5 — Differential and Integral Calculus

Overview

We have spent a fair amount of time and energy on concepts like the limit,

continuity, and uniform continuity, with the goal of making differential and
integral calculus sound.

In this chapter, we

» introduce the concepts of differentiability and Riemann-integrability for
functions, and

= prove a number of useful calculus results.
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Outline

5.1 — Differentiation (p.3)
= Mean Value Theorem (p.20)
= Taylor Theorem (p.28)
= Relative Extrema (p.35)

5.2 — Riemann Integral (p.43)
= Riemann Criterion (p.59)
= Properties of the Riemann Integral (p.68)
» Fundamental Theorem of Calculus (p.88)
= Evaluation of Integrals (p.96)

5.3 — Exercises (p.101)
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5.1 — Differentiation

Let I/ C R be aninterval, f : I — R, and ¢ € I. The real number L is the
derivative of f at ¢, denoted by f'(c¢) = L, if

z) — f(c)

r —C

Ve > 0,36 >0st. x€land 0 < |[z—c| < ). = |f( —L'<5.

In that case, we say that f is differentiable at c. This definition simply
states that f’(c) exists if limf(xa)::f(c) exists, and that, in that case,

Tr—rC

f’(C) — lim f(x) B f(C)

T—C €T — C
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While f'(c) € R (if it exists), f' : I — R is the derivative function.

Example:

Theorem 39. /ff: I — R has a derivative at c, then f is continuous at c.

Proof.
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However, the converse of Theorem 38 does not always hold. For instance,
the function |- | : R — R is continuous at x = 0, but it has no derivative

there as |z|/x has no limit when x — 0.
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Continuity is a necessary condition for differentiability, but it is not sufficient.

In fact, it is not too difficult to find functions that are continuous
everywhere, but nowhere differentiable.

Example:

That it took so long to find an example is mostly due to the fact that the
definition of a function has evolved a fair amount over the last 200 years.
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Theorem 40. Let I be an interval, c € I, o« € R, and f,g : I — R be
differentiable at c, with g(c) # 0. Then

(a) af is differentiable at ¢ and (af)'(c) = af'(c),
(b) f + g is differentiable at ¢ and (f + g)'(c) = f'(¢c) + ¢'(¢);
(c) fg is differentiable at ¢ and (fg)'(c) = f'(c)g(c) + f(c)g'(c);

f'(c)g(c) — fle)g'(c)
9(c)]? |

(d) f/g is differentiable at c and (f/g) (c) =

Proof. In all instances, we compute the limit of the differential quotient,
taking into account the fact that f and g are differentiable at c.
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(a)
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(b)
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(c)
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By mathematical induction, we can easily show that

Yl ©=Y e and [[[5] @@= (T1#©) s,
i=1 i=1 i=1 i=1 i
if f1,..., f, are all differentiable at c. In particular, if fi =--- = f,,, then

(f")'(e) = nf" ") f(e).
Consider the identity function f. Then for ¢ € R,

@) =lim =S =1, = (f")(2) = nf" @) - (@) = na"!

rT—=c T — C

for all x € R, n € N, which can be extended to n € Z using Theorem 40d.
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Theorem 41. (CARATHEODORY)

Let I = |a,b]l and f: I — R. Then f is differentiable at ¢ € I if and only
if 3p. : I — R, continuous at ¢ such that f(x) — f(c) = p.(x)(x — ¢), for
all x € I. In that case, p.(c) = f'(c).

Proof.
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It is important to recognize that (. is not, as a function, the same as f’,
in general — it is only at c that they can be guaranteed to coincide,

although in certain cases (such as when f is a linear function), f'(z) = ¢.(x)
for all cin 1.

Carethéodory’'s Theorem can be used to prove the Chain Rule of calculus.
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Theorem 42. (CHAIN RULE)
Let I, J be closed bounded intervals, g : I — R and f : I — R be functions

such that f(J) C I, and let ¢ € J, with d = f(c). If f is differentiable
at ¢ and g is differentiable at d, then the composition go f : J — R is

differentiable at ¢ and (go f)'(c) = ¢'(f(¢))f'(c) = ¢ (d)f'(c).

Proof.
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Example:

Example:
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5.1.1 — Mean Value Theorem

Let / be an interval. A function f : I — R has a relative maximum at
c € I if 40 > 0 such that

f(x) < f(e), Ve Vs(c)=(c—46d,c+9);
it has a relative minimum at ¢ € [ if 30 > 0 such that
f(x) > f(c), VzeVs(c)=(c—0d,c+59).

