Mathematical Analysis

Chapter 7
 Series of Functions

P. Boily (uOttawa)

Winter 2022
P. Boily (uOttawa)

Overview

We discuss a specific type of sequence: the series.
In particular, we will discuss

- series of numbers,
- series of functions, and
- power series.

The latter is more naturally expressed using a complex analysis framework, but we will present it, and important theorems for regular series, in the real analysis framework.

Outline

7.1 - Series of Numbers (p.3)
7.2 - Series of Functions (p.21)
7.3 - Power Series (p.29)
7.4 - Exercises (p.44)

7.1 - Series of Numbers

Let $\left(x_{n}\right) \subseteq \mathbb{R}$. The series associated with $\left(x_{n}\right)$, denoted by

$$
S_{\left(x_{n}\right)}=\sum_{n=1}^{\infty} x_{n},
$$

is the sequence $\left(s_{n}\right)$, where

$$
\begin{aligned}
& s_{1}=x_{1} \\
& s_{2}=x_{1}+x_{2} \\
& s_{3}=x_{1}+x_{2}+x_{3}
\end{aligned}
$$

If the sequence of partial sums s_{n} converges to S, we say the series $S_{\left(x_{n}\right)}$ converges to the sum S.

We start by producing a necessary condition for convergence.
Theorem 70. If $\sum_{n=1}^{\infty} x_{n}$ converges, then $x_{n} \rightarrow 0$.

Proof.

We can bypass the need to know the limit in order to prove convergence.
Theorem 71. (Cauchy Criterion for Series)
The series $\sum_{n=1}^{\infty} x_{n}$ converges if and only if $\forall \varepsilon>0, \exists N_{\varepsilon} \in \mathbb{N}$ such that

$$
m>n>N_{\varepsilon} \Longrightarrow\left|x_{n+1}+\cdots+x_{m}\right|<\varepsilon .
$$

Proof.

But there are other tests that can be used to show the convergence of a series without knowing the limit.

Theorem 72. (Comparison Test)
Let $\sum^{\infty} x_{n}, \sum^{\infty} y_{n}$ be series whose terms are all non-negative. If $\exists K \in \mathbb{N}$ such that $0 \stackrel{n=1}{\leq} x_{n} \leq y_{n}$ when $n>K$, then

1. $\sum_{n=1}^{\infty} y_{n}$ converges $\Longrightarrow \sum_{n=1}^{\infty} x_{n}$ converges.
2. $\sum_{n=1}^{\infty} x_{n}$ diverges $\Longrightarrow \sum_{n=1}^{\infty} y_{n}$ diverges.

Proof.

Examples: Discuss the convergence of 1. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ and 2. $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
1.
2.

Theorem 73. (Alternating Series Test)

Let $\left(a_{n}\right)$ be a sequence of non-negative numbers such that $a_{n} \searrow 0$ (i.e $a_{n} \rightarrow 0$ and $a_{n+1} \leq a_{n}$). Then $\sum_{n=0}^{\infty}(-1)^{n} a_{n}$ converges.

Proof.

Even though it was not part of the statement of the Alternating Series Test, the proof allows us to conclude that the value of a convergent alternating series lies between $a_{2 k}$ and $a_{2 m+1}$ for all $k, m \in \mathbb{N}$.

Example: The alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges.

Proof.

Two other convergence tests are often used in practice: the Ratio Test and the Root Test. We shall prove only the Ratio Test, the proof for the Root Test is similar.

Theorem 74. (Ratio Test)

Let $\left(a_{n}\right)$ be a sequence of positive real numbers.

1. If $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}<1$ then $\sum_{n=1}^{\infty} a_{n}$ converges.
2. If $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}>1$ then $\sum_{n=1}^{\infty} a_{n}$ diverges.

If $\frac{a_{n+1}}{a_{n}} \rightarrow 1$, then the series may converge or diverge, depending on the nature of the terms a_{n}.

Proof.

1.

2.

The key parts of the proof (namely, the convergence of the tail in the first case and the condition $a_{n} \nrightarrow 0$ in the second) are also valid if the statement is relaxed to some extent.

Theorem 74. (Ratio Test - Reprise)
Let $\left(a_{n}\right)$ be a sequence of real numbers with $a_{n} \neq 0$ for all n.

