Mathematical Analysis

Chapter 7 Series of Functions

P. Boily (uOttawa)

Winter 2022

Overview

We discuss a specific type of sequence: the series.

In particular, we will discuss

- series of numbers,
- series of functions, and
- power series.

The latter is more naturally expressed using a complex analysis framework, but we will present it, and important theorems for regular series, in the real analysis framework.

P. Boily (uOttawa)

Outline

- 7.1 Series of Numbers (p.3)
- 7.2 Series of Functions (p.21)
- 7.3 Power Series (p.29)
- 7.4 Exercises (p.44)

7.1 – Series of Numbers

Let $(x_n) \subseteq \mathbb{R}$. The series associated with (x_n) , denoted by

$$S_{(x_n)} = \sum_{n=1}^{\infty} x_n,$$

is the sequence (s_n) , where

$$s_1 = x_1$$

 $s_2 = x_1 + x_2$
 $s_3 = x_1 + x_2 + x_3$
....

If the sequence of partial sums s_n converges to S, we say the series $S_{(x_n)}$ converges to the sum S.

We start by producing a necessary condition for convergence.

Theorem 70. If
$$\sum_{n=1}^{\infty} x_n$$
 converges, then $x_n \to 0$.

Proof.

We can bypass the need to know the limit in order to prove convergence.

Theorem 71. (CAUCHY CRITERION FOR SERIES)
The series
$$\sum_{n=1}^{\infty} x_n$$
 converges if and only if $\forall \varepsilon > 0$, $\exists N_{\varepsilon} \in \mathbb{N}$ such that

 $m > n > N_{\varepsilon} \implies |x_{n+1} + \dots + x_m| < \varepsilon.$

Proof.

But there are other tests that can be used to show the convergence of a series without knowing the limit.

Theorem 72. (COMPARISON TEST) Let $\sum_{n=1}^{\infty} x_n$, $\sum_{n=1}^{\infty} y_n$ be series whose terms are all non-negative. If $\exists K \in \mathbb{N}$ such that $0 \leq x_n \leq y_n$ when n > K, then

1.
$$\sum_{n=1}^{\infty} y_n$$
 converges $\implies \sum_{n=1}^{\infty} x_n$ converges.

2.
$$\sum_{n=1}^{\infty} x_n$$
 diverges $\implies \sum_{n=1}^{\infty} y_n$ diverges.

Proof.

Examples: Discuss the convergence of 1.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 and 2. $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

1.

Theorem 73. (ALTERNATING SERIES TEST) Let (a_n) be a sequence of non-negative numbers such that $a_n \searrow 0$ (i.e $a_n \to 0$ and $a_{n+1} \le a_n$). Then $\sum_{n=0}^{\infty} (-1)^n a_n$ converges.

Proof.

Even though it was not part of the statement of the Alternating Series Test, the proof allows us to conclude that the value of a convergent alternating series lies between a_{2k} and a_{2m+1} for all $k, m \in \mathbb{N}$.

Example: The alternating harmonic series
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 converges.

Proof.

Two other convergence tests are often used in practice: the Ratio Test and the Root Test. We shall prove only the Ratio Test, the proof for the Root Test is similar. **Theorem 74.** (RATIO TEST) Let (a_n) be a sequence of positive real numbers.

1. If
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} < 1$$
 then $\sum_{n=1}^{\infty} a_n$ converges.

2. If
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} > 1$$
 then $\sum_{n=1}^{\infty} a_n$ diverges.

If $\frac{a_{n+1}}{a_n} \to 1$, then the series may converge or diverge, depending on the nature of the terms a_n .

Proof.

1.

The key parts of the proof (namely, the convergence of the tail in the first case and the condition $a_n \not\rightarrow 0$ in the second) are also valid if the statement is relaxed to some extent.

Theorem 74. (RATIO TEST – REPRISE) Let (a_n) be a sequence of real numbers with $a_n \neq 0$ for all n.

1. If
$$\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$
 then $\sum_{n=1}^{\infty} a_n$ converges.

2. If
$$\liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$$
 then $\sum_{n=1}^{\infty} a_n$ diverges.

Theorem 75. (ROOT TEST) Let (a_n) be a sequence of positive real numbers.