If f has either a relative maximum or a relative minimum at ¢, we say that
It has a relative extremum at c.
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Note that the definition of relative extremum makes no mention of continuity
or differentiability.

Theorem 43. Let f:[a,b] = R, c € (a,b). If f has a relative extremum
at ¢ and if f is differentiable at c, then f'(c) = 0.

Proof.
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This result justifies the common practice of looking for relative extrema at
roots of the derivative. Note that ¢ is not an endpoint of the interval, and
so we must also included them in the search for extrema. What happens if
f is not differentiable at ¢ in Theorem 437
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The next theorem has far-reaching consequences.

Theorem 44. (ROLLE)

Let f : |a,b] — R be continuous on |a,b] and differentiable on (a,b). If
f(a) = f(b) =0, Jc € (a,b) such that f'(c) = 0.

Proof.
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The Mean Value Theorem is an easy corollary of Rolle's Theorem.

Theorem 45. (MEAN VALUE THEOREM)
Let f : |la,b] — R be continuous on |a,b]|. If f is differentiable on (a,b),
dc € (a, b) such that f(b) — f(a) = f'(c)(b— a).

Proof.
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Theorem 46. Let f : [a,b] — R be continuous on [a,b| and differentiable
n (a,b). If f' =0 on (a,b), then f is constant on [a, ).

Proof.
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An illustration of Rolle's Theorem (left); Mean Value Theorem (right).
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5.1.2 — Taylor Theorem

Taylor's Theorem is used extensively in applications. It is, in a way, an
extension of the Mean Value Theorem to higher order derivatives.

We can naturally obtain the higher-order derivatives of a function f
by formally applying the differentiation rules repeatedly.

Hence, /2 = " = (f'), f® = [ = (/") = ((f)))’, ete.

Suppose f = f(O can be differentiated n times at z = zp. The nth
Taylor polynomial of f at x =z is

nof@)
Pn(x;fax0> :Zfz—(fvo)

1=0

(x — x0)".
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Theorem 47. (TAYLOR)

Let n € N and f : [a.b] — R be such that f and its derivatives
fof" ..., f) are continuous on [a,b], and f"t1) exists on (a,b). If
xg € |a,b], then for all x # x¢ € |a,b], Ic between x and xq such that

F" ()

(n - 1)' )n+1.

f(x) = Pu(x; f, z0) +

(x — xg

Proof.
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Example: Use Taylor's Theorem with n = 2 to approximate +/1 4+ x
near xo = 0 (for x > —1).

Solution.
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5.1.3 — Relative Extrema

We end this section by giving a characterization of relative extrema using
the derivative.

A function f : I — R is increasing (resp. decreasing) if

f(x1) < f(we), (resp. f(z1) > f(z2)) Vayp <wzy €l

If the inequalities are strict, then the function is strictly increasing (resp.
strictly decreasing).

A function that is either increasing or decreasing (exclusively) is monotone.
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If the function is also differentiable, then a link exists.

Theorem 48. Let f :[a,b] — R be continuous on |a,b|, differentiable on
(a,b). Then f is increasing on |a,b] if and only if f* > 0 on (a,b).

Proof.
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Theorem 48 holds for decreasing functions as well (after having made
the obvious changes to the statement). If we switch to strictly monotone
functions, only one direction holds in all cases — which one?
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The next result is a celebrated result from calculus.

Theorem 49. (F1RST DERIVATIVE TEST)
Let f be continuous on |a,b] and let ¢ € (a,b). Suppose f is differentiable
on (a,c) and on (b, c), but not necessarily at c. Then

(a) if AVs(c) C |a,b] such that f'(x) >0 forc—d < x < cand f'(x) <0
forc < x < c—+ 0, then f has a relative maximum at c;

(b) if AVs(c) C la,b] such that f'(x) <0 forc—06 <x <cand f'(x) >0
forc < x < c+ 9, then f has a relative minimum at c.

Proof.
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The converse of the First Derivative Test is not necessarily true. For
instance, the function defined by

flz) =

has an absolute minimum at z = 0, but it has derivatives of either sign on
either side of any neighbourhood of z = 0.

We end this section with a rather surprising result.

Theorem 50. (DARBOUX)
Let f : |a,b] — R be differentiable, continuous on [a,b] and let k be strictly
confined between f’(a) and f'(b). Then dc € (a,b) with f'(c) = k.
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Proof.

