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Mathematical Analysis Chapter 8 – The Real Numbers (Reprise)

Overview

In a course on real analysis, the fundamental object of study is the set of
real numbers.

In chapter 2, introduced R in an intuitive and informal way. In this
chapter, we show how R can be built using Cauchy sequences.
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8.1 – Cauchy Sequences in Q

In (R, | · |), every Cauchy sequence converges. In (Q, | · |), some do not.

Lemma 1. If (xn) ⊆ Q converges to x ∈ Q, then (x2n) converges to
x2 ∈ Q.

Proof. First, note that if x ∈ Q, then x2 ∈ Q, since Q is a field.

Now, let ε > 0. By hypothesis, ∃N ∈ N s.t. n > N =⇒ d(xn, x) < ε.
Hence, for all n > N ,

d(x2n, x
2)= |x2n − x2| = |xn − x||xn + x| < ε|xn + x| ≤ ε(|xn|+ |x|)
= ε(|xn − x+ x|+ |x|) ≤ ε(|xn − x|+ 2|x|) < ε(ε+ 2|x|).

This completes the proof �

P. Boily (uOttawa) 3



Mathematical Analysis Chapter 8 – The Real Numbers (Reprise)

The following result sets the stage to show that Q is incomplete.

Lemma 2. There is no rational number a for which a2 = 2.

We build a sequence of rational numbers an for which a2n → 2:

a1 =
1

1
, a2 =

14

10
, a3 =

141

100
, a4 =

1414

1000
, . . .

It is not too difficult to show by induction that

1. 0 < a1 < a2 < · · · < an−1 < an < · · · < 2

2. 0 < a21 < a22 < · · · < a2n−1 < a2n < · · · < 2

For n ∈ N, write bn = an +
1

10n−1. Then b2n > 2 > a2n for all n.
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Consequently, a2n → 2 since

|a2n − 2| ≤ |b2n − a2n| = |bn − an||bn + an| ≤
1

10n−1

(
2an +

1

10n−1

)
→ 0.

But (an) is a Cauchy sequence in Q; indeed, |an − am| < 10−n if m ≥ n.

However, (an)) cannot be a convergent sequence in Q. Were it to
converge to a number a ∈ Q, we would have a2n → a2 = 2 ∈ Q according
to Lemma 1. However, a 6∈ Q according to Lemma 2.

A metric space (E, d) in which every Cauchy sequence also converges
in (E, d) is termed complete.

The example shows that (Q, | · |) is not complete.
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8.2 – Building R by Completing Q

Is the fact that Q incomplete problematic? Not in the sense that arithmetic
in Q is compromised. But it is still fairly inconvenient.

If we take a closer look at the definition, we notice that we can only
claim a sequence to be convergent once we know what its limit is. But if we
already know that the sequence has a limit, then it automatically converges.

At this stage, the main advantage a complete metric space holds over a
non-complete one is simply that it allows one to talk about the convergence
of a sequence without knowing a thing about its limit, save that it exists.

But this does not change the fact that Q is not complete. What can
we do about that?
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The sequence (an) described previously does not converge in Q, but its
values get closer and closer to one of the “holes” of Q.

Were we to fill up that hole (in effect completing Q), we could expect
that the sequence would now converge in the bigger set. This leads to the
following definition of the real numbers R:

1. any Cauchy sequence in Q corresponds to a real number;

2. two Cauchy sequences (xn) and (yn) define the same real number if
(xn) ∼ (yn):

∀ε > 0,∃N ∈ N n > N =⇒ |xn − yn| < ε.

Then, set R = {(xn) | (xn) is a Cauchy sequence in Q}/ ∼ .
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How does this definition of R compare with our usual intuition?

For starters, there ought to be an addition and a multiplication in R
that behave as we think they should. If α = [(an)], β = [(bn)] ∈ R, define

α+ β = [(an + bn)]

αβ = [(anbn)]

In order for this definition to make sense, we need to verify that if (an) and
(bn) are Cauchy sequences, then so are (an+ bn) and (anbn), and that the
choice or representative in the equivalence classes are irrelevant:

(an) ∼ (a′n) and (bn) ∼ (b′n) =⇒ (an+bn) ∼ (a′n+b
′
n) and (anbn) ∼ (a′nb

′
n).
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The proof is left as an exercise, and relies on the following inequalities:

|(an + bn)− (a′n + b′n)| ≤ |an − a′n|+ |bn − b′n|

and

|anbn − a′nb′n| ≤ |an||bn − b′n|+ |b′n||an − a′n|

and on Cauchy sequences being bounded in Q.

In order for Q to be a subset of R, we complete the definition as follows: if
α ∈ R is such that

α = [(a, a, a, . . .)], a ∈ Q,
we identify α with a ∈ Q. Consequently, if a Cauchy sequence (bn)
converges to b ∈ Q, the real number β = [(bn)] is the rational number b.
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8.3 – An Order Relation on R

To show that R is indeed complete, we next need to introduce an order on
R. If (an) and (bn) are Cauchy sequences in Q, there are three possibilities:

1. ∃N ∈ N, (n > N =⇒ an ≥ bn)

2. ∃N ∈ N, (n > N =⇒ an ≤ bn)

3. (an) and (bn) “overlap” infinitely often

In the third case, we must have (an) ∼ (bn). Write α = [(an)] and
β = [(bn)].
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We define an order < on R as follows:

1. α ≥ β if cases 1 or 3 hold;

2. α ≤ β if cases 2 or 3 hold.

It is not enough to write ≤ or ≥; we still need to show that the relation is
indeed an order.

