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Mathematical Analysis Chapter 7 – Series of Functions

Overview

We discuss a specific type of sequence: the series.

In particular, we will discuss

series of numbers,

series of functions, and

power series.

The latter is more naturally expressed using a complex analysis framework,
but we will present it, and important theorems for regular series, in the real
analysis framework.
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Outline

7.1 – Series of Numbers (p.3)

7.2 – Series of Functions (p.21)

7.3 – Power Series (p.29)

7.4 – Exercises (p.44)
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7.1 – Series of Numbers

Let (xn) ⊆ R. The series associated with (xn), denoted by

S(xn) =

∞∑
n=1

xn,

is the sequence (sn), where

s1 = x1

s2 = x1 + x2

s3 = x1 + x2 + x3

· · ·
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If the sequence of partial sums sn converges to S, we say the series S(xn)

converges to the sum S.

We start by producing a necessary condition for convergence.

Theorem 70. If
∞∑

n=1

xn converges, then xn → 0.

Proof. Let S be the limit of the partial sums. Then

lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = S − S = 0,

with the second equality being guaranteed by Theorem 14 and the
convergence of the series. �
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We can bypass the need to know the limit in order to prove convergence.

Theorem 71. (Cauchy Criterion for Series)

The series
∞∑

n=1

xn converges if and only if ∀ε > 0, ∃Nε ∈ N such that

m > n > Nε =⇒ |xn+1 + · · ·+ xm| < ε.

Proof. Let (sn) be the series of partial sums. If (sn) converges, it is a Cauchy
sequence, so that ∃Nε ∈ N such that m > n > Nε =⇒ |sm − sn| < ε.
But |sm − sn| = |xm + · · ·+ xn+1|, so the Cauchy Criterion holds.

Conversely, if the Cauchy Criterion holds, the sequence of partial terms
is a Cauchy sequence, and so the series converges by completeness of R. �
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But there are other tests that can be used to show the convergence of a
series without knowing the limit.

Theorem 72. (Comparison Test)

Let
∞∑

n=1

xn,
∞∑

n=1

yn be series whose terms are all non-negative. If ∃K ∈ N

such that 0 ≤ xn ≤ yn when n > K, then

1.
∞∑

n=1

yn converges =⇒
∞∑

n=1

xn converges.

2.
∞∑

n=1

xn diverges =⇒
∞∑

n=1

yn diverges.
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Proof. We prove 1. The proof for 2. is simply the contrapositive. Let

ε > 0. As
∞∑

n=1

yn converges, ∃Nε ∈ N such that 0 ≤
m∑

i=n+1

yi < ε according

to the Cauchy Criterion for series.

Hence, whenever m ≥ n > Mε = max{Nε,K}, then

0 ≤
m∑

i=n+1

xi ≤
m∑

i=n+1

yi < ε.

As such,
∞∑

n=1

xn converges as it satisfies the Cauchy Criterion for series. �
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Examples: Discuss the convergence of 1.
∞∑

n=1

1

n(n+ 1)
and 2.

∞∑
n=1

1

n2
.

1. The limit of the partial sums converges to 1 as

lim
k→∞

sk = lim
k→∞

k∑
n=1

(1
n
− 1

n+ 1

)
= lim

k→∞

(
1− 1

k + 1

)
= 1− 0 = 1. �

2. Since n2 ≥ 1
2(n

2 + n) ≥ 0 for all n ∈ N, then 2
n(n+1) ≥

1
n2 ≥ 0 for all

n ∈ N, and

∞ > 2

∞∑
n=1

1

n(n+ 1)
≥
∞∑

n=1

1

n2
,

thus the series converges according to the Comparison Theorem. �
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Theorem 73. (Alternating Series Test)
Let (an) be a sequence of non-negative numbers such that an ↘ 0 (i.e

an → 0 and an+1 ≤ an). Then
∞∑

n=0

(−1)nan converges.

Proof. Let (sk) be the series of partial sums

sk =

k∑
n=0

(−1)nan.

The subsequence of even terms is s2k = s2k−2− (a2k−1− a2k); that of the
odd terms is s2k+1 = s2k−1 − (a2k − a2k+1).

Since an ↘ 0, an+1 ≤ an for all n. Thus s2k ≤ s2k−2 and s2k+1 ≥ s2k−1
for all k ∈ N.

P. Boily (uOttawa) 9



Mathematical Analysis Chapter 7 – Series of Functions

But s2k ≥ s2m+1 for all k,m ∈ N (left as an exercise), and so

a0 = s0 ≥ s2 ≥ s4 ≥ · · · ≥ s5 ≥ s3 ≥ s1 = a0 − a1.