Darboux’'s Theorem states that the derivative of a continuous function,
which needs not be continuous, nevertheless satisfies the intermediate value

property.
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There are a number of other results which could be shown about
differentiable functions, but that are left as exercises. Let f : (a,b) — R be
differentiable on (a,b), with f'(x) # 0. Then

= f is monotone on (a,b) and f((a,b)) is an open interval («, 5);

= f has an inverse f~!: (a, 8) — R such that

[Hf@) ==, f(f'(y) =y, VYoel(ab),ye (ap),

= f~1is differentiable on (a, 3), with
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5.2 — Riemann Integral

Calculus as a discipline only took flight after Newton announced his theory
of fluxions. With Leibniz" independent discovery that the reversal of the
process for fining tangents lea to areas under curves, integration was born.

Riemann was the first to study integration as a process separate from
differentiation.

We start by studying the integration of a functions R — R. Later on,
you will tackle integration of functions R™ — R; and, eventually, of
functions R” — R".
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Let [ = |a,b]. A partition P of [a,b] is a subset P = {xg,...,x,} C I
such that
a=9g< 1< < Tpo1<xy=">.

If f: 1 — R is bounded and P is a partition of I, the sum
L(P, f) = Zmz(:ﬂz — a?i_l) < 00, U(P, f) = Z Mz(.ilj‘z — xi_l) < 00,
i=1 '

where
m; = inf{f(x) |z € [z;_1,7;]}, M;=sup{f(x) |z € |r;_1,x;]}, 1<i<nm

are the lower and the upper sum of f corresponding to P, respectively.
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If f:1 — R, we can give a graphical representation of these sums.

Jd M

L*

& 3
r v
Yo= O =%, %2 o %

L(P; f) is the area of the union of the rectangles with base [z} _1, 2] and
height my, and U(P; f) is the area of the union of the rectangles with base
[xk_1, 7] and height Mj.
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In general, a partition () of I is a refinement of a partition P of I if P C ().

Example:

Lemma 1. Let I =|a,b] and f: I — R be bounded. Then
(a) L(P; f) <U(P;f) for any partition P of I;

(a) L(P; f) < L(Q; f) and U(Q; f) < L(Q; f) for any refinement (Q O P
of I, and

(a) L(Py; f) <U(Ps; f) for any pair of partitions Py, Py of I.
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Proof.

(a)

(b)
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Let [ = [a,b] and f: I — R be bounded. The lower integral of f on [ is

the number
L(f) =sup{L(P; f) | P a partition of I}.
The upper integral of f on [ is the number

U(f)=inf{U(P; f) | P a partition of I}.

Since f is bounded on I, 3m, M such that m < f(z) < M for all x € I.
Consider the trivial partition Py = {a,b}. Since any partition P of [ is a
refinement of F,, we thus have

L(P; f) SU(Fy; f) < M(b—a) and U(P;[f) = L(Fy f) = m(b—a).

Thus L(f), U(f) exist, by completeness. But we can say more.
Theorem 51. Let f:[a,b] — R be bounded. Then L(f) <U(f).
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Proof.

When L(f) = U(f), we say that f is Riemann-integrable on |a,b];
the integral of f on |a,b] is the real number

L(f)ZU(f):/abf:/abf(a;)da;.
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By convention, we define fff = — [ f when b < a. Note that [ f =0
for all bounded functions f.

Example: Show directly that the function defined by h(z) = z? is Riemann-

3

integrable on [a,b], b > a > 0. Furthermore show that f; h = bs%
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Proof.
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Example: Show directly that the Dirchlet function defined by

1, z€Q

flz) = 0. z¢Q

is not Riemann-integrable on [0, 1].

Proof.
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This last example underlines some of the shortcomings of the Riemann
integral.

The integral of this function should really be 0 on [0, 1]: the set R\ Q is so
much larger than QQ that whatever happens on Q should largely be irrelevant.

There are various theories of integration — as we shall see in a later
chapter, the Lebesgue-Borel integral of f on [0,1] is indeed 0.

Other issues arise with the Riemann integral, which we will discuss in
the coming sections.

P. Boily (uOttawa) 58



Mathematical Analysis Chapter 5 — Differential and Integral Calculus

5.2.1 — Riemann Criterion

For the time being, we will focus on two fundamental questions associated
with the Riemann integral of a function over an interval |a,b]:

But the direct approach is cumbersome, even for the simplest of functions.