1. If $\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$ then $\sum_{n=1}^{\infty} a_{n}$ converges.
2. If $\liminf _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1$ then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Theorem 75. (Root Test)

Let $\left(a_{n}\right)$ be a sequence of positive real numbers.

1. If $\limsup _{n \rightarrow \infty} \sqrt[n]{a_{n}}<1$ then $\sum_{n=1}^{\infty} a_{n}$ converges.
2. If $\liminf _{n \rightarrow \infty} \sqrt[n]{a_{n}}>1$ then $\sum_{n=1}^{\infty} a_{n}$ diverges.

If $\sqrt[n]{a_{n}} \rightarrow 1$, then the series may converge or diverge, depending on the nature of the terms a_{n}.

The proof of the Root Test follows the same general lines.

Examples: Discuss the convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 2^{n}} ; \sum_{n=1}^{\infty} \frac{3^{n}}{n 2^{n}} ; \sum_{n=1}^{\infty} \frac{1}{n^{p}}, p>0$.
1.
2.
3.

Theorem 76. (Absolute Convergence)
If the series $\sum_{n=0}^{\infty}\left|a_{n}\right|$ converges, so does $\sum_{n=0}^{\infty} a_{n}$ (not an "iff" statement).
Theorem 77. (Series Rearrangement)
If the series $\sum_{n=0}^{\infty}\left|a_{n}\right|$ converges, so does $\sum_{n=0}^{\infty} a_{\varphi(n)}, \varphi: \mathbb{N} \rightarrow \mathbb{N}$ a bijection.

7.2 - Series of Functions

Series of functions play the same role for sequences of functions that series played for sequences of numbers.

Let $I \subseteq \mathbb{R}$ and $f_{n}: I \rightarrow \mathbb{R}, \forall n \in \mathbb{N}$. If the sequence of partial sums

$$
\begin{aligned}
& s_{1}(x)=f_{1}(x) \\
& s_{2}(x)=f_{1}(x)+f_{2}(x)
\end{aligned}
$$

converges to some function $f: I \rightarrow \mathbb{R}$ for all $x \in I$, we say that the series of functions $\sum_{n=1}^{\infty} f_{n}$ converges pointwise to f on I.

Example: Consider the sequence of functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{n}(x)=x^{n}$ for each $n \in \mathbb{N}$. Does the sequence of partial sums $s_{k}(x)$ converge to some pointwise limit over some $A \subseteq \mathbb{R}$?

Solution.

If the sequence of partial sums $\left(s_{n}\right)$ converges uniformly to f on I, we say that the series of functions $\sum_{n=1}^{\infty} f_{n}$ converges uniformly to f on I.
If the convergence of the series of functions is uniform, the limit interchange theorems can be applied.

Theorem 78. (Cauchy Criterion for Series of Functions) Let $f_{n}: I \rightarrow \mathbb{R}$ for all $n \in \mathbb{N}$. The series of functions with term f_{n} converges uniformly to some function $f: I \rightarrow \mathbb{R}$ if and only if $\forall \varepsilon>0$, $\exists N_{\varepsilon} \in \mathbb{N}$ (independent of $x \in I$) such that

$$
m>n>N_{\varepsilon} \Longrightarrow\left|\sum_{i=n+1}^{m} f_{i}(x)\right|<\varepsilon
$$

Proof.

The next result is a powerful tool to prove uniform convergence (and so to be able to use the Limit Interchange Theorems).

The simplicity of its proof belies its importance.
Theorem 79. (Weierstrass M-Test)
Let $f_{n}: I \rightarrow \mathbb{R}$ and $M_{n} \geq 0$ for all $n \in \mathbb{N}$. Assume that $\left|f_{n}(x)\right| \leq M_{n}$ for all $x \in I, n \in \mathbb{N}$. Then

$$
\sum_{n=1}^{\infty} M_{n} \text { converges } \Longrightarrow \sum_{n=1}^{\infty} f_{n} \text { converges uniformly on } I
$$

Proof.

Example: Let $\varepsilon \in(0,1)$. Consider the sequence of functions $g_{n}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $g_{n}(x)=n x^{n-1}$ for each $n \in \mathbb{N}$. Does $\sigma_{k}(x) \rightrightarrows \sigma(x)$ on $I_{\varepsilon}=(-1+\varepsilon, 1-\varepsilon)$ for some σ ? If so, find σ.