1. If
$$\limsup_{n \to \infty} \sqrt[n]{a_n} < 1$$
 then $\sum_{n=1}^{\infty} a_n$ converges.

2. If
$$\liminf_{n \to \infty} \sqrt[n]{a_n} > 1$$
 then $\sum_{n=1}^{\infty} a_n$ diverges.

If $\sqrt[n]{a_n} \to 1$, then the series may converge or diverge, depending on the nature of the terms a_n .

The proof of the Root Test follows the same general lines.

Examples: Discuss the convergence of
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n2^n}; \sum_{n=1}^{\infty} \frac{3^n}{n2^n}; \sum_{n=1}^{\infty} \frac{1}{n^p}, p > 0.$$

1.

3.

Theorem 76. (ABSOLUTE CONVERGENCE)
If the series
$$\sum_{n=0}^{\infty} |a_n|$$
 converges, so does $\sum_{n=0}^{\infty} a_n$ (not an "iff" statement).
Theorem 77. (SERIES REARRANGEMENT)
If the series $\sum_{n=0}^{\infty} |a_n|$ converges, so does $\sum_{n=0}^{\infty} a_{\varphi(n)}, \varphi : \mathbb{N} \to \mathbb{N}$ a bijection.

7.2 – Series of Functions

Series of functions play the same role for sequences of functions that series played for sequences of numbers.

Let $I \subseteq \mathbb{R}$ and $f_n : I \to \mathbb{R}$, $\forall n \in \mathbb{N}$. If the sequence of partial sums

. . .

 $s_1(x) = f_1(x)$ $s_2(x) = f_1(x) + f_2(x)$

converges to some function $f: I \to \mathbb{R}$ for all $x \in I$, we say that the series of functions $\sum_{n=1}^{\infty} f_n$ converges pointwise to f on I.

Example: Consider the sequence of functions $f_n : \mathbb{R} \to \mathbb{R}$ defined by $f_n(x) = x^n$ for each $n \in \mathbb{N}$. Does the sequence of partial sums $s_k(x)$ converge to some pointwise limit over some $A \subseteq \mathbb{R}$?

Solution.

If the sequence of partial sums (s_n) converges uniformly to f on I, we say that the series of functions $\sum_{n=1}^{\infty} f_n$ converges uniformly to f on I.

If the convergence of the series of functions is uniform, the limit interchange theorems can be applied.

Theorem 78. (CAUCHY CRITERION FOR SERIES OF FUNCTIONS) Let $f_n : I \to \mathbb{R}$ for all $n \in \mathbb{N}$. The series of functions with term f_n converges uniformly to some function $f : I \to \mathbb{R}$ if and only if $\forall \varepsilon > 0$, $\exists N_{\varepsilon} \in \mathbb{N}$ (independent of $x \in I$) such that

$$m > n > N_{\varepsilon} \implies \left| \sum_{i=n+1}^{m} f_i(x) \right| < \varepsilon.$$

Proof.

The next result is a powerful tool to prove uniform convergence (and so to be able to use the Limit Interchange Theorems).

The simplicity of its proof belies its importance.

Theorem 79. (WEIERSTRASS M-TEST) Let $f_n : I \to \mathbb{R}$ and $M_n \ge 0$ for all $n \in \mathbb{N}$. Assume that $|f_n(x)| \le M_n$ for all $x \in I$, $n \in \mathbb{N}$. Then

$$\sum_{n=1}^{\infty} M_n \text{ converges} \implies \sum_{n=1}^{\infty} f_n \text{ converges uniformly on } I.$$

Proof.

Example: Let $\varepsilon \in (0,1)$. Consider the sequence of functions $g_n : \mathbb{R} \to \mathbb{R}$ defined by $g_n(x) = nx^{n-1}$ for each $n \in \mathbb{N}$. Does $\sigma_k(x) \rightrightarrows \sigma(x)$ on $I_{\varepsilon} = (-1 + \varepsilon, 1 - \varepsilon)$ for some σ ? If so, find σ .

