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descr Chapter 6 – Sequences of Functions

Overview

We now look at sequences of functions, which arise naturally in analysis
and its applications.

In particular, we will

discuss two types of convergence (pointwise and uniform), and

prove some limit interchange theorems.
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Outline

6.1 – Pointwise and Uniform Convergence (p.3)

6.2 – Limit Interchange Theorems (p.14)

6.3 – Exercises (p.28)
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6.1 – Pointwise and Uniform Convergence

Let A ⊆ R and (fn)n be a sequence of functions fn : A→ R.

The sequence (fn(x))n may converge for some x ∈ A and diverge for
others.

Let A0 = {x ∈ A | (fn(x))n converges} ⊆ A. For each x ∈ A0, (fn(x))
converges to a unique limit

f(x) = lim
n→∞

f(x),

the pointwise limit of (fn), which we denote by fn → f on A0.
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Examples:

1. Let fn : R→ R be defined by fn(x) =
x
n for all n ∈ N, x ∈ R, and let f

be the zero function on R. Show that fn → f on R.

Proof. Let ε > 0 and x ∈ R. According to the Archimedean Property,
∃Nε,x > |x|ε so that

n > Nε,x =⇒
∣∣x
n − 0

∣∣ < |x|n < |x|
Nε,x

< ε,

thus fn → 0 on R. �

2. Let fn : R → R be defined by fn(x) = xn for all n ∈ N, x ∈ R, and let
f be the zero function on R, except at x = 1 where f(1) = 1. Show
that fn → f on (−1, 1].
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Proof. Using various results seen in Chapters 3 and 4 and in the
Exercises, we know that

lim
n→∞

xn =


0 x ∈ (−1, 1)
1 x = 1

NA otherwise

Thus fn → f on (−1, 1]. Note that all fn are continuous on (1, 1], but
that f is not. �
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3. Let fn : R → R be defined by fn(x) =
x2+nx
n for all n ∈ N, x ∈ R, and

let f be the identity function on R. Show that fn → f on R.

Proof. As fn(x) =
x2

n + x→ f(x) = x, ∀x ∈ R, fn → f on R. �

A sequence of functions (fn : A → R) converges uniformly on A0 ⊆ A
to f : A0 → R, denoted by fn ⇒ f on A0, if the threshold Nε,x ∈ N in the
pointwise definition is in fact independent of x ∈ A0:

∀ε > 0, ∃Nε ∈ N such that n > Nε and x ∈ A0 =⇒ |fn(x)− f(x)| < ε.

The distinction between pointwise and uniform convergence is not unlike
that between continuity and uniform continuity: convergence is uniform if
the threshold is the same for all x ∈ A0.
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Clearly, if fn ⇒ f on A0, then fn → f on A0, but the converse is not
necessarily true.

Examples:

1. Show that the sequence fn : [1, 2] → R defined by fn(x) = sin x
nx for

n ∈ N converges uniformly to the zero function on [1, 2].

Proof. Let ε > 0. According to the Archimedean Property, ∃Nε > 1
ε so

that

n > Nε and x ∈ [1, 2] =⇒
∣∣∣∣sinxnx

− 0

∣∣∣∣ = ∣∣∣∣sinxnx

∣∣∣∣ ≤ 1

nx
≤ 1

n
<

1

Nε
< ε,

thus fn ⇒ 0 on [1, 2]. �
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2. Let fn : R → R be defined by fn(x) = xn for all n ∈ N, x ∈ R, and let
f be the zero function on R, except at x = 1 where f(1) = 1. Show
that fn 6⇒ f on (−1, 1].

Proof. We use the negation of the definition. Let ε0 = 1
4, and set

xk =
1

21/k
and (nk) = (k). Then

|fnk(xk)− f(xk)| =
∣∣1
2 − 0

∣∣ = 1

2
≥ ε0,

which completes the proof. �

A sequence of functions fn does not converge uniformly to f on A0 if

∃ε0 > 0 with (fnk) ⊆ (fn) and (xk) ⊆ A0 s.t. |fnk(xk)−f(xk)| ≥ ε0, ∀k ∈ N.
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The definition of uniform convergence is only ever useful if a candidate for
a uniform limit is available, a situation that we have encountered before.

