Mathematical Analysis

Chapter 6 Sequences of Functions

P. Boily (uOttawa)

Winter 2022

P. Boily (uOttawa)

Overview

We now look at sequences of functions, which arise naturally in analysis and its applications.

In particular, we will

- discuss two types of convergence (pointwise and uniform), and
- prove some limit interchange theorems.

Outline

- 6.1 Pointwise and Uniform Convergence (p.3)
- 6.2 Limit Interchange Theorems (p.14)
- 6.3 Exercises (p.28)

6.1 – Pointwise and Uniform Convergence

Let $A \subseteq \mathbb{R}$ and $(f_n)_n$ be a sequence of functions $f_n : A \to \mathbb{R}$.

The sequence $(f_n(x))_n$ may converge for some $x \in A$ and diverge for others.

Let $A_0 = \{x \in A \mid (f_n(x))_n \text{ converges}\} \subseteq A$. For each $x \in A_0$, $(f_n(x))$ converges to a unique limit

$$f(x) = \lim_{n \to \infty} f(x),$$

the **pointwise limit** of (f_n) , which we denote by $f_n \to f$ on A_0 .

P. Boily (uOttawa)

Examples:

1. Let $f_n : \mathbb{R} \to \mathbb{R}$ be defined by $f_n(x) = \frac{x}{n}$ for all $n \in \mathbb{N}, x \in \mathbb{R}$, and let f be the zero function on \mathbb{R} . Show that $f_n \to f$ on \mathbb{R} .

Proof.

2. Let $f_n : \mathbb{R} \to \mathbb{R}$ be defined by $f_n(x) = x^n$ for all $n \in \mathbb{N}, x \in \mathbb{R}$, and let f be the zero function on \mathbb{R} , except at x = 1 where f(1) = 1. Show that $f_n \to f$ on (-1, 1].

Proof.

3. Let $f_n : \mathbb{R} \to \mathbb{R}$ be defined by $f_n(x) = \frac{x^2 + nx}{n}$ for all $n \in \mathbb{N}, x \in \mathbb{R}$, and let f be the identity function on \mathbb{R} . Show that $f_n \to f$ on \mathbb{R} .

Proof.

A sequence of functions $(f_n : A \to \mathbb{R})$ converges uniformly on $A_0 \subseteq A$ to $f : A_0 \to \mathbb{R}$, denoted by $f_n \rightrightarrows f$ on A_0 , if the threshold $N_{\varepsilon,x} \in \mathbb{N}$ in the pointwise definition is in fact **independent** of $x \in A_0$:

$$\forall \varepsilon > 0, \ \exists N_{\varepsilon} \in \mathbb{N} \text{ such that } n > N_{\varepsilon} \text{ and } x \in A_0 \implies |f_n(x) - f(x)| < \varepsilon.$$

The distinction between pointwise and uniform convergence is not unlike that between continuity and uniform continuity: convergence is uniform if the threshold is the same for all $x \in A_0$.

P. Boily (uOttawa)

Clearly, if $f_n \rightrightarrows f$ on A_0 , then $f_n \rightarrow f$ on A_0 , but the converse is not necessarily true.

Examples:

1. Show that the sequence $f_n : [1,2] \to \mathbb{R}$ defined by $f_n(x) = \frac{\sin x}{nx}$ for $n \in \mathbb{N}$ converges uniformly to the zero function on [1,2].

Proof.

2. Let $f_n : \mathbb{R} \to \mathbb{R}$ be defined by $f_n(x) = x^n$ for all $n \in \mathbb{N}, x \in \mathbb{R}$, and let f be the zero function on \mathbb{R} , except at x = 1 where f(1) = 1. Show that $f_n \not \simeq f$ on (-1, 1].

Proof.

A sequence of functions f_n does not converge uniformly to f on A_0 if

 $\exists \varepsilon_0 > 0 \text{ with } (f_{n_k}) \subseteq (f_n) \text{ and } (x_k) \subseteq A_0 \text{ s.t. } |f_{n_k}(x_k) - f(x_k)| \ge \varepsilon_0, \forall k \in \mathbb{N}.$

The definition of uniform convergence is only ever useful if a candidate for a uniform limit is available, a situation that we have encountered before.

Theorem 66. (CAUCHY'S CRITERION FOR SEQUENCES OF FUNCTIONS) Let $f_n : A \to \mathbb{R}$, for all $n \in \mathbb{N}$. Then, $f_n \rightrightarrows f$ on $A_0 \subseteq A$ if and only if $\forall \varepsilon > 0$, $\exists N_{\varepsilon} \in \mathbb{N}$ (indep. of $x \in A_0$) such that $|f_m(x) - f_n(x)| < \varepsilon$ whenever $m \ge n > N_{\varepsilon} \in \mathbb{N}$ and $x \in A_0$.