This is left as an exercise.

Lemma 3. Let ε ∈ Q and N ∈ N. If (an) is a Cauchy sequence in Q for
which an ≤ ε for all n > N , then α = [(an)] ≤ ε.
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Proof.The proof is simple: it suffices to identify ε ∈ Q with the equivalence
class of the constant sequence

[(ε, ε, . . .)].

Then the definition of ≤ in R yields the desired conclusion. �

Theorem 86. Let (an) be a Cauchy sequence inQ and set α = [(an)] ∈ R.
Then (an) converges to α in R.

Proof. We want to show that given any (real) ε > 0, we can find an integer
N ∈ N such that |an − α| < ε whenever n > N .

For all n ∈ N, the sequence (an, an, . . .) defines the real number an;
similarly, the sequence (a1, a2, . . .) defines the real number α.
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Consequently, the sequences

(an−a1, an−a2, . . . , an−am, . . .) and (|an−a1|, |an−a2|, . . . , |an−am|, . . .)

define respectively the real numbers an − α and |an − α|.

Let ε > 0. Since (an) is a Cauchy sequence, there is an integer N ∈ N such
that |an − am| < ε (as rational numbers) for each n,m > N . Fix n > N .
Then we have |an − am| < ε (as rational numbers) whenever m > N ;
consequently, |an − α| < ε. Since this holds whenever n > N , an → α. �

As a corollary, every real number is the limit of a Cauchy sequence of
rational numbers.

Theorem 87. R is complete.
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Proof. Let (αn) be a Cauchy sequence in R. We show that it converges as
follows:

1. construct a sequence (an) in Q for which |an − αn| < 1
10n (where an is

viewed as the constant sequence);

2. verify that (an) is a Cauchy sequence in Q and denote the associated
real number by α;

3. show that αn → α.

That work is, of course, left as an exercise. �
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We may not have put too much emphasis on the fact that there are multiple
ways of completing sets.

The completion of Q is entirely dependent on the notion of closeness
that is being used: traditionally, the metric we use is that two rational
numbers are considered close to one another if their respective decimal
expansions start to differ far to the right of the decimal point.

For instance, the distance between

23410.0001 and 23410.0008

is smaller than 10−3 because the decimal expansions start to differ at the
4th digit to the right of the decimal point.
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In base 10, if q, r ∈ Q, then we can write

q =
∑
i∈Z

qi10
i, r =

∑
i∈Z

ri10
i

Under the usual metric d10(q, r) =

∣∣∣∣∣∑
i∈Z

(qi − ri)10i
∣∣∣∣∣, we have

d10(23410.0001,23410.0008) =
∣∣· · ·+ (0− 0)10n + · · ·+ (0− 0)105

+ (2− 2)104 + (3− 3)103 + (4− 4)102 + (1− 1)101

+ (0− 0)100 + (0− 0)10−1 + (0− 0)10−2

+ (0− 0)10−3 + (1− 8)10−4 + (0− 0)10−5 + · · ·

+(0− 0)10−n + · · ·
∣∣ = 7 · 10−4
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But that is an artificial convention.

What would happen if we defined a metric the other way? Two rational
numbers would be considered close to one another if their respective decimal
expansions start to differ far to the left of the decimal point.

Under this new metric d̃10(q, r) =

∣∣∣∣∣∑
i∈Z

(qi − ri)10−i
∣∣∣∣∣, we have

d̃10(23410.0001,23410.0008) =
∣∣· · ·+ (0− 0)10−n + · · ·+ (0− 0)10−5

+ (2− 2)10−4 + (3− 3)10−3 + (4− 4)10−2 + (1− 1)10−1

+ (0− 0)100 + (0− 0)101 + (0− 0)102 + (0− 0)103

+(1− 8)104 + (0− 0)105 + · · ·+ (0− 0)10n + · · ·
∣∣ = 7 · 104,
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so that 23410.0001 and 23410.0008 are actually far apart, whereas
20000000012 and 12 are very close to one another since
d̃10(20000000012, 12) = 2 · 10−10.

If d̃ is indeed a metric on Q (see exercise 10), then Cauchy sequences
of rational numbers under d will not have a lot in common with Cauchy
sequences of rational numbers under d̃. There is no reason to expect that
the completion of Q will be the same in both instances, and in fact, it is not.

When we complete Q using the metric d̃p, where p is a prime integer,
the resulting set we obtain is called the field of p−adic numbers, and it
is distinct from R. Just about everything we will do throughout the course
could also be applied to these new sets. The moral of the story is that
different metrics lead to different completions of Q.
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8.4 – Exercises

1. Show that any convergent sequence in a metric space is a Cauchy sequence.

2. Show that a convergent sequence in a metric space has exactly one limit.

3. If (an) and (bn) are Cauchy sequences in Q, show that so are (an+ bn) and (anbn).

4. If (an), (bn), (a′n) and (b′n) are Cauchy sequences in Q such that (an) ∼ (a′n) and

(bn) ∼ (b′n), show that (an + bn) ∼ (a′n + b′n) and (anbn) ∼ (a′nb
′
n).

5. Show that R is a field.

6. If (an) and (bn) are Cauchy sequences which “overlap” infinitely often, show that

(an) ∼ (bn).

7. Let α, β, γ ∈ R. If α ≤ β and β ≤ γ, show that α ≤ γ.

8. Let α, β ∈ R. If α ≤ β and β ≤ α, show that α = β.

9. Fill the details in the proof of Theorem 87.

10. Show that d̃ is a metric on Q.

11. Let p be a prime integer. What can you say about the field of p−adic numbers?
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