Theorem 66. (Cauchy’s Criterion for Sequences of Functions)
Let fn : A → R, for all n ∈ N. Then, fn ⇒ f on A0 ⊆ A if and only
if ∀ε > 0, ∃Nε ∈ N (indep. of x ∈ A0) such that |fm(x) − fn(x)| < ε
whenever m ≥ n > Nε ∈ N and x ∈ A0.

Proof. Let ε > 0. If fn ⇒ f on A0, ∃Nε ∈ N such that |fn(x)− f(x)| < ε
when x ∈ A0 and n > Nε. Hence,

|fm(x)− fn(x)| = |fm(x)− f(x) + f(x)− fn(x)|

≤ |fm(x)− f(x)|+ |fn(x)− f(x)| <
ε

2
+
ε

2
= ε

whenever x ∈ A0 and m ≥ n > Nε.
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Conversely, let ε > 0 and assume that ∃Nε/2 ∈ N (independent of x ∈ A0)
such that

m ≥ n > Nε/2 and x ∈ A0 =⇒ −ε
2
< fm(x)− fn(x) <

ε

2
.

Since x ∈ A0, we know that fm(x)→ f on A0 when m→∞. Thus,

m ≥ n > Nε/2 and x ∈ A0 =⇒ lim
m→∞

−ε
2
≤ lim
m→∞

(fm(x)−fn(x)) ≤ lim
m→∞

ε

2
,

or

m ≥ n > Nε/2 and x ∈ A0 =⇒ −ε < −ε
2
≤ f(x)− fn(x) ≤

ε

2
< ε,

and so fn ⇒ f on A0. �
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Example: Let fn : [0, 1]→ R be the sequence of functions defined by

fn(x) =


nx, x ∈ [0, 1/n]

2− nx, x ∈ [1/n, 2/n]

0 x ∈ [2/n, 1]

for all n ∈ N. Let f : [0, 1] → R be the zero function on [0, 1]. Show that
fn → f on [0, 1] but fn 6⇒ f on [0, 1].

Proof. If x = 0, fn(0) = 0 for all n so (fn(0)) converges to 0.

If x ∈ (0, 1], ∃Nx > 2/x by the Archimedean Property. Thus, for n > Nx,
fn(x) = 0 since x > 2

N > 2
n, so fn(x)→ 0 on (0, 1]

Combining these results, fn → f on [0, 1].
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Now, let ε0 =
1
2. Note that since |fn(1n)− f(

1
n)| = 1 for all n ∈ N, we can

never obtain
|fn(x)− f(x)| < ε

for all x ∈ [0, 1], and so fn 6⇒ f on [0, 1]. �

The fact that we have to separate the proof for pointwise convergence
into distinct argument depending on the value of x is a strong indication
that the convergence cannot be uniform (although it could be that it was
possible to do a one-pass proof and that the insight escaped us...)

Intuitively, we can think of the convergence process in the last example as
being a flattening process: what happens to the tents’ peak as n→∞?

The fact that we have to “break” the tents in order to get to the pointwise
limit is another indication that the convergence cannot be uniform.
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6.2 – Limit Interchange Theorems

It is often necessary to know if the limit f of a sequence of functions (fn)
is continuous, differentiable, or Riemann-integrable. It is not always the
case, even when the fn are continuous, differentiable, or Riemann-integrable.

Examples:

1. Consider the sequence of functions fn : [0, 1]→ R defined by fn(x) = xn

for n ∈ N and f : [0, 1]→ R be the zero function except at x = 1 where
f(1) = 1. Then fn is continuous on [0, 1] for all n ∈ N, but f is not.