Solution.

Incidentally, Theorem 68 also tells us that $s_{k}(x) \rightrightarrows \frac{1}{1-x}$ on I_{ε}, for all $0<\varepsilon<1$, and that for all $k \in \mathbb{N}$ and $x \in I_{\varepsilon}, \varepsilon \in(0,1)$, we have

$$
\sum_{n=0}^{\infty} \frac{d^{k}}{d x^{k}}\left[x^{n}\right]=\frac{d^{k}}{d x^{k}} \sum_{n=0}^{\infty} x^{n}=\frac{d^{k}}{d x^{k}}\left(\frac{1}{1-x}\right)
$$

7.3 - Power Series

A power series around its center $x=x_{0}$ is a formal expression of the form

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

We have already seen an example of such a series, which converged uniformly on intervals containing $x_{0}=0$:

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \quad \text { on } I_{\varepsilon}=(-1+\varepsilon, 1-\varepsilon), \forall \varepsilon \in(0,1)
$$

(note, however, that the convergence is only pointwise on $(-1,1)$).

Furthermore, the function $f: A \rightarrow \mathbb{R}, f(x)=\frac{1}{1-x}$ is defined for all $x \neq 1$, yet the power series $1+x+x^{2}+\cdots$ does not converge to f outside of $(-1,1)$.

Power series are commonly used as a formal guessing procedure to solve differential equations, but this is not a topic we will tackle at the moment.

A natural question to ask is: for which functions $f: A \rightarrow \mathbb{R}$ (and which A) can we find a sequence of coefficients $\left(a_{n}\right)$ such that

$$
f(x)=\sum_{n=0}^{\infty} a_{n}, \quad \forall x \in A ?
$$

Questions of this ilk are more naturally answered in \mathbb{C}; a more complete treatment will be provided in a complex analysis course.

Examples: Where do the following power series converge?

$$
\text { 1. } \sum_{n=0}^{\infty} x^{n}, \quad \text { 2. } \sum_{n=1}^{\infty}(n x)^{n}, \quad \text { 3. } \sum_{n=1}^{\infty}\left(\frac{x}{n}\right)^{n} \text {. }
$$

1.
2.
3.

The radius of convergence of a power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is

$$
R=\frac{1}{\limsup \left|a_{n}\right|^{1 / n}} .
$$

$$
n \rightarrow \infty
$$

If the limit exists, we can replace limsup by lim. Intuitively, this says that for all large enough n,

$$
-R^{-n} \leq-\left|a_{n}\right| \leq a_{n} \leq\left|a_{n}\right| \leq R^{-n}
$$

so that

$$
-\sum_{n>N}\left(\frac{x-x_{0}}{R}\right)^{n} \leq \sum_{n>N} a_{n}\left(x-x_{0}\right)^{n} \leq \sum_{n>N}\left(\frac{x-x_{0}}{R}\right)^{n}
$$

The bounds are geometric series, and they converge when $\left|x-x_{0}\right|<R$.
We would expect the original power series to converge on the interval of convergence $\left|x-x_{0}\right|<R$.

Theorem 80. Let R be the radius of convergence of the power series

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

Then, if

- $R=0$, the power series converges for $x=x_{0}$ and diverges for $x \neq x_{0}$;
- $R=\infty$, the power series converges absolutely on \mathbb{R}, and
- $0<R<\infty$, the power series converges absolutely on $\left|x-x_{0}\right|<R$, diverges on $\left|x-x_{0}\right|>R$; the extremities must be analyzed separately.

Proof.

Theorem 81. The power series of Theorem 80 converges uniformly on any compact sub-interval

$$
[a, b] \subseteq\left(x_{0}-R, x_{0}+R\right)
$$

Proof.

In what follows, we let $f:\left(x_{0}-R, x_{0}+R\right) \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}, \quad \text { and } \quad s_{N}(x)=\sum_{n=0}^{N} a_{n}\left(x-x_{0}\right)^{n}
$$

Theorem 82. The function f is continuous on any closed bounded interval $[a, b] \subseteq\left(x_{0}-R, x_{0}+R\right)$.

