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Mathematical Analysis Chapter 9 – Metric Spaces and Sequences

Overview

One of the natural ways we can extend the concepts we have discussed in
the previous chapters is by moving from R to Rm.

Some of the notions that generalize nicely to vectors and functions on
vectors include norms and distances, sequences, and continuity.

Notation: The symbol K is sometimes used to denote either R or C.

CR([0, 1]) represents the R−vector space of continuous functions [0, 1]→ R.

FR([0, 1]) represents the R−vector space of functions [0, 1]→ R.
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9.1 – Preliminaries

Most of the results of the previous chapters rely heavily on the properties
of the absolute value.

Its fundamental role in R is being a measure of the magnitude of a
real number: |x| is the distance from the real number x to the origin.

In higher-dimensional spaces, the concept of the absolute value can be
generalized in multiple ways.

In this chapter, we discuss norms and metrics, as well as the topologies
they induce.
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9.1.1 – Norms and Metrics

Let E be a K−vector space, such as R, Cn or CR([0, 1]), say. A norm over E
is a mapping ‖ · ‖ : E → R for which the following properties hold:

1. ∀x ∈ E, ‖x‖ ≥ 0

2. ‖x‖ = 0⇐⇒ x = 0

3. ∀x ∈ E,∀λ ∈ K, ‖λx‖ = |λ|‖x‖

4. ∀x,y ∈ E, ‖x + y‖ ≤ ‖x‖+ ‖y‖

If the 4 properties hold, we say of (E, ‖ · ‖) that it is a normed space.
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Examples:

1. R is a normed space together with the absolute value | · |.

2. C is a normed space together with the modulus | · |.

3. Rn is a normed space together with the Euclidean norm

‖x‖2 = ‖(x1, . . . , xn)‖2 =
√
x21 + · · ·+ x2n.

The Euclidean norm over Rn will play a special role in our explorations:
note that it is intimately linked to the inner product

( | ) : Rn×Rn → R, defined by (x | y) =
∑

xiyi =⇒ ‖x‖ = (x | x)1/2.
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4. E = CR([0, 1]) together with the sup norm:

‖f‖∞ = sup
x∈[0,1]

|f(x)|

is another important normed space.

5. For p ≥ 1, the p−norm over Rn is defined as follows:

‖x‖ =

(
n∑
i=1

|xi|p
)1/p

.
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Special cases of the p−norm over Rn include the Euclidean norm (p = 2),
the sup norm (p =∞) and the 1−norm:

‖x‖∞ = max
1≤i≤n

|xi|, ‖x‖∞ =

n∑
i=1

|xi|.

The open ball of radius 1 induced by the p−norm around the origin
in Rn is the set of vectors

Bp(0, 1) = {x | ‖x‖p < 1}.

There are equivalent definitions for closed balls, or for general balls of radius
r centered at some point a ∈ Rn.

Different values of p lead to different geometrical sets Bp(0, 1).
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Bp(0, 1), for p = 2,∞, 1 (left to right).

The open balls have different shapes, but we shall soon see that they are
all equivalent, in the sense that they all induce the same topologies.

There are similarities between summations and integration (the Riemann-
integral of a function over an interval is, essentially, the limit of a sum).
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As such, it is tempting to conclude that there are equivalent p−norms over
FR([0, 1]): something along the lines of

‖f‖p =
(∫

[0,1]

|f |p dm
)1/p

(1)

where m is the Lebesgue measure, but these mappings are not norms.

Consider the function χQ ∈ FR([0, 1]), say. It can be shown that ‖f‖1 = 0.
However, χQ 6= 0 which contradicts the second property of norms (in fact,
‖ · ‖p is a seminorm on FR([0, 1])).

If we restrict the function space to CR([0, 1]), ‖ · ‖p is indeed a norm
for all p ≥ 1, but unfortunately, (CR([0, 1]), ‖ · ‖p) is not complete (more on
this later).
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Let E be any set. A metric over E is a mapping d : E ×E → R for which
the following properties hold:

1. ∀x,y ∈ E, d(x,y) ≥ 0

2. ∀x ∈ E, d(x,x) = 0

3. d(x,y) = 0⇐⇒ x = y

4. ∀x,y ∈ E, d(x,y) = d(y,x)

5. ∀x,y, z ∈ E, d(x,y) ≤ d(x, z) + d(z,y)

If the 5 properties hold, we say that (E, d) is a metric space.
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Normed spaces give rise to metric spaces.

Theorem 88. If (E, ‖ · ‖) is a normed space, define d : E × E → R by

d(x,y) = ‖x− y‖.

Then (E, d) is a metric space.

Proof. Property 1 is a direct consequence of Norm Property 1:

∀x,y ∈ E, d(x,y) = ‖x− y‖ ≥ 0.

Properties 2 and 3 are a direct consequence of Norm Property 2:

∀x ∈ E, d(x,x) = ‖x− x‖ = ‖0‖ = 0

∀x,y ∈ E, d(x,y) = ‖x− y‖ = 0⇐⇒ x− y = 0⇐⇒ x = y.
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Property 4 is a direct consequence of Norm Property 3:

∀x,y ∈ E, d(x,y) = ‖x− y‖ = | − 1| · ‖x− y‖ = ‖y − x‖ = d(y,x).

Property 5 is a direct consequence of Norm Property 4:

∀x,y, z ∈ E, d(x,y) = ‖x− y‖ = ‖x− z + z− y‖
≤ ‖x− z‖+ ‖z− y‖ = d(x, z) + d(z,y).

Thus (E, d) is a metric space. �

Not every metric space arises from a norm, however.
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Examples:

1. Let E be any set and define d : E × E → R by

d(x,y) =

{
0 if x = y

1 otherwise
(2)

Then (E, d) is a metric space in which every point is considered to be
far from every other distinct point. We call such metric spaces discrete.

2. Let E = Rn and define d : E × E → R by d2(x,y) = ‖x− y‖2.

Then (E, d2) is a metric space, which we usually refer to has having the
standard topology.
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Let (E, d) be a metric space. The open ball centered at a ∈ E with
radius r > 0 is the set

B(a, r) = B + d(a, r) = {x ∈ E | d(a,x) < r};

the closed ball centered at a with radius r > 0 is the set

D(a, r) = Dd(a, r) = {x ∈ E | d(a,x) ≤ r},

and the sphere centered at a with radius r > 0 is the set

S(a, r) = Sd(a, r) = D(a, r) \B(a, r) = {x ∈ E | d(a,x) = r}.
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Examples:

1. Let a ∈ E = R and define d(x, y) = |x − y| for all x, y ∈ E. Then, for
r > 0, the balls reduce to intervals:

B(a, r) = (a− r, a+ r), D(a, r) = [a− r, a+ r],

and the sphere to a discrete set S(a, r) = {a− r, a+ r}.

2. Let (E, d) be a discrete metric space and a ∈ E. Then

B(a, r) =

{
{a}, if r < 1

E, otherwise
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3. Let E = CR([0, 1]), d∞(f, g) = ‖f − g‖∞. Then, for ε > 0,

B(f, ε) = {g ∈ E | ‖f − g‖∞ < ε} =
{
g ∈ E | sup

x∈[0,1]
|f(x)− g(x)| < ε

}
= {g ∈ E | |f(x)− g(x)| < ε ∀x ∈ [0, 1]}

B(f, ε); f is the solid curve in
the middle, the two bounding
curves are ε away from f ,
dashes show a function g in
B(f, ε).
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4. Let A,B 6= ∅ be subsets of a metric space (E, d). The distance between
A and B is defined by

d(A,B) = inf
x∈A,y∈B

{d(x,y)}. (3)

Unfortunately, d does not define a metric on ℘(E) \∅ (see exercise 9).
When A = {x}, we write d(A,B) = d(x, B).