Proof.

Example: Let $f_n : [0,1] \to \mathbb{R}$ be the sequence of functions defined by

$$f_n(x) = \begin{cases} nx, & x \in [0, 1/n] \\ 2 - nx, & x \in [1/n, 2/n] \\ 0 & x \in [2/n, 1] \end{cases}$$

for all $n \in \mathbb{N}$. Let $f : [0,1] \to \mathbb{R}$ be the zero function on [0,1]. Show that $f_n \to f$ on [0,1] but $f_n \not\cong f$ on [0,1].

Proof.

The fact that we have to separate the proof for pointwise convergence into distinct argument depending on the value of x is a strong indication that the convergence cannot be uniform (although it could be that it was possible to do a one-pass proof and that the insight escaped us...)

Intuitively, we can think of the convergence process in the last example as being a flattening process: what happens to the tents' peak as $n \to \infty$?

The fact that we have to "break" the tents in order to get to the pointwise limit is another indication that the convergence cannot be uniform.

P. Boily (uOttawa)

descr

6.2 – Limit Interchange Theorems

It is often necessary to know if the limit f of a sequence of functions (f_n) is continuous, differentiable, or Riemann-integrable. It is not always the case, even when the f_n are continuous, differentiable, or Riemann-integrable.

Examples:

1.

3.

descr

Note that none of the "convergences" in the previous example are uniform on [0,1]. When the convergence $f_n \rightrightarrows f$ on A is uniform, then if the f_n are

- continuous on A, so is f;
- differentiable on A, so is f, with

$$f' = \frac{d}{dx} \Big[\lim_{n \to \infty} f_n \Big] = \lim_{n \to \infty} \Big[\frac{d}{dx} f_n \Big] = \lim_{n \to \infty} f'_n;$$

• Riemann-integrable on A, then so is f, with

$$\int_{A} f = \int_{A} \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int_{A} f_n.$$

descr

We finish this chapter by proving three Limit Interchange Theorems.

Theorem 67. Let $f_n : A \to \mathbb{R}$ be continuous on A for all $n \in \mathbb{N}$. If $f_n \Rightarrow f$ on A, then f is continuous on A.

Proof.

Theorem 68. Let $f_n : [a,b] \to \mathbb{R}$ be a sequence of differentiable functions on [a,b] such that $\exists x_0 \in [a,b]$ with $f_n(x_0) \to z_0$, and $f''_n \rightrightarrows g$ on [a,b]. Then $f_n \rightrightarrows f$ on [a,b] for some function $f : [a,b] \to \mathbb{R}$ such that f' = g.

Proof.

Theorem 69. Let $f_n : [a,b] \to \mathbb{R}$ be Riemann-integrable on [a,b] for all $n \in \mathbb{N}$. If $f_n \rightrightarrows f$ on [a,b], then f is Riemann-integrable on [a,b] and

$$\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_{n}$$

Proof.

descr

6.3 – Exercises

1. Show that
$$\lim_{n \to \infty} \frac{nx}{1 + n^2 x^2} = 0$$
 for all $x \in \mathbb{R}$.

- 2. Show that if $f_n(x) = x + \frac{1}{n}$ and f(x) = x for all $x \in \mathbb{R}$, $n \in \mathbb{N}$, then $f_n \rightrightarrows f$ on \mathbb{R} but $f_n^2 \not\rightrightarrows g$ on \mathbb{R} for any function g.
- 3. Let $f_n(x) = \frac{1}{(1+x)^n}$ for $x \in [0, 1]$. Denote by f the pointwise limit of f_n on [0, 1]. Does $f_n \Rightarrow f$ on [0, 1]?
- 4. Let (f_n) be the sequence of functions defined by $f_n(x) = \frac{x^n}{n}$, for $x \in [0, 1]$ and $n \in \mathbb{N}$. Show that (f_n) converges uniformly to a differentiable function $f : [0, 1] \rightarrow \mathbb{R}$, and that the sequence (f'_n) converges pointwise to a function $g : [0, 1] \rightarrow \mathbb{R}$, but that $g(1) \neq f'(1)$.

5. Show that
$$\lim_{n \to \infty} \int_{1}^{2} e^{-nx^{2}} dx = 0.$$

- 6. Show that $\lim_{n \to \infty} \int_{\pi/2}^{\pi} \frac{\sin(nx)}{nx} dx = 0.$
- 7. Show that if $f_n \Rightarrow f$ on [a, b], and each f_n is continuous, then the sequence of functions $(F_n)_n$ defined by

$$F_n(x) = \int_a^x f_n(t) \, dt$$

also converges uniformly on [a, b].

Solutions

1. **Proof.**

P. Boily (uOttawa)