Proof.

Theorem 83. Let $x \in\left(x_{0}-R, x_{0}+R\right)$. Then f is Riemann-integrable between x_{0} and x and

$$
\int_{x_{0}}^{x} f(t) d t=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}\left(x-x_{0}\right)^{n+1}
$$

Proof.

Theorem 84. The function f is differentiable on $\left(x_{0}-R, x_{0}+R\right)$ and

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1} .
$$

Proof.

How do we compute the power series coefficients a_{n} ? Combining Theorems 82 and 84 , we see that f is smooth in its interval of convergence (i.e. all of its derivatives are continuous).

Theorem 85. If $R>0$, then

$$
a_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!} .
$$

Proof.

Corollary. If $\exists r>0$ such that

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \quad \text { and } \quad g(x)=\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}
$$

and $f(x)=g(x)$ for all $x \in\left(x_{0}-r, x_{0}+r\right)$, then $a_{n}=b_{n}$ for all $n \in \mathbb{N}$.

Attempts to strengthen this uniqueness result must fail.

Example: Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}\exp \left(-1 / x^{2}\right), & x \neq 0 \\ 0, & x=0\end{cases}
$$

Show that f does not have a power series expansion.

Proof.

Thus, we cannot always assume that a function is equal to its power series.

There are other ways to expand a function as infinite series, most notable being Laurent Series and Fourier Series. These topics are covered in courses in complex analysis and partial differential equations, respectively.

7.4 - Exercises

1. Answer the following questions about series.
(a) If $\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)$ converges, what about $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$?
(b) If $\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)$ diverges, what about $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$?
(c) If $\sum_{k=1}^{\infty}\left(a_{2 k}+a_{2 k-1}\right)$ converges, what about $\sum_{k=1}^{\infty} a_{k}$?
(d) If $\sum_{k=1}^{\infty} a_{k}$ converges, what about $\sum_{k=1}^{\infty}\left(a_{2 k}+a_{2 k-1}\right)$?
2. Show that

$$
\frac{1}{r-1}=\frac{1}{r+1}+\frac{2}{r^{2}+1}+\frac{4}{r^{4}+1}+\frac{8}{r^{8}+1}+\cdots
$$

for all $r>1$.
3. Using Riemann integration, find the values of p for which the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges (compare with the approach used in the notes).
4. Which of the following series converge?
(a) $\sum_{n=1}^{\infty} \frac{n(n+1)}{(n+2)^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{2+\sin ^{3}(n+1)}{2^{n}+n^{2}}$
(c) $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1+\cos ^{2} n^{3}}$
(d) $\sum_{n=1}^{\infty} \frac{n+1}{n^{2}+1}$
(e) $\sum_{n=1}^{\infty} \frac{n+1}{n^{3}+1}$
(f) $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$
(g) $\sum_{n=1}^{\infty} \frac{n!}{5^{n}}$
(h) $\sum_{n=1}^{\infty} \frac{n^{n}}{3^{1+2 n}}$
(i) $\sum_{n=1}^{\infty}\left(\frac{5 n+3 n^{3}}{7 n^{3}+2}\right)^{n}$
5. Give an example of a power series $\sum_{k=0}^{\infty} a_{k} x^{k}$ with interval of convergence $[-\sqrt{2}, \sqrt{2})$.
6. Find the values of x for which the following series converge:
(a) $\sum_{n=1}^{\infty}(n x)^{n}$;
(b) $\sum_{n=1}^{\infty} x^{n}$;
(c) $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$;
(d) $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$.
7. If the power series $\sum a_{k} x^{k}$ has radius of convergence R, what is the radius of convergence of the series $\sum a_{k} x^{2 k}$?
8. Obtain power series expansions for the following functions.
(a) $\frac{x}{1+x^{2}}$;
(b) $\frac{x}{\left(1+x^{2}\right)^{2}}$;
(c) $\frac{x}{1+x^{3}}$;
(d) $\frac{x^{2}}{1+x^{3}}$;
(e) $f(x)=\int_{0}^{1} \frac{1-e^{-s x}}{s} d s$, about $x=0$.

Solutions

1. Proof.
2. Proof.

3. Proof.

4. Proof.

5. Proof.

6. Proof.

7. Proof.
8. Proof.