Lemma 89. Let (E, d) be a metric space, x,a ∈ E, r > 0 and x 6∈
B(a, r). Show that d(x, B(a, r)) ≥ d(x,a)− r.

Proof. For all y ∈ B(a, r), we have d(x,y) + d(y,a) ≥ d(x,a), whence

d(x,y) ≥ d(x,a)− d(y,a) ≥ d(x,a)− r.
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Consequently,

d(x, B(a, r)) = inf
y∈B(a,r)

{d(x,y)} ≥ d(x,a)− r

whenever x 6∈ B(a, r). �

Let (E, d) be a metric space and let ∅ 6= A ⊆ E. The diameter of
A under d is defined by

δd(A) = sup
x,y∈A

{d(x,y)}.

For instance, in (Rn, d2), we have δd2(B(a, r)) = 2r.

We say that A is bounded in (E, d) if δd(A) <∞.
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Distance between two subsets A,B ⊆ R2.
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Diameter of two subsets A,B ⊆ R2.
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Proposition 90. Let (E, d) be a metric space and let ∅ 6= A ⊆ E. Then,
A is bounded in (E, d) if and only if ∃x ∈ E, ∃r > 0 such that A ⊆ B(x, r).

Proof. One direction is immediate: if ∃x ∈ E, ∃r > 0 such that
A ⊆ B(x, r), then d(y, z) < r for all y, z ∈ A ⊆ B(x, r), so that δd(A) ≤ r.

Conversely, if δd(A) ≤ M , say, then d(y, z) < r = M + 1 for all y, z ∈ A.
Pick any x ∈ A. Then for any other y in A, d(x,y) < r, so that
y ∈ B(x, r). Thus A ⊆ B(x, r). �
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9.1.2 – Metric Space Topology

In this subsection, (E, d) is always a metric space.

A subset A ⊆ E is said to be an open subset of E under d (or
simply to be open if the context is clear) if either

A = ∅, or

∀x ∈ E, ∃r > 0 such that B(x, r) ⊆ A.

We denote this relationship by A ⊆O E.
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Open subset of R2 in the Euclidean topology (image from D.J. Eck).
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Proposition 91. Open sets enjoy the following properties:

1. E ⊆O E;

2. ∀a ∈ E, r > 0, then B(a, r) ⊆O E;

3. the union of an arbitrary family {Ai}i∈I of open subsets of E is an open
subset of E, and

4. the intersection of a finite family {Ai}`i=1 of open subsets of E is an
open subset of E.
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Proof.

1. Let x ∈ E. Since B(x, r) ⊆ E for all r > 0, then E ⊆O E.

2. Let B(a, R) be an open ball in E, and let x ∈ B(a, R). By definition,

d(a,x) < R implies ∃ρ > 0 with ρ = R−d(a,x)
2 . It is not hard to show

that with such a ρ, we have B(x, ρ) ⊆ B(a, R).

3. Let A =
⋃
Ai. If A = ∅ then A ⊆O E. If A 6= ∅, let x ∈ A. By

definition, ∃i ∈ I such that x ∈ Ai. But Ai ⊆O E and, as such, ∃ρ > 0
for which B(x, ρ) ⊆ Ai ⊆

⋃
Ai = A. Consequently, A ⊆O E.

4. It suffices to prove the result for ` = 2 (why?). Let A = A1 ∩ A2. If
A = ∅ then A ⊆O E. If A 6= ∅, let x ∈ A. Then x ∈ A1.
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But A1 ⊆O E and, as such, ∃r1 > 0 for which B(x, r1) ⊆ A1 ⊆ A.
As well, x ∈ A2. But A2 ⊆O E and, as such, ∃r2 > 0 for which
B(x, r2) ⊆ A2 ⊆ A. Set ρ = min{r1, r2}. Then B(x, r) ⊆ A1 ∩ A2,
and, consequently, A ⊆O E. �
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Examples:

1. Let a ∈ R. Then (−∞, a) and (a,∞) are both open in E = R since

(−∞, a) =
⋃
x<a

(x, a) and (a,∞) =
⋃
x>a

(a, x).

2. The intersection of an arbitrary family of open subsets of E could be
open, but need not be:⋂

n∈N

(−n, n) = (−1, 1) ⊆O R,

but ⋂
n∈N

(−1
n,

1
n) = {0} is not open in R.
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A topology τ on a set E is a family of subsets of E for which

1. ∅, E ∈ τ

2. if Ui ∈ τ for all i ∈ I, then
⋃
I Ui ∈ τ

3. if U1, U2 ∈ τ , then U1 ∩ U2 ∈ τ

Examples:

1. Let (E, d) be a metric space. The collection of all open subsets of E
under d forms a topology on E, the metric space topology.

2. Let E be any set. The collection τ = {∅, E} forms a topology on E,
the indiscrete topology.
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3. Let E be any set. The collection τ = ℘(E) forms a topology on E, the
discrete topology.

A subset A ⊆ E is said to be a closed subset of E under d if E \A ⊆O E.
We denote this relationship by A ⊆C E.

As a consequence of the definition of closed sets in opposition to open
sets, we get a whole slew of properties of closed subsets, for free.

1. The empty set is closed in any metric space (E, d).

2. Any metric space (E, d) is necessarily a closed subset of itself.

3. Every closed ball in (E, d) is closed.
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Proof. Let A = D(a, R) be a closed ball in E and set

E \A = {x ∈ E | d(a,x) > R}.

We need to show that E \ A is open. Let x ∈ E \ A, by definition,

d(a,x) > R and ρ = d(a,x)−R
2 > 0. It remains only to show that

B(x, ρ) ⊆ E \A. Let z ∈ B(x, ρ). Then

d(x, z) < ρ and − d(x, z) > −ρ.

Thus, according to the Triangle Inequality we have

d(a, z) ≥ d(a,x)− d(x, z) ≥ 2ρ+R− d(x, z) ≥ R+ ρ > R;

as such, z ∈ E \A. This completes the proof. �
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4. Every sphere in (E, d) is closed.

Proof. Let S = S(a, R). Note that

E \ S = B(a, R) ∪ [E \D(a, R)] ⊆O E

since it is a union of open sets. Consequently, S ⊆C E. �

5. The intersection of an arbitrary family {Ai}i∈I of closed subsets of E is
a closed subset of E.

6. The union of a finite family {Ai}`i=1 of closed subsets of E is a closed
subset of E. Note however that the union of an arbitrary family of closed
subsets of E need not be closed (see exercise 17) in E.
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The closure of a subset A ⊆ E with respect to a metric d is the smallest
closed subset A of E (again, with respect to d) containing A (with possible
equality).

The closure has a number of interesting properties, one of which being
that A is the intersection of all closed sets containing A, and that A ⊆ A
(see exercises 18 and 19).

Examples:

1. In the Euclidean topology, (0, 1) = [0, 1].

2. In the discrete topology, (0, 1) = (0, 1).

3. In the Euclidean topology, S(a, R) = S(a, R).
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Lemma 92. Let A be a subset of E. Then A ⊆C E ⇐⇒ A = A.

Proof. One direction is immediate. Let A ⊆C E. The smallest closed
subset of E containing A is thus A itself, so A = A.