2. The same functions fn are differentiable on [0, 1] for all n ∈ N, but f is
not (as it is not continuous at x = 1).

P. Boily (uOttawa) 14



descr Chapter 6 – Sequences of Functions

3. Consider the functions fn : [0, 1]→ R defined by

fn(x) =


n2x, x ∈ [0, 1/n]

−n2(x− 2/n), x ∈ [1/n, 2/n]

0 x ∈ [2/n, 1]

for n ≥ 2.
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Since fn is continuous on [0, 1] for all n ≥ 2, fn is Riemann-integrable
on [0, 1] for all n ≥ 2, with

∫ 1

0

fn =
1

2
· 2
n
· n = 1, for all n ≥ 2.

If x = 0, fn(0) = 0 for all n so (fn(0)) converges to 0.

If x ∈ (0, 1], ∃Nx > 2/x by the Archimedean Property. Thus, for
n > Nx, fn(x) = 0 since x > 2

N > 2
n, so fn(x)→ 0 on (0, 1]

So fn → f on [0, 1], but

∫ 1

0

f = 0 6= 1 = lim
n→∞

∫ 1

0

f . �
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Note that none of the “convergences” in the previous example are uniform
on [0, 1]. When the convergence fn ⇒ f on A is uniform, then if the fn are

continuous on A, so is f ;

differentiable on A, so is f , with

f ′ =
d

dx

[
lim
n→∞

fn

]
= lim
n→∞

[ d
dx
fn

]
= lim
n→∞

f ′n;

Riemann-integrable on A, then so is f , with∫
A

f =

∫
A

lim
n→∞

fn = lim
n→∞

∫
A

fn.
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We finish this chapter by proving three Limit Interchange Theorems.

Theorem 67. Let fn : A → R be continuous on A for all n ∈ N. If
fn ⇒ f on A, then f is continuous on A.

Proof. Let ε > 0. By definition, ∃Hε/3 ∈ N such that

n > Hε/3 and x ∈ A =⇒ |fn(x)− f(x)| < ε
3.

Let c ∈ A. According to the Triangle Inequality,

|f(x)− f(c)| ≤ |f(x)− fHε/3(x)|+ |fHε/3(x)− fHε/3(c)|+ |fHε/3(c)− f(c)|

< ε
3 + |fHε/3(x)− fHε/3(c)|+

ε
3

whenever n > Hε/3.
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But fHε/3 is continuous at c, so ∃δε/3 > 0 such that |fHε/3(x)−fHε/3(c)| <
ε
3

when x ∈ A and |x − c| < δε/3. Thus |f(x) − f(c)| < ε whenever x ∈ A
and |x − c| < δε/3, so f is continuous at c. As c ∈ A is arbitrary, f is
continuous on A. �

Theorem 68. Let fn : [a, b]→ R be a sequence of differentiable functions
on [a, b] such that ∃x0 ∈ [a, b] with fn(x0) → z0, and f ′′n ⇒ g on [a, b].
Then fn ⇒ f on [a, b] for some function f : [a, b]→ R such that f ′ = g.

Proof. Let ε > 0 and x ∈ [a, b]. Since f ′n ⇒ g on [a, b], the sequence f ′n
satisfies Cauchy’s Criterion, and so ∃N1 ∈ N such that

m ≥ n > N1 and y ∈ [a, b] =⇒ |f ′m(y)− f ′n(y)| <
ε

2(b− a)
.
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As (fn(x0)) converges it is also a Cauchy sequence, so ∃N2 ∈ N such that

m ≥ n > N2 =⇒ |fm(x0)− fn(x0)| <
ε

2
.

According to the Mean Value Theorem, ∃y between x and x0 such that

(fm(x)− fn(x))− (fm(x0)− fn(x0)) = (f ′m(y)− f ′n(y))(x− x0).