The following result allows us to bypass the need to compute L(f) and
U(f) to determine if a function is Riemann-integrable or not.

Theorem 52. (RIEMANN’S CRITERION)

Let I = [a,b] and f : I — R be a bounded function. Then f is Riemann-
integrable if and only if Ve > 0, 4P- a partition of I such that the lower sum
and the upper sum of f corresponding to P. satisfy U(P.; f)—L(P:; f) < ¢.
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Proof.
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The Riemann Criterion is illustrated below for a continuous function:

| s U@ LR
..—""'.f’)-\\'_/.'-'“ |

: __+=._(-—h___-_,_+_
(L f“

The smaller the shaded area is, the closer U(P; f) and L(P; f) are to fjf
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There are 2 instances where the Riemann-integrability of a function f on
la, b] is guaranteed: when f is monotone, and when it is continuous.

Theorem 53. LetI = |a,b] and f : I — R be a monotone function on I.
Then f is Riemann-integrable on I.

Proof.
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Theorem 54. Let I = [a,b] and f : I — R be continuous, with a < b.
Then f is Riemann-integrable on 1.
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Proof.
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5.2.2 — Properties of the Riemann Integral

The Riemann integral has a whole slew of interesting properties.

Theorem 55. (PROPERTIES OF THE RIEMANN INTEGRAL)
Let I =a,b] and f,g : I — R be Riemann-integrable on I. Then

(a) f + g is Riemann-integrable on I, with f;(f +g) = f;f + f; g,
(b) ifk € R, k- f is Riemann-integrable on I, with f;k - f = kff f:
(c) if f(x) < g(x)Vz €I, then f;f < f;g and

(d) if|f(z)| < K V& € I, then ‘f;f’ < K(b—a)
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Proof. We use a variety of pre-existing results.

(a)
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(b)
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(c)
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When all the functions involved are non-negative, these results and the next
one are compatible with the area under the curve from calculus (more on
this in the next section).
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Theorem 56. (ADDITIVITY OF THE RIEMANN INTEGRAL)
Let I = [a,b], ¢ € (a,b), and f : I — R be bounded on I. Then f is
Riemann-integrable on I if and only if it is Riemann-integrable on I; = |a, ]|

and on Iy = [c,b]. When that is the case, f;f = ["f+ fcbf.

Proof.
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Theorem 57. (COMPOSITION THEOREM FOR INTEGRALS)

Let I = |a,b] and J = |a,B], f : I — R Riemann-integrable on I,
¢ : J — R continuous on J and f(I) C J. Then oo f : I — R is
Riemann-integrable on 1.

Proof.
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The proof of Composition Theorem requires the intervals I and J to be
closed, as the following example shows.

Example:

Note, however, that there are examples of functions defined on open
intervals for which the conclusion of the Composition Theorem holds.

Example:
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The Composition Theorem can be used to show a variety of results.

Theorem 58. Let] =|a,b] and f,g: I — R be Riemann-integrable on I.
b b
I f < L1

Then fg and |f| are Riemann-integrable on I, and

Proof.
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Note that even though the product of Riemann-integrable functions is
: . : . : b, .
itself Riemann-integrable there is no simple way to express fa fg in terms

of [*fand ['g.
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A surprising result is that the composition of Riemann-integrable functions
need not be Riemann-integrable. A counter example is provided below.

Example:
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5.2.3 — Fundamental Theorem of Calculus

With Descartes’ creation of analytical geometry, it became possible to find
the tangents to curves that could be described algebraically.

Fermat then showed the connection between that problem and the problem
of finding the maximum/minimum of a (continuous) function.

Newton and Leibniz, in the 1680s, then discovered that computing the
area underneath a curve is exactly the opposite of finding the tangent.

Calculus provided a general framework to solve problems that had hiterto
been very difficult to solve (and even then, only in specific circumstance).

In this section, we study the connection between these concepts.
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Theorem 59. (FUNDAMENTAL THEOREM OF CALCULUS, 1ST VERSION)
Let I = [a,b], f: 1 — R be Riemann-integrable on I, and F' : I — R be
such that F is continuous on I and differentiable on (a,b). If F'(x) = f(x)

for all x € (a,b), then fff = F'(b) — F(a).

Proof.
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This classical calculus result is quite useful in applications.