Thus (s2k) is a bounded decreasing sequence and (s2k−1) is a bounded
increasing sequence, and so lim

k→∞
s2k and lim

k→∞
s2k−1 exist. According to

Theorem 14, then, we have

lim
k→∞

(s2k − s2k−1) = lim
k→∞

a2k = 0

since an ↘ 0, which implies that the alternating series converges:

lim
k→∞

2k∑
n=0

(−1)nan = lim
k→∞

s2k = lim
k→∞

s2k+1 = lim
k→∞

2k+1∑
n=0

(−1)nan. �
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Even though it was not part of the statement of the Alternating Series Test,
the proof allows us to conclude that the value of a convergent alternating
series lies between a2k and a2m+1 for all k,m ∈ N.

Example: The alternating harmonic series
∞∑

n=1

(−1)n

n
converges.

Proof. Consider the sequence (an) = (1n) = (1, 12,
1
3, . . .). As 1

n → 0
and 1

n+1 ≤
1
n for all n, then the corresponding alternating series converges.

Its value lies between s0 = 1 and s1 = 1 − 1
2 = 1

2, between s1 = 1
2

and s2 =
1
2 +

1
3 = 5

6, between s2 =
5
6 and s3 =

5
6 −

1
4 = 7

12, etc. �

Two other convergence tests are often used in practice: the Ratio Test
and the Root Test. We shall prove only the Ratio Test, the proof for the
Root Test is similar.
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Theorem 74. (Ratio Test)
Let (an) be a sequence of positive real numbers.

1. If lim
n→∞

an+1

an
< 1 then

∞∑
n=1

an converges.

2. If lim
n→∞

an+1

an
> 1 then

∞∑
n=1

an diverges.

If
an+1
an
→ 1, then the series may converge or diverge, depending on the

nature of the terms an.
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Proof.

1. Assume 0 ≤ an+1
an
→ q < 1. Let r = q+1

2 . Thus q < r < 1 and there are

only finitely many indices n for which
an+1
an

> r. Indeed, let ε ∈ (0, 1−q2 ).

Then, ∃Nε ∈ N such that

n > Nε =⇒ an+1

an
− q < ε <

1− q
2

=⇒ an+1

an
≤ q + 1

2
= r.

Then

n > Nε =⇒ an =
an
an−1

· · · · · aN+1

aN
· aN ≤ rn−NaN .
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The tail of the original series converges, as

∞∑
n=N+1

an ≤
∞∑

n=N+1

aNr
n−N =

aN
rN

∞∑
n=N+1

rn =
aN
rN

(rN+1

1− r

)
<∞,

where the last equality is left as an exercise.

But a0 + · · ·+ aN is also finite, so the full series converges.

2. Assume
an+1
an
→ q > 1. Using a similar argument as in part 1., we can

show that ∃r > 1 and N ∈ N such that
an+1
an
≥ r > 1 for all n ∈ N, so

that an+1 > an for all n ≥ 1.

Thus an 6→ 0, and so
∞∑

n=0

an diverges, according to Theorem 70. �
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The key parts of the proof (namely, the convergence of the tail in the first
case and the condition an 6→ 0 in the second) are also valid if the statement
is relaxed to some extent.

Theorem 74. (Ratio Test – Reprise)
Let (an) be a sequence of real numbers with an 6= 0 for all n.

1. If lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1 then
∞∑

n=1

an converges.

2. If lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣ > 1 then
∞∑

n=1

an diverges.
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Theorem 75. (Root Test)
Let (an) be a sequence of positive real numbers.

1. If lim sup
n→∞

n
√
an < 1 then

∞∑
n=1

an converges.

2. If lim inf
n→∞

n
√
an > 1 then

∞∑
n=1

an diverges.

If n
√
an → 1, then the series may converge or diverge, depending on the

nature of the terms an.

The proof of the Root Test follows the same general lines.
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Examples: Discuss the convergence of
∞∑

n=1

(−1)n

n2n
;
∞∑

n=1

3n

n2n
;
∞∑

n=1

1

np
, p > 0.

1. The terms are all non-zero. We compute

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1

(n+ 1)2n+1
· n2

n

(−1)n

∣∣∣∣ = 1

2
lim
n→∞

∣∣∣∣ n

n+ 1

∣∣∣∣ = 1

2
< 1,

so the series converges according to the Ratio Test. �

2. The terms are all positive. We compute

lim
n→∞

n
√
an = lim

n→∞
n

√
3n

n2n
=

3

2
lim
n→∞

1

n1/n
=

3

2
> 1,

so the series diverges according to the Root Test. �
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3. The terms are all positive. For all p > 0, we compute

lim
n→∞

∣∣∣∣ 1

(n+ 1)p
· n

p

1

∣∣∣∣ = lim
n→∞

( n

n+ 1

)p
→ 1p = 1.