Hence,

|fm(x)− fn(x)| ≤ |fm(x0)− fn(x0)|+ |f ′m(y)− f ′n(y)| · |x− x0|

<
ε

2
+

ε

2(b− a)
(b− a) = ε

for all m ≥ n > max{N1, N2}.
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Both N1 and N2 are independent of x, so Nε = max{N1, N2} also is, and
thus (fn)n satisfies Cauchy’s Criterion, which yields fn ⇒ f on [a, b].

It remains only to show that f ′ = g on [a, b]. Let ε > 0 and c ∈ [a, b].
Since (f ′n) satisfies Cauchy’s Criterion (as f ′n ⇒ g), ∃K1 ∈ N (independent
of x) such that

m ≥ n > K1 and y ∈ [a, b] =⇒ |f ′m(y)− f ′n(y)| <
ε

3
.

But f ′ ⇒ g′, so ∃K2 ∈ N (independent of c) such that

n ≥ K2 and c ∈ [a, b] =⇒ |f ′n(c)− g(c)| <
ε

3
.

Set Kε > max{K1,K2}.
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As f ′Kε(c) exists, ∃δε > 0 such that

0 < |x− c| < δε and x ∈ [a, b] =⇒
∣∣∣∣fKε(x)− fKε(c)x− c

− f ′Kε(c)
∣∣∣∣ < ε

3
.

According to the Mean Value Theorem, ∃y between x and c such that

(fm(x)− fn(x))− (fm(c)− fn(c)) = (f ′m(y)− f ′n(y))(x− c).

If x 6= c, then m ≥ n > Kε and x ∈ [a, b] =⇒∣∣∣∣fm(x)− fm(c)x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ = |f ′m(y)− f ′n(y)| < ε

3
.
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Letting m→∞ (i.e. fm → f on A), we get

n > Kε and x ∈ [a, b] =⇒
∣∣∣∣f(x)− f(c)x− c

− fm(c)− fn(c)
x− c

∣∣∣∣ ≤ ε

3
.

Combining all of these inequalities, for 0 < |x − c| < δε, x ∈ [a, b], and
k > Kε, we have∣∣∣∣f(x)− f(c)x− c

− g(c)
∣∣∣∣ = ∣∣∣∣f(x)− f(c)x− c

− fk(x)− fk(c)
x− c

+
fk(x)− fk(c)

x− c
− f ′k(c) + f ′k(c)− g(c)

∣∣∣∣
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≤
∣∣∣∣f(x)− f(c)x− c

− fk(x)− fk(c)
x− c

∣∣∣∣+ ∣∣∣∣fk(x)− fk(c)x− c
− f ′k(c)

∣∣∣∣
+ |f ′k(c)− g(c)| <

ε

3
+
ε

3
+
ε

3
= ε,

which is to say that f ′(c) = g(c). �

Theorem 69. Let fn : [a, b] → R be Riemann-integrable on [a, b] for all
n ∈ N. If fn ⇒ f on [a, b], then f is Riemann-integrable on [a, b] and

∫ b

a

f = lim
n→∞

∫ b

a

fn.
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Proof. Let ε > 0. Since fn ⇒ f on [a, b], ∃Kε ∈ N (independent of x)
such that

n ≥ Kε =⇒ |fn(x)− f(x)| <
ε

4(b− a)
.

Since fKε is Riemann-integrable, ∃Pε = {x0, . . . , xn} a partition of [a, b]
such that

U(Pε; fKε)− L(Pε; fKε) <
ε

2
,

according to the Riemann Criterion.

For all 1 ≤ i ≤ n, set

mi(f) = inf{f(x) | x ∈ [xi−1, xi]}, mi(fKε) = inf{fKε(x) | x ∈ [xi−1, xi]},
Mi(f) = sup{f(x) | x ∈ [xi−1, xi]}, Mi(fKε) = sup{fKε(x) | x ∈ [xi−1, xi]}.
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Then according to the reverse triangle inequality, we have

|f(x)| < |fKε(x)|+
ε

4(b− a)
=⇒ |f(x)| < Mi(fKε) +

ε

4(b− a)
on [xi−1, xi]

=⇒ Mi(f) < Mi(fKε) +
ε

4(b− a)
on [xi−1, xi].