Conversely, assume A = A. As A is the smallest closed subset of A
containing A, then A is the smallest closed subset of A containing A,
therefore A ⊆C E. �

A neighbourhood of x ∈ E is a subset V ⊆ E containing an open
subset Ux ⊆O E with x ∈ Ux. In other words, V is a neighbourhood of x
if ∃r > 0 such that B(x, r) ⊆ V (but V is not necessarily open). The set
of all neighbourhoods of x is denoted by

V(x) = {V |V is a neighbourhood of x}.
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A neighbourhood V of x, with an open set Ux.
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Examples:

1. In R with the standard topology, [0, 1] and (0, 1] are neighbourhoods of 1
2.

2. In R2 with the standard topology, {3} × [0, 1] is not a nbhd of (3, 12).
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Lemma 93. Let (E, d) be a metric space with U ⊆ E. Then, U is a
neighbourhood of each of its points if U ⊆O E.

Proof. One direction holds as a consequence of the definition of open sets;
the other as a consequence of the definition of neighbourhoods. �

Proposition 94. Let A ⊆ E. The following conditions are equivalent:

1. x ∈ A

2. ∀ε > 0, ∃a ∈ A such that d(a,x) < ε

3. ∀V ∈ V(x), V ∩A 6= ∅

4. d(x, A) = 0
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Proof. We will only prove that 1. ⇐⇒ 2. The proof that 2. ⇐⇒ 3 ⇐⇒ 4.
is left as an exercise.

Assume x 6∈ A. Then x ∈ E \ A ⊆O E. Thus ∃ρ > 0 such that
B(x, ρ) ⊆ E \A. Consequently, d(a,x) ≥ ρ, ∀a ∈ A.

Conversely, let x ∈ E and assume ∃ε > 0 such that

A ⊆ E \B(x, ε)︸ ︷︷ ︸
closed

.

Since A is the smallest closed set containing A, we must have

A ⊆ A ⊆ E \B(x, ε)

and so x 6∈ A. �
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A subset A of E is said to be dense in (E, d) if A = E.

Examples:

1. Q and R \Q are both dense in R in the usual topology.

2. Neither of these sets are dense in R in the discrete topology.

3. Every non-empty subset of E is dense in E in the indiscrete topology.

4. Weierstrass’ Theorem: Let P be the set of polynomial functions
[0, 1] → R. Then P is dense in (CR([0, 1]), d∞). Thus real continuous
functions on [0, 1] (which need not even be C1) can be approximated as
closely as desired/needed by smooth (polynomial) functions.
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A metric space (E, d) is said to be separable if it has at least one dense
subset: R and Rn are classical examples.

A family G = {Gλ}λ∈L, ∅ 6= Gλ ⊆O E forms a basis for the open
subsets of E if every non-empty open subset of E can be written as a
union of members of G.

Examples:

1. {B(x, r) | x ∈ Q, r ∈ Q∗+} forms a basis for the open subsets of R.

2. {B(x, r) | x ∈ Qn, r ∈ Q∗+} forms a basis for the open subsets of Rn.

3. {B(x, r) | x ∈ R, r ∈ R∗+} forms a basis for the open subsets of R.
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There is a nice way to characterize such bases.

Proposition 95. A family G = {Gλ}λ∈L is a basis for the open subsets
of E if and only if ∀x ∈ E, ∀V ∈ V(x), ∃λ ∈ L such that x ∈ Gλ ⊆ V .

Proof. The direction =⇒ holds as a consequence of the definition of
neighbourhood and of a base.

Conversely, let ∅ 6= U ⊆O E. Note that, being open, U is a neighbourhood
of all its points. Then, by hypothesis, ∀x ∈ U ∃λ(x) ∈ L such that
x ∈ Gλ(x) ⊆ U . However,

U =
⋃
x∈U

{x} ⊆
⋃
x∈U

Gλ(x) ⊆ U,

so that U is the union of elements of G. �
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By analogy with the closure, the interior of a subset A ⊆ E is the largest
open subset of E contained in A. We denote that subset by int(A) (or
sometimes A◦).

It is not hard to show that int(A) is the union of all the open subsets
of E contained in A, and that A ⊆O E if and only if int(A) = A (see
exercises).

Examples:

1. In the Euclidean topology, int([0, 1]) = (0, 1).

2. In the discrete topology, int([0, 1]) = [0, 1].

3. In the Euclidean topology, int(S(a, R)) = ∅.
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4. In the Euclidean topology, int(D(a, R)) = B(a, R).

5. In the Euclidean topology, int((a, b)) = (a, b).

6. In the Euclidean topology, int([a, b]) = [a, b].

7. In general, int(W ) 6= W , as you can see with W = (0, 12) ∪ (12, 1).

When U ⊆O E and int(U) = U , U is a regular open subset of E; when
B ⊆C E and int(B) = B, B is a regular closed subset of E.

These concepts are not crucial to understand analysis of functions of
Rn, but they conform to what our intuition expects of nicely behaved sets.
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Not all metrics are derived from a norm (the discrete metric fails in that
regard, for instance). Normed vector spaces have a very nice property
when it comes to closure and balls.

Lemma 96. If (E, d) is a normed vector space, then D(0, 1) = B(0, 1).

Proof. Since B(0, 1) ⊆ D(0, 1) ⊆C E, we have B(0, 1) ⊆ D(0, 1) as
B(0, 1) since the smallest closed subset of E containing B(0, 1).

As D(0, 1) = B(0, 1)∪S(0, 1), we only need to show that S(0, 1) ⊆ B(0, 1)
as B(0, 1) ⊆ B(0, 1). Let x ∈ S(0, 1); then ‖x‖ = 1. Let 1 > ε > 0 and
set z = (1− ε

2)x.

Then z ∈ B(0, 1), since ‖z‖ = |1 − ε
2| · ‖x‖ < 1; note further that

d(z,x) = ‖z − x‖ = ε
2‖x‖ = ε

2 < ε and so, according to Proposition 94

with a = z and A = B(0, 1), we indeed have x ∈ B(0, 1). �
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We can use this lemma to show that the discrete metric is not derived from
a norm: were it so, we would have D(0, 1) = B(0, 1). However, in Rn we
have

B(0, 1) = {0} ⊆C R and D(0, 1) = R =⇒ B(0, 1) = {0} 6= R = D(0, 1).

Proposition 97. Let A ⊆ E. The following conditions are equivalent:

1. x ∈ int(A)

2. A ∈ V(x)

3. ∃ε > 0 such that B(x, ε) ⊆ A.

Proof. By definition, we have 2. ⇐⇒ 3. It remains only to show that
1.⇐⇒ 3.
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3. =⇒ 1.: Let ε > 0 and B(x, ε) ⊆ A. Since int(A) is the largest
open subset of E contained in A and since B(x, ε) is an open subset of E
contained in A, we must have B(x, ε) ⊆ int(A), whence x ∈ int(A).

1. =⇒ 3.: Let x ∈ int(A) ⊆O E. By definition, there must exist
some ε > 0 such that B(x, ε) ⊆ int(A) ⊆ A. �

As an example of the usefulness of this result, note that by the
density of Q and its complement R \ Q in R, we automatically get
int(Q) = int(R \Q) = ∅ with the usual topology on R.

We end this section with a few other topological concepts. The boundary
of a subset A ⊆ E is simply defined by ∂A = A \ int(A) and the exterior
of A is given by int(E \ A) (in a nutshell, the exterior is the largest open
subset of E which excludes A in its entirety).
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We say that x ∈ E is a cluster point of A if

∀ε > 0, ∃yε ∈ B(x, ε) ∩A such that yε 6= x.

Finally, we say that x ∈ E is an isolated point of A if ∃ε > 0 for which
B(x, ε) ∩A = {x}.

Examples: Let A = {1n : n ≥ 1}.

1. 0 is a cluster point of A since B(0, ε) ∩A contains all 1
n, where n > 1

ε.