Thus we cannot use the Ratio Test to determine if the series converges.

If p = 1, the harmonic series is bounded below by a divergent series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · ·

≥ 1 +
1

2
+

1

4
+

1

4︸ ︷︷ ︸
=1/2

+
1

8
+

1

8
+

1

8
+

1

8︸ ︷︷ ︸
=1/2

+ · · · = 1 +
1

2
+

1

2
+

1

2
+ · · · =∞,
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and so must itself be divergent. As 1
np >

1
n for all n when p < 1, then the

series diverges for all 0 < p ≤ 1 according to the Comparison Theorem.

If p > 1, the p−series is bounded above by a convergent series

∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+

1

4p
+

1

5p
+

1

6p
+

1

7p
+

1

8p
+ · · ·

≤ 1 +
1

2p
+

1

2p︸ ︷︷ ︸
2 times

+
1

4p
+

1

4p
+

1

4p
+

1

4p︸ ︷︷ ︸
4 times

+
1

8p
+ · · ·

= 1 + 21 · 1

(21)p
+ 22 · 1

(22)p
+ · · · =

∞∑
k=0

2k(1−p) =

∞∑
k=0

1

(2p−1)k
.

But this series converges according to the Root Test.

P. Boily (uOttawa) 19



Mathematical Analysis Chapter 7 – Series of Functions

Indeed, all the terms are positive, and, because p > 1,

lim
k→∞

k

√
1

(2p−1)k
= lim

k→∞

1

2p−1
< 1.

Thus the p−series diverges for 0 < 1 ≤ p and converges for p > 1. �

Theorem 76. (Absolute Convergence)

If the series
∞∑

n=0

|an| converges, so does
∞∑

n=0

an (not an “iff” statement).

Theorem 77. (Series Rearrangement)

If the series
∞∑

n=0

|an| converges, so does
∞∑

n=0

aϕ(n), ϕ : N→ N a bijection.
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7.2 – Series of Functions

Series of functions play the same role for sequences of functions that
series played for sequences of numbers.

Let I ⊆ R and fn : I → R, ∀n ∈ N. If the sequence of partial sums

s1(x) = f1(x)

s2(x) = f1(x) + f2(x)

· · ·

converges to some function f : I → R for all x ∈ I, we say that the series

of functions
∞∑

n=1

fn converges pointwise to f on I.
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Example: Consider the sequence of functions fn : R → R defined by
fn(x) = xn for each n ∈ N. Does the sequence of partial sums sk(x)
converge to some pointwise limit over some A ⊆ R?

Solution. Formally, we have

(1− xk+1) = (1− x)(1 + x+ x2 + · · ·+ xk) = (1− x)sk(x).

Thus

x 6= −1 =⇒ sk(x) =

k∑
n=0

xn =
1− xk+1

1− x
.

Thus ∞∑
n=0

xn = lim
k→∞

sk(x) =
1

1− x
when x ∈ (−1, 1). �
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If the sequence of partial sums (sn) converges uniformly to f on I, we say

that the series of functions
∞∑

n=1

fn converges uniformly to f on I.

If the convergence of the series of functions is uniform, the limit interchange
theorems can be applied.

Theorem 78. (Cauchy Criterion for Series of Functions)
Let fn : I → R for all n ∈ N. The series of functions with term fn
converges uniformly to some function f : I → R if and only if ∀ε > 0,
∃Nε ∈ N (independent of x ∈ I) such that

m > n > Nε =⇒

∣∣∣∣∣
m∑

i=n+1

fi(x)

∣∣∣∣∣ < ε.
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Proof. The proof follows directly from Theorem 66 applied to the sequence
of partial sums sm : I → R. �

The next result is a powerful tool to prove uniform convergence (and
so to be able to use the Limit Interchange Theorems).

The simplicity of its proof belies its importance.

Theorem 79. (Weierstrass M−Test)
Let fn : I → R and Mn ≥ 0 for all n ∈ N. Assume that |fn(x)| ≤ Mn for
all x ∈ I, n ∈ N. Then

∞∑
n=1

Mn converges =⇒
∞∑

n=1

fn converges uniformly on I.
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Proof. Let ε > 0. Since
∞∑

n=1

Mn converges, its sequences of partial sums

(sk) is Cauchy and ∃Kε ∈ N such that

m > n > Kε =⇒
m∑

i=n+1

Mi < ε.

But

m > n > Kε =⇒

∣∣∣∣∣
m∑

i=n+1

fi(x)

∣∣∣∣∣ ≤
m∑

i=n+1

|fi(x)| ≤
m∑

i=n+1

Mi < ε;

since Kε is independent of x ∈ I,
∞∑

n=1

fn converges uniformly on I. �
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Example: Let ε ∈ (0, 1). Consider the sequence of functions gn : R → R
defined by gn(x) = nxn−1 for each n ∈ N. Does σk(x) ⇒ σ(x) on
Iε = (−1 + ε, 1− ε) for some σ? If so, find σ.