Similarly, mi(f) ≥ mi(fKε)− ε
4(b−a) on [xi−1, xi]. Thus,

U(Pε; f) =

n∑
i=1

Mi(f)(xi − xi−1)

≤
n∑
i=1

Mi(fKε)(xi − xi−1) +
ε

4(b− a)

n∑
i=1

(xi − xi−1) = U(Pε; fKε) +
ε

4
.
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Similarly, L(Pε; f) ≥ L(Pε; fKε)− ε
4. Hence

U(Pε; f)− L(Pε; f) ≤ U(Pε; fKε)− L(Pε; fKε) +
ε

2
< ε.

Thus, according to the Riemann Criterion, f is Riemann-integrable.

Finally, let ε > 0. As fn ⇒ f on [a, b], ∃K̂ε (indep. of x) such that

n > K̂ε and x ∈ [a, b] =⇒ |fn(x)− f(x)| <
ε

2(b− a)
.

Consequently,
∫ b
a
fn →

∫ b
a
f , since n > K̂ε =⇒∣∣∣∣∣

∫ b

a

fn −
∫ b

a

f

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

(fn − f)

∣∣∣∣∣ ≤
∫ b

a

|fn − f | ≤
∫ b

a

ε

2(b− a)
=
ε

2
< ε. �
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6.3 – Exercises

1. Show that lim
n→∞

nx

1 + n2x2
= 0 for all x ∈ R.

2. Show that if fn(x) = x + 1
n and f(x) = x for all x ∈ R, n ∈ N, then fn ⇒ f on

R but f2
n 6⇒ g on R for any function g.

3. Let fn(x) = 1
(1+x)n for x ∈ [0, 1]. Denote by f the pointwise limit of fn on [0, 1].

Does fn ⇒ f on [0, 1]?

4. Let (fn) be the sequence of functions defined by fn(x) = xn

n , for x ∈ [0, 1] and

n ∈ N. Show that (fn) converges uniformly to a differentiable function f : [0, 1]→
R, and that the sequence (f ′n) converges pointwise to a function g : [0, 1]→ R, but

that g(1) 6= f ′(1).

5. Show that lim
n→∞

∫ 2

1

e
−nx2

dx = 0.
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6. Show that lim
n→∞

∫ π

π/2

sin(nx)

nx
dx = 0.

7. Show that if fn ⇒ f on [a, b], and each fn is continuous, then the sequence of

functions (Fn)n defined by

Fn(x) =

∫ x

a

fn(t) dt

also converges uniformly on [a, b].
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Solutions

1. Proof. If x = 0, then nx
1+n2x2

= 0→ 0.

If x 6= 0, let ε > 0. By the Archimedean property, ∃Nε > 1
ε|x|

(depending on x) s.t.∣∣∣∣ nx

1 + n2x2
− 0

∣∣∣∣ = n|x|
1 + n2x2

<
n|x|
n2x2

=
1

n|x|
<

1

Nε|x|
< ε

whenever n > Nε, i.e. nx
1+n2x2

→ 0 on R. �
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2. Proof. Let ε > 0. By the Archimedean property, ∃Nε > 1
ε (independent

of x) s.t.

|fn(x)− f(x)| =
∣∣∣∣x+

1

n
− x
∣∣∣∣ = 1

n
<

1

Nε
< ε

whenever n > Nε, i.e. fn ⇒ 0 on R.