We will see in a later chapter that the Fundamental Theorem of Calculus
(1st version) is a special case of the general result known as Stokes'
Theorem.
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Theorem 60. (FUNDAMENTAL THEOREM OF CALCULUS, 2ND VERSION)
Let I = [a,b], f: I — R be Riemann-integrable on I, and define a function
F:1—RbyF(z)=[f. Then F is continuous on I. Furthermore, if f
is continuous at ¢ € (a,b), then F is differentiable at ¢ and F'(c) = f(c).

Proof.
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The first version of the Fundamental Theorem Calculus provides a
justification of the method used to evaluate definite integrals in calculus;
the second version, which allows the upper bound of the Riemann integral
to vary, provides a basis for finding antiderivatives.

Let I = [a,b] an f: I — R. An antiderivative of f on [ is a differentiable
function F': I — R such that F'(z) = f(x) for all x € I.

If f is Riemann-integrable on I, the function F' : I — R defined by
F(z) = fax f for x € I is the indefinite integral of f on I.

If f is Riemann-integrable on I and if F'is an antiderivative of f on I, then

/abf:F(b) ~ Fla).
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However, Riemann-integrable functions on I may not have antiderivatives
on I (such as the signum and Thomae's functions), and functions with
antiderivatives may not be Riemann-integrable on I (such as the reciprocal
of the square root function on [0, 1]).

If f is Riemann-integrable on I, then F(x) = f;f exists. Moreover,
if f is continuous on I, than F' is an antiderivative of f on I, since
F'(x) = f(x) for all x € 1.

Continuous functions thus always have antiderivatives (even if they can't
be expressed using elementary functions).

But if f is not continuous on I, the indefinite integral F' may not be
an antiderivative of f on I — it may fail to be differentiable at certain points
of I, or F’ may exists but be different from f at various points of I.
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5.2.4 — Evaluation of Integrals

We complete this chapter by presenting some common methods used to
evaluate integrals.

We provide the proof of two well-known calculus results.

Theorem 61. (INTEGRATION BY PARTS)
Let f,g : |a,b] — R both be Riemann-integrable on l|a,b], with
antiderivatives F, G : |a,b] — R, respectively. Then

b b
/ Fg= F(O)G(b) — F(a)Gla) — / fG.
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Proof.

Theorem 62. (FIRST SUBSTITUTION THEOREM)
Let J = |a, 8], and ¢ — R be a function with a continuous derivative on
J. If f: I — R is continuous on I = |a,b] D p(J), then

/j(f o)y’ = /:j) f
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Proof.
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Theorem 63. (SECOND SUBSTITUTION THEOREM)
Let J = |a, B], and ¢ — R be a function with a continuous derivative on

J and such that ¢’ #0 on J. Let I = |a,b] O ¢(J), and ¢ : I — R be the
inverse of ¢ (which exists as o is montoone). If f : I — R is continuous

on I, then
6 v (B) /
[ ree= [ pv
a p(a)
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Theorem 64. (MEAN VALUE THEOREM FOR INTEGRALS)
Let I = |a,b], f : I — R be continuous on I, and p : I — R be
Riemann-integrable on I, with p > 0 on I. Then dc € (a,b) such that

/abfpz f(c) /abp.

Theorem 65. (SQUEEZE THEOREM FOR INTEGRALS)
Let I = |a,b] and f < g < h:I — R be bounded on I. If f h are

Riemann-integrable on I with f; f = f; h, then g is Reimann-integrable on
Tand [[g= [, f=[h

The proofs of these three last theorems are left as an exercise.
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5.3 — Exercises

1. Use the definition to find the derivative of the function defined by g(z) = 1, z € R,
x % 0.

2. Prove that the derivative of an even differentiable function is odd, and vice-versa.

3. Leta > b > 0and n € N with n > 2. Show that a'/™ — b'/" < (a — b)'/™.

4. Let f : [a,b] — R be continuous on [a, b] and differentiable on (a, b). Show that if
lim f'(x) = A, then f'(a) exists and equals A.

r—a

5. Ifa:>0,show1—i—%a:—%a:2§\/l—l—acgl—l—%a:.
6. Let a € Rand f : R — R be defined by

2 .
x® ifx >0,
xTr) = T
/(@) {aw if £ < 0.

For which values of a is f differentiable at * = 07 For which values of a is f
continuous at x = 07

P. Boily (uOttawa) 101



Mathematical Analysis Chapter 5 — Differential and Integral Calculus

10.

11.