Solution. Consider the sequence of functions fn : R → R defined by
fn(x) = xn for each n ∈ N, and the corresponding sequence of partial sums
sk(x) defined by sk(x) = 1 + x+ · · ·+ xk.

We have already shown that sk(x)→ 1
1−x pointwise on (−1 + ε, 1− ε).

The partials sums sk are differentiable on Iε since

σk(x) = s′k(x) = 1 + 2x+ 3x2 + · · ·+ kxk−1

are polynomials (in fact, σk is also continuous on Iε).
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Furthermore, note that the sequence of derivatives of partial sums σk(x)
converge uniformly on Iε. To show this, note that

|gn(x)| = |nxn−1| ≤ n|1− ε|n−1 =Mn ∀x ∈ Iε, ∀n ∈ N.

But ∞∑
n=0

Mn =

∞∑
n=0

n(1− ε)n−1.

Since

lim
n→∞

(n+ 1)(1− ε)n

n(1− ε)n−1
= (1− ε) lim

n→∞

n+ 1

n
= (1− ε) < 1,

then
∞∑

n=0

Mn converges according to the Ratio Test.
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According to the Weierstrass M−Test, then, σk(x) ⇒ σ(x) on Iε for some
function σ : Iε → R.

We can use the Limit Interchange Theorem 68 to identify σ:

σ(x) = lim
k→∞

σk(x) = lim
k→∞

d

dx
[sk(x)] =

d

dx

[
lim
k→∞

sk(x)
]
=

d

dx

[ 1

1− x

]
,

which is to say σ(x) = 1
(1−x)2. �

Incidentally, Theorem 68 also tells us that sk(x) ⇒ 1
1−x on Iε, for all

0 < ε < 1, and that for all k ∈ N and x ∈ Iε, ε ∈ (0, 1), we have

∞∑
n=0

dk

dxk
[xn] =

dk

dxk

∞∑
n=0

xn =
dk

dxk

( 1

1− x

)
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7.3 – Power Series

A power series around its center x = x0 is a formal expression of the form

∞∑
n=0

an(x− x0)n.

We have already seen an example of such a series, which converged uniformly
on intervals containing x0 = 0:

∞∑
n=0

xn =
1

1− x
on Iε = (−1 + ε, 1− ε), ∀ε ∈ (0, 1)

(note, however, that the convergence is only pointwise on (−1, 1)).
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Furthermore, the function f : A→ R, f(x) = 1
1−x is defined for all x 6= 1,

yet the power series 1+x+x2+· · · does not converge to f outside of (−1, 1).

Power series are commonly used as a formal guessing procedure to solve
differential equations, but this is not a topic we will tackle at the moment.

A natural question to ask is: for which functions f : A → R (and
which A) can we find a sequence of coefficients (an) such that

f(x) =

∞∑
n=0

an, ∀x ∈ A?

Questions of this ilk are more naturally answered in C; a more complete
treatment will be provided in a complex analysis course.
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Examples: Where do the following power series converge?

1.
∞∑

n=0

xn, 2.
∞∑

n=1

(nx)n, 3.
∞∑

n=1

(x
n

)n
.

1. We have seen that the series converges only on (−1, 1). �

2. The power series obviously converges when x = 0. To show that it fails
to converge on R \ {0}, note that if |x| > 0, then by the Archimedean
Property, ∃N ∈ N such that N > 2

|x|. Thus,

n > N =⇒ |(nx)n| = nn|x|n > 2n

and the sequence (nx)n is unbounded, which means that the terms do
not go to 0, and so the series diverges. �
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3. Let x ∈ R. By the Archimedean Property, ∃N ∈ N s.t. N > 2|x|. Thus,

n > N =⇒
∣∣∣(x
n

)n∣∣∣ = |x|n
nn

<
1

2n
.

According to the Weierstrass M−Test and Theorem 76, the series thus
converges uniformly on R. �

The radius of convergence of a power series
∞∑

n=0

an(x− x0)n is

R =
1

lim sup
n→∞

|an|1/n
.
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If the limit exists, we can replace lim sup by lim. Intuitively, this says that
for all large enough n,

−R−n ≤ −|an| ≤ an ≤ |an| ≤ R−n,

so that

−
∑
n>N

(x− x0
R

)n
≤
∑
n>N

an(x− x0)n ≤
∑
n>N

(x− x0
R

)n
.

The bounds are geometric series, and they converge when |x− x0| < R.

We would expect the original power series to converge on the interval
of convergence |x− x0| < R.
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Theorem 80. Let R be the radius of convergence of the power series

∞∑
n=0

an(x− x0)n.