2. For all n ≥ 1, 1
n is an isolated point of A, as B(1n,

1
2n(n+1)) ∩A = {1n}.

Lemma 98. If x is a cluster point of A, then x ∈ A and every
neighbourhood of x contains an infinite set of points in A.
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Proof. That x ∈ A is a direct consequence of Propostion 94. The rest of
the proof can be done by showing that if a neighbourhood of x exists which
contain only a finite number of points of A, then x cannot be a cluster
point of A. �

Finally, if (E, d) is a metric space and F ⊆ E, then (F, d) is also a
metric space, called a metric subspace of E. The topology on F is
completely determined by the topology on E:

Proposition 99. Let (E, d) be a metric space and F ⊆ E. Then

B ⊆O F ⇐⇒ ∃A ⊆O E such that B = A ∩ F
B ⊆C F ⇐⇒ ∃A ⊆C E such that B = A ∩ F
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9.1.3 – Continuity

The concept of continuity is fundamental in analysis.

Let (A, dA), (B, dB) be metric spaces. As dA(a,x) and dB(f(a), f(x)) are
generalizations of |a− x| and |f(a)− f(x)|, respectively, a map f : A→ B
is continuous at a ∈ A if

∀ε > 0, ∃δ > 0, (x ∈ A and dA(a,x) < δ) =⇒ dB(f(a), f(x)) < ε;

or, equivalently, if for any open ε−ball W centered at f(a), there is an
open δ−ball V centered at a such that f(V ) ⊆ W ; or equivalently, if for
any neighbourhood W ⊆O B of f(a), there is a neighbourhood V ⊆O A
of a such that f(V ) ⊆W .
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Continuity of f at a ∈ R2 in the usual topology (image from D.J. Eck).
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That these definitions are equivalent is left as an exercise.

The map f is continuous on A if it is continuous at each a ∈ A.

Proposition 100. Let (E, d), (Ẽ, d̃) be metric spaces, and let f : E → Ẽ.
The following conditions are equivalent:

1. f is continuous on E;

2. for any W ⊆O Ẽ, f−1(W ) = {x ∈ E|f(x) ∈W} ⊆O E, and

3. for any Y ⊆C Ẽ, f−1(Y ) ⊆C E.

Proof. That 2.⇐⇒ 3. follows directly from the fact that

f−1(Ẽ \ Y ) = E \ f−1(Y ).
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1. =⇒ 2.: Let W ⊆O Ẽ and x ∈ f−1(W ). Since W is open in
Ẽ, ∃ε > 0 such that B(f(x), ε) ⊆ W . By continuity, ∃δ > 0 such that
f(B(x, δ)) ⊆ B(f(x), ε) ⊆W . But this means that

B(x, δ) = f−1(f(B(x, δ)) ⊆ f−1(W )

(see exercises) and so f−1(W ) ⊆O E.

2. =⇒ 1.: Let f(x) ∈ W ⊆O Ẽ. Set V = f−1(W ) ⊆O E. Then
x ∈ V and f(V ) ⊆W ; consequently, f is continuous. �

Consider a map f : E → Ẽ as above. If f(W ) ⊆O Ẽ for all W ⊆O E,
then we say that f is an open mapping; by analogy, if f(Y ) ⊆C Ẽ for all
Y ⊆C E, then we say that f is a closed mapping.
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Generally speaking, continuous maps are neither open nor closed; the
constant function f : R → R defined by f(x) = a provides an example
of a continuous function which is not open in the standard topology, as
(0, 1) ⊆O R, but f((0, 1)) = {a} ⊆C R, for instance.

Proposition 101. Let f : (E, d) → (Ẽ, d̃) and g : (Ẽ, d̃) → (Ê, d̂) be
continuous. Then the composition g ◦ f : (E, d)→ (Ê, d̂) is continuous.

Proof. Let a ∈ E and ε > 0. As g is continuous at f(a) ∈ Ẽ, ∃δε > 0
such that

y ∈ Ẽ and y ∈ Bd̃(f(a), δε) =⇒ g(y) ∈ Bd̂(g(f(a)), ε).

Since f is continuous at a, ∃ηδε = ηε > 0 such that

x ∈ E and x ∈ Bd(a, ηδε) =⇒ f(x) ∈ Bd̃(f(a), δε).
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Combining these results together, we get

x ∈ E and x ∈ Bd(a, ηδε) =⇒ g(f(x)) ∈ Bd̂(g(f(a)), ε),

which completes the proof. �

In many instances, the broad strokes of proofs in the multi-dimensional
cases follow those of the one-dimensional proofs.

Corollary 102. Let f : (E, d) → (Ẽ, d̃) be a continuous function. If
F ⊆ E, then the restriction f |F : (F, d|F )→ (Ẽ, d̃) is continuous.

Proof. It suffices to show that the inclusion F ↪→ E1 is continuous, which
is left as an exercise, and then to apply Proposition 101. �
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Examples:

1. The functions f : (R, d2)→ (R, d2) defined by f(x) = x3 is continuous.

2. The identity function id : (R, ddiscrete) → (R, d2) is continuous, since
id−1(V ) = V ⊆O (R, ddiscrete) for all V ⊆O (R, d2).

3. The identity function idinv : (R, d2) → (R, ddiscrete) is not continuous,
since, for instance, (

idinv
)−1

({a}) = {a}
is not open in (R, d2) even though {a} ⊆O (R, ddiscrete).

4. Consider the characteristic function χR\Q : R → R. Then χR\Q is
continuous when restricted to Q (being a constant function), but χR\Q
is nowhere continuous on R.
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A metric d on E gives rise to a topology by defining the open sets of E. A
natural question to ask is: can two different metrics could give rise to the
same topology? In order to answer that question, we need to introduce a
new concept.

Let (E, d), (Ẽ, d̃) be metric spaces. A function f : E → Ẽ is a
homeomorphism if f is bijective and both f and f inv are continuous
(alternatively, f is a homeomorphism if it is bijective, continuous and open).

Examples:

1. f : (R, d2)→ (R, d2), f(x) = x3, is a homeomorphism.

2. id : (R, ddiscrete)→ (R, d2), id(x) = x, is not a homeomorphism.
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3. The function g : (R, d2)→
(
(−π2 ,

π
2), d2

)
defined by g(x) = arctan(x) is

a homeomorphism.

P. Boily (uOttawa) 58



Mathematical Analysis Chapter 9 – Metric Spaces and Sequences

These examples illustrate that the notion of boundedness is not necessarily
preserved by homeomorphisms: for instance, R is unbounded while (−π2 ,

π
2)

is bounded, but both spaces are homemorphic to one another via the arctan.

Furthermore, neither is the notion of distance necessarily preserved by
homeomorphisms: in general,

d(x1, x2) 6= d̃(f(x1), f(x2)).

For instance, in the first example,

d(0, 2) = |0− 2| = 2 6= d̃(03, 23) = |03 − 23| = 9.
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However, homeomorphisms f : E → Ẽ preserve the topologies of E and Ẽ:

W ⊆O E ⇐⇒ f(W ) ⊆O Ẽ = f(E)

Y ⊆C E ⇐⇒ f(Y ) ⊆C Ẽ = f(E).

Two metrics d, d̃ on E are said to be topologically equivalent if
id : (E, d) → (E, d̃) is a homeomorphism. In that case, d and d̃ give
rise to the same topologies on E.

Example: if p, q ≥ 1, dp and dq induce the same topologies on Rn.