Solution.

Incidentally, Theorem 68 also tells us that $s_k(x) \Rightarrow \frac{1}{1-x}$ on I_{ε} , for all $0 < \varepsilon < 1$, and that for all $k \in \mathbb{N}$ and $x \in I_{\varepsilon}$, $\varepsilon \in (0, 1)$, we have

$$\sum_{n=0}^{\infty} \frac{d^k}{dx^k} [x^n] = \frac{d^k}{dx^k} \sum_{n=0}^{\infty} x^n = \frac{d^k}{dx^k} \left(\frac{1}{1-x}\right)$$

7.3 – Power Series

A power series around its center $x = x_0$ is a formal expression of the form

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

We have already seen an example of such a series, which converged uniformly on intervals containing $x_0 = 0$:

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \quad \text{on } I_{\varepsilon} = (-1+\varepsilon, 1-\varepsilon), \ \forall \varepsilon \in (0,1)$$

(note, however, that the convergence is only pointwise on (-1, 1)).

Furthermore, the function $f: A \to \mathbb{R}$, $f(x) = \frac{1}{1-x}$ is defined for all $x \neq 1$, yet the power series $1+x+x^2+\cdots$ does not converge to f outside of (-1,1).

Power series are commonly used as a formal guessing procedure to solve differential equations, but this is not a topic we will tackle at the moment.

A natural question to ask is: for which functions $f : A \to \mathbb{R}$ (and which A) can we find a sequence of coefficients (a_n) such that

$$f(x) = \sum_{n=0}^{\infty} a_n, \quad \forall x \in A?$$

Questions of this ilk are more naturally answered in \mathbb{C} ; a more complete treatment will be provided in a complex analysis course.

Examples: Where do the following power series converge?

1.
$$\sum_{n=0}^{\infty} x^n$$
, 2. $\sum_{n=1}^{\infty} (nx)^n$, 3. $\sum_{n=1}^{\infty} \left(\frac{x}{n}\right)^n$.

1.

2.

3.

The radius of convergence of a power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ is

$$R = \frac{1}{\limsup_{n \to \infty} |a_n|^{1/n}}.$$

If the limit exists, we can replace $\limsup y \lim$. Intuitively, this says that for all large enough n,

$$-R^{-n} \le -|a_n| \le a_n \le |a_n| \le R^{-n},$$

so that

$$-\sum_{n>N} \left(\frac{x-x_0}{R}\right)^n \le \sum_{n>N} a_n (x-x_0)^n \le \sum_{n>N} \left(\frac{x-x_0}{R}\right)^n.$$

The bounds are geometric series, and they converge when $|x - x_0| < R$.

We would expect the original power series to converge on the **interval** of convergence $|x - x_0| < R$.

Theorem 80. Let R be the radius of convergence of the power series

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

Then, if

- R = 0, the power series converges for $x = x_0$ and diverges for $x \neq x_0$;
- $R = \infty$, the power series converges absolutely on \mathbb{R} , and
- $0 < R < \infty$, the power series converges absolutely on $|x x_0| < R$, diverges on $|x x_0| > R$; the extremities must be analyzed separately.

Proof.

Theorem 81. The power series of Theorem 80 converges uniformly on any compact sub-interval

 $[a,b] \subseteq (x_0 - R, x_0 + R).$

Proof.

In what follows, we let $f:(x_0-R,x_0+R) \to \mathbb{R}$ be the function defined by

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
, and $s_N(x) = \sum_{n=0}^{N} a_n (x - x_0)^n$.

Theorem 82. The function f is continuous on any closed bounded interval $[a, b] \subseteq (x_0 - R, x_0 + R).$

Theorem 83. Let $x \in (x_0 - R, x_0 + R)$. Then f is Riemann-integrable between x_0 and x and

$$\int_{x_0}^x f(t) \, dt = \sum_{n=0}^\infty \frac{a_n}{n+1} (x-x_0)^{n+1}.$$

Theorem 84. The function f is differentiable on $(x_0 - R, x_0 + R)$ and

$$f'(x) = \sum_{n=1}^{\infty} na_n (x - x_0)^{n-1}.$$

How do we compute the power series coefficients a_n ? Combining Theorems 82 and 84, we see that f is **smooth** in its interval of convergence (i.e. all of its derivatives are continuous).