Then, if

R = 0, the power series converges for x = x0 and diverges for x 6= x0;

R =∞, the power series converges absolutely on R, and

0 < R < ∞, the power series converges absolutely on |x − x0| < R,
diverges on |x− x0| > R; the extremities must be analyzed separately.

Proof. Follows immediately from the Root Test. �
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Theorem 81. The power series of Theorem 80 converges uniformly on
any compact sub-interval

[a, b] ⊆ (x0 −R, x0 +R).

Proof. Let ` = max{|a − x0|, |b − x0|} < R. For every n ∈ N, set
Mn = `n|an| ≥ 0 and ε = 1

4(R− `).

Since 1
R = lim sup

n→∞
|an|1/n, ∃Nε ∈ N such that n > Nε =⇒ |an| ≤ ( 1

R−ε)
n.

Thus, for all n > Nε, we have

0 ≤Mn = `n|an| = (R− 4ε)n|an| ≤
(R− 4ε

R− ε

)n
=
(
1− 3ε

R− ε︸ ︷︷ ︸
>0

)n
,
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so that

∞∑
n=0

Mn =

Nε∑
n=0

Mn +
∑
n>Nε

Mn ≤
Nε∑
n=0

Mn +
∑
n>Nε

(
1− 3ε

R− ε

)n

≤
Nε∑
n=0

Mn +

∞∑
n=0

(
1− 3ε

R− ε

)n
=

Nε∑
n=0

Mn︸ ︷︷ ︸
finite

+
R− ε
3ε

<∞.

But for all x ∈ [a, b], we have

|an(x− x0)n| ≤ |an|`n =Mn, for all n ∈ N.

According to the Weierstrass M−Test, the power series converges uniformly
on [a, b]. �
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In what follows, we let f : (x0−R, x0+R)→ R be the function defined by

f(x) =

∞∑
n=0

an(x− x0)n, and sN(x) =

N∑
n=0

an(x− x0)n.

Theorem 82. The function f is continuous on any closed bounded interval
[a, b] ⊆ (x0 −R, x0 +R).

Proof. The functions an(x− x0)n are continuous on [a, b] for all n, and

sN(x) =

N∑
n=0

an(x− x0)n ⇒ f(x) on [a, b] when N →∞.

According to Theorem 67, f is continuous on [a, b]. �
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Theorem 83. Let x ∈ (x0 − R, x0 + R). Then f is Riemann-integrable
between x0 and x and∫ x

x0

f(t) dt =

∞∑
n=0

an
n+ 1

(x− x0)n+1.

Proof. Without loss of generality, assume x > x0. As in the proof of
Theorem 82, sN(x) ⇒ f(x) on [x0, x] when N → ∞. Thus, according to
Limit Interchange Theorem 69, we have∫ x

x0

f(t) dt= lim
N→∞

∫ x

x0

sN(t) dt = lim
N→∞

∫ x

x0

N∑
n=0

an(t− x0)n dt

= lim
N→∞

N∑
n=0

∫ x

x0

an(t− x0)n dt =
∞∑

n=0

an
n+ 1

(x− x0)n+1. �
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Theorem 84. The function f is differentiable on (x0 −R, x0 +R) and

f ′(x) =

∞∑
n=1

nan(x− x0)n−1.

Proof. As n1/n → 1,

lim sup
n→∞

(n|an|)1/n = lim sup
n→∞

n1/n · lim sup
n→∞

|an|1/n =
1

R
,

so the radius of convergence of both power series is identical, and so,
in particular, s′N(x) converges uniformly on any closed bounded interval
[a, b] ⊆ (x0 −R, x0 +R).
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Thus, according to Limit Interchange Theorem 68, we have

d

dx

[
f(x)

]
= lim

N→∞

d

dx

[
sN(x)

]
= lim

N→∞

d

dx

N∑
n=0

[
an(x− x0)n

]
= lim

N→∞

N∑
n=0

d

dx

[
an(x− x0)n] =

∞∑
n=1

nan(x− x0)n−1. �

How do we compute the power series coefficients an? Combining Theorems
82 and 84, we see that f is smooth in its interval of convergence (i.e. all
of its derivatives are continuous).

Theorem 85. If R > 0, then

an =
f (n)(x0)

n!
.
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Proof. If x = x0, then f(x0) = a0, which corresponds to the case n = 0.

When n = k > 0, then repeated application of Theorem 84 yields

f (k)(x) =

∞∑
n=k

n!

(n− k)!
an(x− x0)n−k on (x0 −R, x0 −R).