For instance, to show that d2 and d∞ are topologically equivalent in
R2, it suffices to show that any point of a 2−ball has an∞−neighbourhood
contained in the 2−ball, and, conversely, that any point of an ∞−ball has
a 2−neighbourhood contained in the ∞−ball (see exercises).
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2−ball filled with with ∞−balls ∞−ball filled with with 2−balls
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Two metrics d, d̃ on E are (strongly) equivalent if ∃A,B > 0 such that

Ad(x,y) ≤ d̃(x,y) ≤ Bd(x,y) ∀x,y ∈ E.

Intuitively, two metrics are equivalent if it is always possible to fit a d̃−ball
between two d−balls, while maintaining the ratios of the balls’ radii.

Clearly, if two metrics are equivalent on E, they must also be topologically
equivalent, but the converse may not always hold (see exercise 43).

Example: if p, q ≥ 1, dp and dq are equivalent on Rn.

For instance, to show that d2 and d∞ are equivalent in R2, it suffices
to show that ∃A,B > 0 such that any 2−ball of radius R > 0 contains an
∞−ball of radius R

A, and is contained in an ∞−ball of radius R
B .
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Given the geometry of squares and circles, what values can A and B take?
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There is also a similar notion for norms. Two norms ‖ · ‖∗, ‖ · ‖◦ on E are
equivalent if ∃a, b > 0 such that

a‖x‖∗ ≤ ‖x‖◦ ≤ b‖x‖∗, ∀x ∈ E.

Clearly, two equivalent norms on E give rise to two equivalent metrics on E.
Over a finite−dimensional vector space, any two norms are equivalent:

1. WLOG, assume ‖ · ‖∗ = ‖ · ‖1;

2. only vectors x ∈ S1(0, 1) need to be considered;

3. show that ‖ · ‖◦ is continuous with respect to ‖ · ‖1, and

4. use the Max/Min Theorem over S1(0, 1) to bound a ≤ ‖x‖◦ ≤ b.
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We end this section on preliminaries with two definitions that generalize the
notion of a continuous function.

Let f : (E, d)→ (Ẽ, d̃). We say that f is

1. uniformly continuous if ∀ε > 0, ∃δ = δ(ε) > 0 such that ∀x,y ∈ E,
d(x,y) < δ =⇒ d̃(f(x), f(y)) < ε;

2. Lipschitz continuous if ∃K > 0 such that d̃(f(x), f(y)) ≤ Kd(x,y).

The conceptual difference between continuity and uniform continuity is that
δ may depend on x and y as well as ε if the function is continuous, but it
can only depend on ε for uniformly continuous functions.
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Examples:

1. Any polynomial p : R → R is uniformly continuous over a closed,
bounded interval.

2. Any uniformly continuous function is automatically continuous.

3. Any Lipschitz continuous function is automatically uniformly continuous,
hence continuous.

4. The function f : (0, 1] → R defined by f(x) = 1
x is continuous but not

uniformly continuous.
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Two metrics d, d̃ on E are uniformly equivalent if id : (E, d)→ (E, d̃) is
uniformly continuous, and so is its inverse.

Uniformly equivalent metrics are topologically equivalent, as uniform
continuity also implies continuity, but there are topologically equivalent
metrics that are not uniformly equivalent. However, uniform equivalence
and strong equivalence of metrics are ... well, equivalent.

Lastly, note that uniform continuity, unlike continuity, is not a topological
notion: given a function f : E → Ẽ, the knowledge of the topologies on E
and Ẽ, respectively, is sufficient to determine if f is continuous.

But more must be known in order to determine if f is uniformly continuous.
There is something fundamental at play here; we will return to it at a later
stage.
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9.2 – Sequences in a Metric Space

Consider the sequence (xn) ⊆ (E, d). The sequence converges to x ∈
(E, d), denoted by xn → x, if

∀ε > 0, ∃N ∈ N such that n > N =⇒ d(xn,x) < ε.

In light of the notions presented in the previous section, this is equivalent
to the following definition: xn → x ∈ E if

∀V ∈ V(x), ∃N ∈ N such that n > N =⇒ xn ∈ V.

Thus a sequence converges to x if any neighbourhood of x contains infinitely
many terms in the sequence.
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A subsequence of (xn) is a sequence (yn) such that yn = xϕ(n) for some
strictly increasing function ϕ : N → N. It is easy to show that if xn → x,
then any subsequence of (xn) also converges to x (see the exercises).

Let (xn) be a sequence in a metric space (E, d). We say that a ∈ E
is a limit point of (xn) if ∀ε > 0, ∀ρ ∈ N, ∃n ≥ ρ such that d(xn,a) < ε.

Proposition 103. Let (xn) ⊆ (E, d), a ∈ E. The following are equivalent:

1. a is a limit point of (xn);

2. there is a subsequence of (xn) which converges to a;

3. ∀ρ ∈ N, we have a ∈ Aρ, where Aρ = {xn|n ≥ ρ}, and

4. either a is a cluster point of A1 or {xn | xn = a} is infinite.
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If {xn | xn = a} is infinite, a is a replicating point of (xn).

Proof. We prove 1. =⇒ 2. =⇒ 3. =⇒ 4. =⇒ 1.

1. =⇒ 2.: Set εn = 1
n. Since a is a limit point of the sequence

(xn), there is a smallest integer n for which d(yn,a) < 1
n, where yn is a

member of the sequence (xm)m≥n. By construction, (yn) is a subsequence
of (xn) and yn → a.

2. =⇒ 3.: If there is a subsequence (yn) ⊆ (xn) which converges to a, then
∀ε > 0, ∀ρ ∈ N, ∃N ∈ N such that yn ∈ Aρ∩B(a, ε) whenever n > N . But
according to Proposition 94, a ∈ Aρ if and only if ∀ε > 0, Aρ∩B(a, ε) 6= ∅.

Consequently, ∀ρ ∈ N, a ∈ Aρ.
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3. =⇒ 4.: If ∀ρ ∈ N, a ∈ Aρ, then ∀ρ ∈ N, ∀ε > 0, ∃ a smallest nρ ≥ ρ
such that d(xnρ, a) < ε. As such, xnρ is a subsequence of (xn) and

lim
ρ→∞

xnρ → a.

If (xn) converges, it must do so to a, according to exercise 47.
Consequently, ∀η > 0, A1 ∩ B(a, ε) is infinite and so must contain at
least one point distinct from a. Consequently, a is a cluster point of A1.

If (xn) diverges and a is not a replicating point of (xn), then xnρ 6→ a
(why?), which is a contradiction. Consequently, if (xn) diverges then a
is a replicating point of (xn).

4. =⇒ 1.: Left as an exercise. �
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9.2.1 – Closure, Closed Subsets and Continuity

We can conclude from Proposition 103 that the set
⋂
ρ∈NAρ of limit points

of (xn) is closed and that if xn → x, then x is the unique limit point of (xn).

There is a nice way to characterize closure, closed subsets and continuity
using sequences and convergence.

Proposition 104. Let (E, d) be a metric space, A ⊆ E and x ∈ E.
Then,

x ∈ A⇐⇒ ∃(xn) ⊆ A such that xn → x.

Proof. The direction ⇐= is a clear consequence of the remark at the start
of this subsection.
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For =⇒, consider the following argument. Let n ∈ N. Since x ∈ A,
∃xn(6= x) ∈ A with d(xn,x) < 1

n. Clearly, xn → x. �

Proposition 105. Let (E, d) be a metric space, with F ⊆ E. Then,
F ⊆C E if and only if any sequence (xn) ⊆ F which converges in E
converges to a point in F .

Proof. If F ⊆C E, then F = F . Assume that xn ∈ F and xn → x. We
must show that x ∈ F = F . If (xn) is eventually constant, then xn = x ∈ F
for all n greater than some index. Otherwise ∀ε > 0, B(x, ε) ∩ F contains
an infinite subset of {xn | n ≥ 1}; consequently, x ∈ F .