Now, (fn(x))
2
= x2+ 2x

n + 1
n2
→ x2 for all x ∈ R. Hence, f2n → g on R,

where g(x) = x2. If f2n converges uniformly to any function, it will have
to do so to g. But let ε0 = 2 and xn = n. Then∣∣∣(fn(xn))2 − g(xn)∣∣∣ = ∣∣∣∣2xnn +

1

n2

∣∣∣∣ = 2 +
1

n2
≥ 2 = ε0

for all n ∈ N (this is the negation of the definition of uniform
convergence). Hence f2n does not converge uniformly on R. �

P. Boily (uOttawa) 31



descr Chapter 6 – Sequences of Functions

3. Proof. First note that 1 ≤ 1 + x on [0, 1].

In particular, 1
1+x ≤ 1 on [0, 1]. If x ∈ (0, 1], then 1

(1+x)n → 0,

according to one of the examples done in class.

If x = 0, 1
(1+x)n = 1

1n = 1→ 1; i.e. fn → f on [0, 1], where

f(x) =

{
0, x ∈ (0, 1]

1, x = 0
.

However, fn 6⇒ f by theorem 67, since fn is continuous on [0, 1] for all
n ∈ N, but f is not. �
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4. Proof. The sequence fn(x) =
xn

n → f(x) ≡ 0 on [0, 1].

Indeed, let ε > 0. By the Archimedean Property, ∃Nε > 1
ε s.t.∣∣∣∣xnn − 0

∣∣∣∣ ≤ |x|nn ≤ 1

n
<

1

Nε
< ε

whenever n > Nε. Note that f is differentiable and f ′(x) = 0 for all

x ∈ [0, 1]. Furthermore, f ′n(x) =
nxn−1

n = xn−1 → g(x) on [0, 1], where

g(x) =

{
0, x ∈ [0, 1)

1, x = 1
,

by one of the examples I did in class. Then g(1) = 1 6= 0 = f ′(1). �
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5. Proof. As
(
e−nx

2
)′

= −2nxe−nx2 < 0 on [1, 2] for all n ∈ N, e−nx
2

is

decreasing on [1, 2] for all n, that is

e−nx
2
≤ e−n(1)

2
= e−n for all n ∈ N.

Now,

fn(x) = e−nx
2
⇒ f(x) ≡ 0 on [1, 2].

Indeed, let ε > 0. By the Archimedean Property, ∃Nε > ln 1
ε

(independent of x) s.t.∣∣∣e−nx2 − 0
∣∣∣ = e−nx

2
< e−Nx

2
≤ e−N < ε
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whenever n > Nε. Then (and only because of this uniform convergence),

lim
n→∞

∫ 2

1

e−nx
2
dx =

∫ 2

1

lim
n→∞

e−nx
2
dx =

∫ 2

1

0 dx = 0,

by the Limit Interchange Theorem for Integrals. �
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6. Proof. For n ∈ N, define fn : [π/2, π]→ R by

fn(x) =
sin(nx)

nx
.

Then each fn is continuous. For all n ∈ N, we have

sup
x∈[π/2,π]

{∣∣∣∣sin(nx)nx

∣∣∣∣} ≤ 2

nπ
.

Since 2/nπ → 0 as n → ∞, we have fn ⇒ 0 (why?). Then the limit
interchange theorem for integrals applies, and we have

lim
n→∞

∫ π

π/2

sin(nx)

nx
dx =

∫ π

π/2

0 dx = 0.

This completes the proof. �
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descr Chapter 6 – Sequences of Functions

7. Proof. Define F (x) =
∫ x
a
f(t) dt. Let ε > 0. Since fn ⇒ f , ∃N ∈ N

such that, for all n ≥ N , we have

|fn(x)− f(x)| <
ε

b− a
∀x ∈ [a, b].

Then, for all n ≥ N and x ∈ [a, b], we have

|Fn(x)− F (x)| =
∣∣∣∣∫ x

a

fn(t) dt−
∫ x

a

f(t) dt

∣∣∣∣ ≤ ∫ x

a

|fn(t)− f(t)| dt

≤ (x− a) · ε

b− a
≤ ε.

Thus Fn ⇒ F on [a, b]. �
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