If we evaluate at x = x0, we get f (k)(x0) = k!ak, thus ak = f (k)(x0)
k! . �

Corollary. If ∃r > 0 such that

f(x) =

∞∑
n=0

an(x− x0)n and g(x) =

∞∑
n=0

bn(x− x0)n

and f(x) = g(x) for all x ∈ (x0 − r, x0 + r), then an = bn for all n ∈ N.
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Attempts to strengthen this uniqueness result must fail.

Example: Consider the function f : R→ R defined by

f(x) =

{
exp(−1/x2), x 6= 0

0, x = 0

Show that f does not have a power series expansion.

Proof. For all n ∈ N, it can be shown that

f (n)(x) =

{
dn

dxn

[
exp(−1/x2)

]
, x 6= 0

0, x = 0

is continuous and that f (n)(0) = 0.
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According to the Corollary to Theorem 85, if f is equal to its power series
on some interval (−r, r), then all of the coefficients an would be 0, and so
f ≡ 0, but f 6≡ 0, so f cannot be equal to its power series expansion. �

Thus, we cannot always assume that a function is equal to its power
series.

There are other ways to expand a function as infinite series, most notable
being Laurent Series and Fourier Series. These topics are covered in
courses in complex analysis and partial differential equations, respectively.
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7.4 – Exercises

1. Answer the following questions about series.

(a) If
∞∑
k=1

(ak + bk) converges, what about
∞∑
k=1

ak and
∞∑
k=1

bk?

(b) If
∞∑
k=1

(ak + bk) diverges, what about
∞∑
k=1

ak and
∞∑
k=1

bk?

(c) If
∞∑
k=1

(a2k + a2k−1) converges, what about
∞∑
k=1

ak?

(d) If
∞∑
k=1

ak converges, what about
∞∑
k=1

(a2k + a2k−1)?

2. Show that
1

r − 1
=

1

r + 1
+

2

r2 + 1
+

4

r4 + 1
+

8

r8 + 1
+ · · ·

for all r > 1.
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3. Using Riemann integration, find the values of p for which the series
∞∑

n=1

1

np
converges

(compare with the approach used in the notes).

4. Which of the following series converge?

(a)
∞∑

n=1

n(n + 1)

(n + 2)2

(b)
∞∑

n=1

2 + sin3(n + 1)

2n + n2

(c)
∞∑

n=1

1

2n − 1 + cos2 n3

(d)
∞∑

n=1

n + 1

n2 + 1

(e)
∞∑

n=1

n + 1

n3 + 1
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(f)
∞∑

n=1

n!

nn

(g)
∞∑

n=1

n!

5n

(h)
∞∑

n=1

nn

31+2n

(i)
∞∑

n=1

(
5n + 3n3

7n3 + 2

)n

5. Give an example of a power series
∞∑
k=0

akx
k

with interval of convergence [−
√
2,
√
2).

6. Find the values of x for which the following series converge:

(a)
∞∑

n=1

(nx)
n

;

(b)
∞∑

n=1

x
n

;
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(c)
∞∑

n=1

xn

n2
;

(d)
∞∑

n=1

xn

n!
.

7. If the power series
∑

akx
k has radius of convergence R, what is the radius of

convergence of the series
∑

akx
2k?

8. Obtain power series expansions for the following functions.

(a)
x

1 + x2
;

(b)
x

(1 + x2)2
;

(c)
x

1 + x3
;

(d)
x2

1 + x3
;

(e) f(x) =

∫ 1

0

1− e−sx

s
ds, about x = 0.
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Solutions

1. Proof.

(a) They might both diverge. Consider ak = −k and bk = k. However,
if one converges, then so does the other, by the arithmetic of
limits/series.

(b) At least one of them diverges because if they both converged, then
the series of sums would converge as well (according to a proposition
seen in class).

(c) Nothing. Consider a2k = k, a2k+1 = −k, for which
∞∑
k=1

ak diverges,

but a2k = 1
k2

, a2k+1 = 0, for which
∞∑
k=1

ak converges.
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(d) It also converges. The sequence of partial sums of the second series is

(a1 + a2, a1 + a2 + a3 + a4, , a1 + a2 + a3 + a4 + a5 + a6, . . .)

is a subsequence of the sequence of partial sums of the first series

(a1, a1 + a2, a1 + a2 + a3, a1 + a2 + a3 + a4, . . .).

If the first series sequence of partial sums converges, so does the
subsequence’s series. �
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2. Proof. From the hint, we see that

1

`+ 1
=

1

`− 1
− 2

`2 − 1
.

Thus, for all k ∈ N, if ` = 2k, we have

1

r2k + 1
=

1

r2k − 1
− 2

r2k+1 − 1

=⇒ 2k

r2k + 1
=

2k

r2k − 1
− 2k+1

r2k+1 − 1
.