Conversely, let x ∈ F . According to Proposition 104, there is a subsequence
(xn) ⊆ F such that xn → x. By hypothesis, any such sequence must
converge in F . Hence, x ∈ F . Consequently, F = F and F ⊆C E. �
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Proposition 106. Let (E, d), (Ẽ, d̃) be a metric spaces. Then f : E → Ẽ
is continuous if and only f(xn)→ f(x) whenever xn → x.

Proof. The direction ⇐= is a clear consequence of the definition of a
continuous function.

Conversely, let F ⊆C Ẽ. We want to show that f−1(F ) ⊆C E. Let
(xn) ⊆ f−1(F ) with xn → x.

By hypothesis, f(xn) → f(x). But F ⊆C Ẽ so that f(x) ∈ F , according
to Proposition 105.

Consequently, x ∈ f−1(F ). According to Proposition 105, we must then
have f−1(F ) ⊆F E; in other words, f is continuous. �
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9.2.2 – Complete Spaces and Cauchy Sequences

The sequence (xn) ⊆ (E, d) is a Cauchy sequence if

∀ε > 0,∃N ∈ N such that n,m > N =⇒ d(xn,xm) < ε.

Some properties of Cauchy sequences in R carry over to metric spaces.

Proposition 107. Convergent sequences in (E, d) are Cauchy.

Proof. Let xn → x and ε > 0; thus ∃N ∈ N such that d(xn,x) < ε
2

whenever n > N . Now, let m > N . According to the Triangle Inequality,

d(xn,xm) ≤ d(xn,x) + d(x,xm) <
ε

2
+
ε

2
= ε.

Consequently, (xn) is a Cauchy sequence. �
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In a normed space (E, ‖ · ‖), a sequence (xn) is bounded if ∃M ∈ N such
that ‖xn‖ < M for all n ∈ N.

But a metric space (E, d) is not necessarily a normed vector space, so
there might not be a norm to use to determine boundedness.

In a general metric space (E, d), a sequence (xn) is bounded if ∃M > 0 s.t.
xn ∈ B(0,M) for all n ∈ N. Similarly, A ⊆ E is bounded if δ(A) <∞.

Proposition 108. Every Cauchy sequence in (E, d) is bounded.

Proof. Let (xn) be a Cauchy sequence. If 1 > ε > 0, then ∃N ∈ N such
that d(xn,xm) < ε whenever n,m > N . Now, let

M = max{d(0,x1), d(0,x2), . . . , d(0,xN), d(0,xN+1)}+ 2.
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Then, for any n > N , the Triangle Inequality yields

d(0,xn) ≤ d(0,xN+1) + d(xN+1,xn) ≤M − 2 + 1,

i.e. for any n > N , xn ∈ B(0,M). Since xn ∈ B(0,M − 2) for all
1 ≤ n ≤ N , then xn ∈ B(0,M) for all n ∈ N. �

But the notion of a Cauchy sequence is not topological.

Example: Let A = (0,∞). Consider the following metrics on A:

d1(x, y) = |x− y| and d2(x, y) = | lnx− ln y|.

Show that both metrics induce the same topology on A, but that Cauchy
sequences under one are not necessarily Cauchy sequences under the other.
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Solution. The mapping id : (A, d1) → (A, d2) is homeomorphic. Indeed,
for x, z ∈ A and ε, η > 0, we have

Bd1(x, ε) = {y ∈ A | |x− y| < ε} = (x− ε, x+ ε) ∩A,

and

Bd2(z, η) = {y ∈ A | | ln z − ln y| < η}

= {y ∈ A | e−η < y

z
< eη} = (ze−η, zeη)

It is left as an exercise to show that

Bd1(z,
1
2z(1− e

−η)) ⊆ Bd2(z, η) and Bd2(x, ln(2x+ε2x )) ⊆ Bd1(x, ε)

for all x, z ∈ A, ε, η > 0. Thus W ⊆O (A, d1)⇐⇒W ⊆O (A, d2).
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We already know that the sequence (1n) is Cauchy in (A, d1). But if
m = 2n, then

d2(
1
m,

1
n) =

∣∣ln 1
m − ln 1

n

∣∣ =
∣∣ln n

m

∣∣ =
∣∣ln n

2n

∣∣ = ln 2 ≥ 1/2

for every n ∈ N, and so (1n) is not a Cauchy sequence in (A, d2). �

This could not happen, however, if the metrics are strongly equivalent, which
further illustrates the distinctness of the notions of strong equivalence and
topological equivalence (and also justifies the use of the “strong” qualifier).

Proposition 109. Let d and d̃ be two equivalent metrics on E. Then,
(xn) is a Cauchy sequence in (E, d) if and only if (xn) is a Cauchy sequence
in (E, d̃).
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Proof. Since d and d̃ are equivalent, ∃a, b > 0 such that

ad(x,y) ≤ d̃(x,y) ≤ bd(x,y) ∀x,y ∈ E.

Now, if (xn) is a Cauchy sequence in (E, d̃), then, ∀ε > 0, ∃N ∈ N such
that m,n > N =⇒ d̃(xn,xm) < ε. Thus, it is the case that

ad(xn,xm) ≤ d̃(xn,xm) < ε ∀m,n > N ;

hence,

d(xn,xm) <
ε

a
∀m,n > N.

Consequently, (xn) is also a Cauchy sequence in (E, d). By symmetry, the
reverse implication is clearly true. �
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A metric space (E, d) is said to be complete if every single one of its
Cauchy sequences is convergent. If a complete metric space is also a
normed vector space, then it is said to be a Banach space. If a Banach
space is also an inner product space, then it is said to be a Hilbert space.

Examples: (Complete, Banach and Hilbert Spaces)

1. We’ve already seen that R is a complete space. Since it is a normed
space, it is also a Banach space. The inner product (x | y) = xy makes
it a Hilbert space.

2. The same can be said about Rn and Cn, with the inner product
(x | y) =

∑
xiyi.
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3. The space C = (CC([0, 1]), ‖ · ‖∞) is a Hilbert space with the inner
product

(f | g) =

∫
[0,1]

fg dm, f ∼ g ⇐⇒ f = g a.e.

4. It is a bit harder (yet this is a classical analysis proof) to show that the
space

`2(N) = {X | X = (xn)n∈N; xn ∈ C,
∑
|xn|2 <∞}

is a Hilbert space, together with

(X | Y) =
∑
xnyn and ‖X‖2 = (X | X )1/2 =

(∑
|xn|2

)1/2
.
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Closed subsets of complete spaces are especially well-behaved.

Proposition 110. Every closed subset of a complete metric space is
complete.

Proof. Let A ⊆C E and (xn) ⊆ A be a Cauchy sequence. Since E is
complete, xn → x converges in E. But A is closed, so x ∈ A, according to
Proposition 105. �

Proposition 111. Every complete subspace of a metric space is closed.

Proof. Let A ⊆ (E, d) be complete. Let x ∈ A. According to
Proposition 104, ∃(xn) ⊆ A such that xn → x. Therefore, (xn) is a
convergent sequence in E. In particular, it is a Cauchy sequence of points
in A, according to Proposition 107. But A is complete so that x ∈ A.
Hence A ⊆ A and so A = A, which means that A ⊆C E. �
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Proposition 112. Let (Ei, di) be metric spaces for i = 1, . . . , n. The
metric space (E, d) = (E1 × · · · × En, supi=1,...,n{di}) is complete if and
only if (Ei, di) for all i = 1, . . . , n.