12,

Let f : [a,b] — R be continuous on [a, b] and differentiable on (a, b). Show that f
is Lipschitz if and only if f’ is bounded on (a, b).

Prove that fol g=1if
g(z) = {1 i (%’11] -
0 z€|0,s]
Is that still true if g(5) = 7 instead?
Let f : [a,b] — R be bounded and s.t. f(z) > 0 Vx € [a, b]. Show L(f) > 0.
Let f : [a, b] — R be increasing on [a, b]. If P, partitions [a, b] into n equal parts,
show that

0 < U(Pn;f)—/bfé T =1, o),

Let f : [a, b] — R be an integrable function and let € > 0. If P. is the partition whose
existence is asserted by the Riemann Criterion, show that U(P; f) — L(P; f) < €
for all refinement P of P..

Let @ > 0 and J = [—a,a]. Let f : J — R be bounded and let P* be the set of
symmetric partitions of J that contain 0. Show L(f) = sup{L(P; f): P € P"}.
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13. Let a > 0 and J = [—a,a]. Let f be integrable on J. |If f is even (i.e.
f(—=z) = f(x) for all x), show that

r-afs

If fisodd (i.e. f(—x) = — f(x) for all ), show that ' f =0.

14. Give an example of a function f : [0, 1] — R that is not integrable on [0, 1], but s.t.
| f] is integrable on [0, 1].

15. Let f : [a,b] — R be integrable on [a, b]. Show |f] is integrable on [a, b] directly
(without using a result seen in class).

16. If f is integrable on [a,b] and 0 < m < f(x) < M for all x € [a, b], show that

1/2

1 .
mglb_a/af] < M.
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17. If f is continuous on [a,b] and f(x) > O for all x € [a, b], show there exists

c € |a, b] s.t. /
1 b , 1/2
£lo) = [—b_a/a f]-

18. If f is continuous on [a, b] and f(x) > O for all z € [a, b], show that % is integrable
on [a, b].
19. Let f be continuous on [a, b]. Define H : [a,b] — R by

H(x) :/bf for all z € |[a, b].

Find H'(x) for all x € [a, b].
20. Suppose f : [0, 00) — R is continuous and f(x) # O for all x > 0. If

2 ' for all 0
(f(x)) 2/Of or all & > 0,

show that f(x) = x for all z > 0.
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21. Let f, g : [a,b] — R be continuous and s.t.

[1-0>

Show that there exists ¢ € [a, b] s.t. f(c) = g(c).
22. If f : [0,1] — Ris continuous and [ f = f; f for all x € [0, 1], show that f = 0.
23. Let f : [0,3] — R be defined by

(& x € [0,1)
flx)=<21 =z€]l,2).
& x € [2, 3]

Find F' : [0, 3] — R, where

F(x):/oxf.

Where is F' differentiable? What is F’ there?
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24.

25.

26.
27.

Let f : [a, b] — R be continuous, f > 0 on |[a, b], and f;f = 0. Show that f =0
on [a, b].
Let f : [a,b] — R be continuous and let fabf = 0. Show Jc € [a, b] such that
f(c) =0,

d [* ;2
Compute — e dt.
dx J_,
Let f : [a, b] — R be Riemann-integrable on [a 4 §, b] and unbounded in the interval

(a,a + &) for every 0 < & < b — a. Define

b b
= lim :
/a d §—07F /a+6 d

where § — 0" means that 6 — 0 and 6 > 0. A similar construction allows us to

define
b b—5
= lim )

Such integrals are said to be improper; when the limits exist, they are further said to
be convergent.
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28.
29.

30.
31.

32.

1

Vx|

it convergent? If so, what is its value?

1
How can the expression / dx be interpreted as an improper integral? Is
0

For which values of s does the integral fol x® dx converge?
Let G : R — R be defined according to
z? sin (%) x #0

x

0 r =20

G(x) =

Show that G is the antiderivative of some function g : [0, 1] — R, but that g is not
Riemann-integrable on [0, 1].
Show that the indefinite integral of sgn is not an antiderivative of sgn on [—1, 1].

Let f : R — R be Thomae's function. Show that the indefinite integral of f on [1, 2]
is not an antiderivative of f on [1, 2].

. . . s e —t2/2
Without evaluating the integrals, show that e dt = 3 te dt.
1 4
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Solutions

1. Proof.
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2. Proof.
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3. Proof.
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4. Proof.
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5. Proof.
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