Therefore, we have a telescoping sum

∞∑
k=1

2k

r2k + 1
= lim

n→∞

n∑
k=1

2k

r2k + 1
= lim

n→∞

(
1

r − 1
− 2n

r2n − 1

)
=

1

r − 1
,
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where the last equality follows from the fact that, for r > 1, we have

lim
m→∞

m

rm
= 0.

This completes the proof. �
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3. Proof. If p ≤ 0, then 1
np 6→ 0 so the series diverges. In what follows,

then, let p > 0.

For k ∈ N, consider the function fk;p : [1, k] → R defined by
fk;p(x) = 1

xp. Since f ′k;p(x) = − p
xp+1 < 0 for all x ≥ 1, fk;p is

strictly decreasing on [1, k]. Thus fk;p is Riemann-integrable on [1, k].

Consider the partition Pk = {1, 2, . . . , k, k + 1} of [1, k + 1]. Since
fk;p is Riemann-integrable,

L(fk;p;Pk) ≤
∫ k+1

1

fk;p ≤ U(fk;p;Pk).

As fk;p is decreasing on the sub-interval [µ, ν], fk;p reaches its maximum
at µ and its minimum at ν;
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Hence

U(fk;p;Pk) =

k∑
n=1

fk;p(n)(n+ 1− n) =
k∑

n=1

1

np
, and

L(fk;p;Pk) =

k+1∑
n=2

fk;p(n+ 1)(n+ 1− n) =
k+1∑
n=2

1

np
.

But
k+1∑
n=2

1

np
=

1

(k + 1)p
− 1 +

k∑
n=1

1

np
.

Thus
1

(k + 1)p
− 1 +

k∑
n=1

1

np
≤
∫ k+1

1

fk;p ≤
k∑

n=1

1

np
.
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Write sk;p for the partial sum and note that

∫ k+1

1

fk;p =

∫ k+1

1

dx

xp
=

{
ln(k + 1), when p = 1
1

1−p(k
1−p − 1), when p 6= 1

If p = 1, then ln(k+1) ≤ sk;1 for all k. Since the sequence {ln(k+1)}k
is unbounded, so must {sk;1}k be unbounded, which means that the
corresponding series cannot converge.

If p > 1, then

lim
k→∞

(
1

1− p
(k1−p − 1) + 1− 1

(k + 1)p

)
=

p

p− 1
.
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Since sk;p is monotone (as every additional 1
np added to the partial sum

is positive) and since sk;p is bounded above by the convergent sequence{
1

1− p
(k1−p − 1) + 1− 1

(k + 1)p

}
k

,

sk;p is a convergent sequence.

If p < 1, then {
1

1− p
(k1−p − 1)

}
k

is unbounded. As sk;p ≥ 1
1−p(k

1−p−1) for all k, {sk;p} is also unbounded,
which means that the corresponding series cannot converge.

Thus, the series converges if and only if p > 1. �
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4. Proof. We use the various tests at our disposal.

(a) Since

lim
n→∞

n(n+ 1)

(n+ 2)2
= 1 6= 0,

the series diverges .

(b) Since −1 ≤ sin3(n+ 1) ≤ 1, we have

0 ≤ 2 + sin3(n+ 1)

2n + n2
≤ 1

2n + n2
≤ 1

2n
.

Thus the given series converges by comparison with the geometric series
∞∑

n=1

1

2n
.
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(c) If an denotes the n-th term of the series, we have

an+1

an
=

2n − 1 + cos2 n3

2n+1 − 1 + cos2(n+ 1)3
→ 1

2
< 1.

Thus the series converges by the ratio test.

(d) We have
n+ 1

n2 + 1
≥ n

2n2
=

1

2n
.

Thus the series diverges by comparison with the harmonic series.

(e) We have

0 ≤ n+ 1

n3 + 1
≤ 2n

n3
=

2

n2
.
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Thus the series converges by comparison with
∞∑

n=1

2

n2
.

(f) For n ≥ 2, we have

0 ≤ n!

nn
=

1

n
· 2
n
· 3 · 4 · · ·n

nn−2 ≤ 2

n2
.

Thus the series converges by comparison with
∞∑

n=1

2

n2
.

(g) If an denotes the n-th term in the series, we have

an+1

an
=

(n+ 1)!

5n+1

5n

n!
=
n+ 1

5
→∞.

Thus the series diverges by the ratio test.
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(h) We have (
nn

31+2n

)1/n

=
n

32+1/n
→∞.

Thus the series diverges by the root test.

(i) We have ((
5n+ 3n3

7n3 + 2

)n)1/n

=
5n+ 3n3

7n3 + 2
→ 3

7
< 1.

Thus the series converges by the root test. �
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5. Proof. Consider the series ∞∑
k=1

xk

k
.