Proof. Left as an exercise. �

The following result is a generalization of the Nested Intervals Theorem.

Proposition 113. Let (E, d) be a complete metric space. If (Fn) is a
decreasing sequence of non-empty closed subsets of E

E ⊇ F1 ⊇ F2 ⊇ · · · ⊇ Fn ⊇ · · ·

such that lim
n→∞

δ(Fn) = 0, then
⋂
n≥1

Fn = {x} for some x ∈ E.
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Proof. Let Γ =
⋂
Fn. For each n ∈ N, pick xn ∈ Fn.

Let ε > 0. Since δ(Fn)→ 0, ∃Nε ∈ N such that

n > Nε =⇒ δ(Fn) < sup{d(w, z) | w, z ∈ Fn} < ε
2.

Let m > n > Nε and pick y ∈ Fm ⊆ Fn. Then

m > n > Nε =⇒ d(xn,xm) ≤ d(xn, y) + d(y,xm) < ε
2 + ε

2 = ε.

As (xn) ⊆ E is Cauchy and E is complete, ∃x ∈ E such that xn → x. For
all p ≥ 1, (xn)n≥p ⊆ Fp. As Fp ⊆C E, (xn)n≥p converges in Fp, according
to Proposition 105. Hence x ∈ Fp for all p ≥ 1. Consequently, x ∈ Γ.

But if y ∈ Γ, then y ∈ Fn for all n, so that 0 ≤ d(x,y) ≤ δ(Fn) → 0 for
all n. Thus d(x,y) = 0, so that y = x and Γ = {x}. �

P. Boily (uOttawa) 85



Mathematical Analysis Chapter 9 – Metric Spaces and Sequences

The following result about contractions is representative of a family of
extremely useful theorems.

Theorem 114. (Fixed Point Theorem)
Let (E, d) be a a complete metric space and let f : E → E be a
contraction on E, that is,

∃k ∈ (0, 1) such that d(f(x), f(y)) ≤ kd(x,y) for all x,y ∈ E.

Then ∃!x∗ ∈ E such that f(x∗) = x∗; x∗ is a fixed point of f .

Proof. Let x0 ∈ E. If f(x0) = x0, we are done. Otherwise, consider the
sequence (fn(x0))n, where fn represents n successive compositions of f :

d(fn(x0), f
n+1(x0)) = d(f(fn−1(x0)), f(fn(x0))) ≤ kd(fn−1(x0), f

n(x0))

= kd(f(fn−2)(x0), f(fn−1)(x0)) ≤ · · · ≤ knd(x0, f(x0)).
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Then, for any m > n,

d(fm(x0), f
n(x0)) ≤ d(fm(x0), f

m−1(x0)) + · · ·+ d(fn+1(x0), f
n(x0))

≤ (kn + · · ·+ km−1)d(x0, f(x0)) ≤
kn

1− k
d(x0, f(x0))

For any ε, let Mε =
⌈
ln
(

ε
d(x0,f(x0))

(1− k)
)
− ln k

⌉
. Then, whenever

m > n > Mε, we have

d(fm(x0), f
n(x0)) ≤

kn

1− k
d(x0, f(x0)) ≤

kMε

1− k
d(x0, f(x0)) < ε.

Consequently, (fn(x0)) is a Cauchy sequence in E. But E is complete so
that fn(x0)→ x for some x ∈ E.
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By definition, contraction mappings are Lipschitz continuous, and thus also
continuous, and so

f(x) = f
(

lim
n→∞

fn(x0)
)

= lim
n→∞

f(fn(x0)) = lim
n→∞

fn+1(x0) = x.

Now, suppose that x and y are two fixed points of f . Then,

d(x,y) = d(f(x), f(y)) ≤ kd(x,y).

Since k < 1, the only way for the inequality to be valid is if d(x,y) = 0,
which implies that x = y. The fixed point of f is thus unique. Call it x∗

to match with the statement of the theorem. �

But the choice of x0 ∈ E was arbitrary. If f is a contraction, the
sequence (fn(x)) converges to the unique fixed point for all x ∈ E.
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The restriction k ∈ (0, 1) is necessary, as the following example
demonstrates.

Example: Let f : R→ R be defined by

f(x) =

{
1, x < 0

x+ 1
x+1, x ≥ 0

.

It is not hard to see that f has no fixed point (see exercise 62), yet

d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ R.
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9.3 – Exercises

1. Show that the absolute value defines a norm on R.

2. Show that the modulus defines a norm on C.

3. Show that the sup norm ‖ · ‖∞ is indeed a norm on CR([0, 1]).

4. Let∞ ≥ p ≥ 1. Show that the p−norm ‖ · ‖∞ is indeed a norm on Rn.

5. Let p ≥ 1. Show that (1, p. 9), defines a norm on Lp([0, 1]).

6. Prove Lemma 88, p. 11.

7. Let E be any set. Show that (2, p. 13) defines a metric on E.

8. Let E = Rn. Show that d2 is a metric on E.

9. Let E = R, d(x, y) = |x − y|, A = N and B = {n−1n | n ∈ N}. Compute

d(A,B), where d is as in (3, p. 17)). Can you use this result to show that (3, p. 17)

does not define a metric on ℘(E) \ ∅?

10. In a metric space, show that δ(A) ∈ [0,∞]. Also, show that δ(A) = 0⇐⇒ A is a

singleton.

P. Boily (uOttawa) 90



Mathematical Analysis Chapter 9 – Metric Spaces and Sequences

11. Prove or disprove: In any metric space (E, d), δd(B(a, r)) = 2r.

12. Prove or disprove: Let d, d′ be metrics on E. Then, A is bounded in (E, d) if and

only if A is bounded in (E, d′).

13. Where does the proof that a finite intersection of open subsets is open fail for arbitrary

intersections?

14. Show that the metric space topology on a discrete metric space is the discrete topology.

15. Show that the intersection of an arbitrary family {Ai}i∈I of closed subsets of E is a

closed subset of E.

16. Show that the union of a finite family {Ai}`i=1 of closed subsets of E is a closed

subset of E.

17. Show that the union of an arbitrary family of closed subsets of E need not be closed

in E.

18. Let A be a subset of a metric space (E, d). Show that A is the intersection of all

closed subsets of E containing A.

19. Let A be a subset of a metric space (E, d). Show that A ⊆ A.

20. Prove Lemma 92, p. 34.
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21. In Proposition 94, p. 37, show that 2.⇐⇒ 3⇐⇒ 4.

22. Let A be a subset of a metric space (E, d). Show that int(A) is the union of all

open subsets of E contained in A.

23. Let A be a subset of a metric space (E, d). Show that int(A) ⊆ A.

24. Let A be a subset of a metric space (E, d). Show that A ⊆O E ⇐⇒ A = int(A).

25. Let A,B be subsets of a metric space (E, d). Show that

(a) B ⊆ A =⇒ int(B) ⊆ int(A)

(b) B ⊆ A =⇒ B ⊆ A
(c) int(A ∩ B) = int(A) ∩ int(B)

(d) A ∪ B = A ∪ B
(e) int(A) ∪ int(B) ⊆ int(A ∪ B)

(f) A ∩ B ⊆ A ∩ B
26. In each instance, give an example showing that, in general,

(a) int(A) ∪ int(B) 6= int(A ∪ B)

(b) A ∩ B 6= A ∩ B
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27. Let A be subset of a metric space (E, d). Show that

(a) E \ int(A) = E \ A
(b) E \ A = int(E \ A)

(c) ∂(int(A)) ⊆ ∂A
(d) ∂A ⊆ ∂A

28. Find an example of a subset A of a metric space (E, d) for which ∂(int(A)), ∂A

and ∂A are all different.