Theorem 85. If R > 0, then

$$a_n = \frac{f^{(n)}(x_0)}{n!}.$$

P. Boily (uOttawa)

Proof.

Corollary. If $\exists r > 0$ such that

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 and $g(x) = \sum_{n=0}^{\infty} b_n (x - x_0)^n$

and f(x) = g(x) for all $x \in (x_0 - r, x_0 + r)$, then $a_n = b_n$ for all $n \in \mathbb{N}$.

Attempts to strengthen this uniqueness result must fail.

Example: Consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} \exp(-1/x^2), & x \neq 0\\ 0, & x = 0 \end{cases}$$

Show that f does not have a power series expansion.

Thus, we cannot always assume that a function is equal to its power series.

There are other ways to expand a function as infinite series, most notable being **Laurent Series** and **Fourier Series**. These topics are covered in courses in complex analysis and partial differential equations, respectively.

7.4 – Exercises

1. Answer the following questions about series.

(a) If
$$\sum_{k=1}^{\infty} (a_k + b_k)$$
 converges, what about $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$?
(b) If $\sum_{k=1}^{\infty} (a_k + b_k)$ diverges, what about $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$?
(c) If $\sum_{k=1}^{\infty} (a_{2k} + a_{2k-1})$ converges, what about $\sum_{k=1}^{\infty} a_k$?
(d) If $\sum_{k=1}^{\infty} a_k$ converges, what about $\sum_{k=1}^{\infty} (a_{2k} + a_{2k-1})$?
2. Show that
 $\frac{1}{r-1} = \frac{1}{r+1} + \frac{2}{r^2+1} + \frac{4}{r^4+1} + \frac{8}{r^8+1} + \cdots$
for all $r > 1$.

- 3. Using Riemann integration, find the values of p for which the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges (compare with the approach used in the notes).
- 4. Which of the following series converge?

(a)
$$\sum_{n=1}^{\infty} \frac{n(n+1)}{(n+2)^2}$$

(b) $\sum_{n=1}^{\infty} \frac{2+\sin^3(n+1)}{2^n+n^2}$
(c) $\sum_{n=1}^{\infty} \frac{1}{2^n-1+\cos^2 n^3}$
(d) $\sum_{n=1}^{\infty} \frac{n+1}{n^2+1}$
(e) $\sum_{n=1}^{\infty} \frac{n+1}{n^3+1}$

(f)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

(g)
$$\sum_{n=1}^{\infty} \frac{n!}{5^n}$$

(h)
$$\sum_{n=1}^{\infty} \frac{n^n}{3^{1+2n}}$$

(i)
$$\sum_{n=1}^{\infty} \left(\frac{5n+3n^3}{7n^3+2}\right)$$

5. Give an example of a power series $\sum_{k=0}^{\infty} a_k x^k$ with interval of convergence $[-\sqrt{2}, \sqrt{2})$.

6. Find the values of x for which the following series converge:

n

(a)
$$\sum_{n=1}^{\infty} (nx)^n$$
;
(b) $\sum_{n=1}^{\infty} x^n$;

(c)
$$\sum_{n=1}^{\infty} rac{x^n}{n^2};$$

(d) $\sum_{n=1}^{\infty} rac{x^n}{n!}.$

- 7. If the power series $\sum a_k x^k$ has radius of convergence R, what is the radius of convergence of the series $\sum a_k x^{2k}$?
- 8. Obtain power series expansions for the following functions.

(a)
$$\frac{x}{1+x^2}$$
;
(b) $\frac{1+x^2}{(1+x^2)^2}$;
(c) $\frac{x}{1+x^3}$;
(d) $\frac{x^2}{1+x^3}$;
(e) $f(x) = \int_0^1 \frac{1-e^{-sx}}{s} ds$, about $x = 0$.

Solutions