We have

lim sup
k→∞

k

√
|x|k
k

= lim sup
k→∞

|x|
k
√
k
= |x|.

Therefore, by the root test, the series converges when |x| < 1 and
diverges for |x| > 1.

For x = 1, the series is the harmonic series, which diverges. For
x = −1, it is the alternating harmonic series, which converges.

Thus, the series converges precisely on the interval [−1, 1).
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Now, replace x by x/
√
2. The corresponding power series is thus

∞∑
k=0

1
√
2
k
k
xk.

We have

lim sup
k→∞

k

√
|x|k
√
2
k
k
= lim sup

k→∞

|x|√
2 k
√
k
=
|x|√
2
.

The series converges on |x|√
2
< 1 and diverges on |x|√

2
> 1. For x =

√
2,

the series is the harmonic series, which diverges. For x = −
√
2, it is the

alternating harmonic series, which converges.

Thus, the series converges precisely on the interval [−
√
2,
√
2). �
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6. Proof.

(a) The series diverges whenever x 6= 0 since the terms (nx)n do not tend
to zero when n → ∞. (For large enough n, we have n|x| ≥ 1.) Thus,
this power series converges only at its center.

(b) The geometric series converges precisely on the interval (−1, 1), and the
series takes on the value 1

1−x there.

(c) For |x| ≤ 1, we have ∣∣∣∣xnn2

∣∣∣∣ ≤ 1

n2
,

and thus the series converges for these values of x. If |x| > 1, the terms
|xn/n2| → ∞, and so the series diverges. Hence the series converges
precisely on the interval [−1, 1].
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(d) Let x ∈ R. Using the ratio test we have

xn+1

(n+ 1)!
· n!
xn

=
x

n+ 1
→ 0.

Thus the series converges for all x ∈ R (and takes on the value ex). �
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7. Proof. The new series can be written as
∞∑
k=0

bkx
k, where bk = ak/2 if k

is even and bk = 0 if k is odd. Thus

lim sup
k→∞

k
√
|bk| = lim

k→∞
k

√
|ak/2| = lim

k→∞
2k
√
|ak| = lim

k→∞

(
k
√
|ak|
)1/2

=

(
lim
k→∞

k
√
|ak|
)1/2

= R1/2.

Therefore, the radius of convergence of the new series is
√
R. �
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8. Proof.

(a) Since

1

1− x
=

∞∑
k=0

xk,

we have
x

1 + x2
= x

∞∑
k=0

(−x2)k =

∞∑
k=0

(−1)kx2k+1.

(b) We know that, for x ∈ (−1, 1), 1

1− x
=

∞∑
k=1

xk.

For any −1 < a < b < 1, the series
∞∑
k=1

kxk−1 converges uniformly

on [a, b].
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Indeed, let c = max{|a|, |b|} < 1. Then, for all x ∈ [a, b], we have

|kxk−1| ≤ kck−1.

Now,
(k + 1)ck

kck−1
=
k + 1

k
c→ c as k →∞.

Since c < 1, the ratio test tells us that
∞∑
k=1

kck−1 converges.

Thus,
∞∑
k=1

kxk−1 converges uniformly by the Weierstrass M -test.
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Consequently, we have

∞∑
k=1

kxk−1 =
d

dx

(
1

1− x

)
=

1

(1− x)2
,

and so for any x ∈ [a, b] ⊆ (−1, 1):

x

(1 + x2)2
= x

∞∑
k=1

k(−x2)k−1 =
∞∑
k=1

(−1)k−1kx2k−1.

(c) Using the geometric series, we have

x

1 + x3
= x

∞∑
k=0

(−x3)k =

∞∑
k=0

(−1)kx3k+1.
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(d) Using the geometric series, we have

x2

1 + x3
= x2

∞∑
k=0

(−x3)k =

∞∑
k=0

(−1)kx3k+2.

(e) Since

ex =

∞∑
k=0

xk

k!
,

we have

1− e−sx

s
= −1

s

∞∑
k=1

(−sx)k

k!
=

∞∑
k=1

(−1)k+1s
k−1xk

k!
.

This series converges absolutely for all s and all x (use the ratio test or
compare it to the series for ex). Therefore, viewing it as a power series
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in s (for some fixed x), its interval of convergence is ∞, and its centre
is 0. Thus the series can be integrated term by term:

∫ 1

0

1− e−sx

s
ds =

∫ 1

0

∞∑
k=1

(−1)k+1s
k−1xk

k!
ds

=

∞∑
k=1

(−1)k+1

(∫ 1

0

sk−1 ds

)
xk

k!

=

∞∑
k=1

(−1)k+1

[
sk

k

]s=1

s=0

xk

(k!)
=

∞∑
k=1

(−1)k+1 xk

k(k!)
.

This completes the exercises for the course. �
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