29. Find two subsets A,B ⊆ (R, d2) for which A ∪ B, int(A) ∪ B, A ∪ int(B),

int(A) ∪ int(B), and int(A ∪ B) are all distinct.

30. Find a subset A ⊆ (R, d2) for which A, int(A), A, int(A), int(A), int(A) and

int
(
int(A)

)
are all distinct.

31. For any subset A ⊆ (R, d2), show that int
(
int(A)

)
= int(A).

32. Complete the proof of Lemma 98, p. 48.

33. Prove Proposition 99, p. 49.
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34. We say that A ⊆ E is meagre (or nowhere dense) if and only if int(A) = ∅. Show

that

(a) A is meagre if and only if int(E \ A) is dense in E (a set A is dense in B if

A ⊆ B ⊆ A);

(b) A is meagre if and only if A is contained in a closed subset of E whose interior is

empty;

(c) A is closed and meagre if and only if A = ∂A, and

(d) A is meagre =⇒ A = ∂A.

35. Show that the three definitions of continuity are equivalent.

36. Let f : C → D, A ⊆ C and B ⊆ D. Show that f−1(f(A)) = A and that in

general, the best we can say is that f(f−1(B)) ⊆ B.

37. Can you find a function f : E → Ẽ which is continuous but not closed?

38. Can you find a function f : E → Ẽ which is open and closed but not continuous?

39. Can you find a function f : E → Ẽ which is open and continuous but not closed?

40. Complete the proof of Proposition 101, p. 54.

41. Complete the proof of Corollary 102, p. 55.
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42. Provide the details showing that d2 and d∞ are topologically equivalent on R2.

43. Consider the metric space (R, d2). Define a new function d̃ : R× R→ R→ R by

d̃(x, y) =
d(x, y)

1 + d(x, y)
.

Show that d̃ defines a metric on R, that d and d̃ are topologically equivalent but that

they are not equivalent.

44. Let (E, d) be a metric space. Show that d : E × E → R is Lipschitz continuous

(with k = 2) and so that it is a continuous map.

45. Find a function which is uniformly continuous but not Lipschitz continuous.

46. Show that the two definitions of convergence of a sequence are equivalent.

47. Show that if xn → x, then any subsequence of (xn) also converges to x.

48. Show that the set of limit points of a sequence is closed.

49. Complete the proof of Proposition 103, p. 69.

50. Prove Proposition 112, p. 84.
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51. Show that d∞, d1 and d2 are equivalent on R2.

52. For i = 1, . . . , n, let (Ei, di) be metric spaces and Ui ⊆O Ei. Show that

U1 × · · · × Un is an open subset of

(E, d) = (E1 × · · · × En, sup{di | i = 1, . . . , n})

53. For i = 1, . . . , n, let (Ei, di) be metric spaces and let πi : E1 × · · · × En → Ei
be defined by πi(x1, . . . , xn) = xi. Show that πi is open and continuous.

54. Show that a map f : (F, δ) → (E1, d1) × · · · × (En, dn) is continuous at a ∈ F
if and only if πi ◦ f is continuous at a ∈ F for all i.

55. Let f : (E1, d1)× · · · × (En, dn)→ (F, δ) and a = (a1, . . . , an) ∈ E. For all i,

define fi : (Ei, di) → (F, δ) by fi(x) = f(a1, . . . , ai−1, x, ai+1, . . . , an). Show

that if f is continuous at a, then fi is continuous at a for all i.

56. Show that d = sup{di | i = 1, . . . , n} defines a metric on E =
∏n

i=1(Ei, di).

57. Let (Ei, di) be metric spaces for i = 1, . . . , n. Show that the metric prouct space

(E, d) = (
∏
Ei, sup{di}) is complete if and only if (Ei, di) is complete for each i.
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58. Show that the converse of the previous result does not hold in general, for instance for

f : R2 → R defined by

f(x, y) =

{
xy

x2+y2
, (x, y) 6= (0, 0)

0, else

59. Let d1, d2 : N× N→ R be defined according to

d1(m,n) =

{
0, if m = n

1 + 1
m+n, otherwise

d2(m,n) =
|m− n|
mn

.

(a) Show that d1 and d2 are metrics on N.

(b) Show that the topologies of (N, d1) and (N, d2) are both discrete.

(c) Show that (N, d1) is complete but that (N, d2) is not.

(d) What does this say about completeness as a topological property of a space?
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60. Show that the space `2(N) is a Hilbert space as follows.

(a) Show that `2(N) is a vector space over C.

(b) Show that (·|·) defined in the text is indeed an inner product over `2(N).

(c) Show that (·|·) defines a norm ‖ · ‖ over `2(N).

(d) Show that `2(N) is complete under ‖ · ‖.

61. Let (E, d) be a metric space. Define d1, d2 : E × E → R by d1(x, y) = d(x,y)
1+d(x,y)

and d2(x, y) = min{d(x, y), 1}.

(a) Show that d1 and d2 are metrics on E.

(b) Show that d is topologically equivalent to d2.

(c) Show that d1 is topologically equivalent to d2.

62. Let f : R→ R be defined by

f(x) =

{
1, x < 0

x+ 1
x+1, x ≥ 0

.

Show that f has no fixed point but that d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ R.

P. Boily (uOttawa) 98



Mathematical Analysis Chapter 9 – Metric Spaces and Sequences

63. Let X be a compact metric space. Define

CR(X) = {f |f : X → R, f continuous}.

Show that (CR(X), ‖ · ‖∞) is a Banach space, but that neither (CR(X), ‖ · ‖1) nor

(CR(X), ‖ · ‖2) is complete.

64. Let E = {f ∈ CB(R,R)|f uniformly continuous}. Show that E is a complete

sub-algebra of CB(R,R).

65. Let (E, d) be a complete metric space and f : E → E. If there exists a positive

integer r and k ∈ (0, 1) such that

f
r
= f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

r times

and d(f r(x), f r(y)) ≤ kd(x, y) for all x, y ∈ E, show that f has a unique fixed

point.

P. Boily (uOttawa) 99



Mathematical Analysis Chapter 9 – Metric Spaces and Sequences

66. Let X = (0,∞). Consider the function d̃ : X ×X → R+
0 defined by

d̃(x, y) =

∣∣∣∣1x − 1

y

∣∣∣∣ .
(a) Show that d̃ is a metric on X.

(b) Show that d̃ and d2 induce the same topology on X (i.e. the open sets of X are

exactly the same under both metrics).

(c) Show that (X, d̃) is not a complete metric space.

(d) Show that ((0, 1], d̃) is a complete metric space.

67. Let B(X,R) denote the set of bounded functions from X to R. It is easy to see that

B(X,R) is a vector space over R. The norm of f ∈ B(X,R) is defined by

‖f‖ = sup
x∈X
|f(x)|.

Show that B(X,R) is a Banach space with this norm.
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68. Let (E, d) and (F, d̂) be two metric spaces, and let A ⊆ E be dense in E.

(a) If f : (A, d) → (F, d̂) is continuous and if limy→x,y∈A f(y) exists for all

x ∈ E \ A, show that there exists a unique continuous function g : E → F with

g|A = f .

(b) Assume further that (F, d̂) is complete. If f : (A, d) → (F, d̂) is uniformly

continuous, show that there exists a unique function g : E → F , uniformly

continuous, with g|A = f .

69. Let (E, d) be a metric space. Let C denote the set of Cauchy sequences in E.

(a) i. Let U = (un), V = (vn) ∈ C. Show that (d(un, vn)) converges, and denote

its limit by δ(U, V ).

ii. Show that δ is symmetric and satisfies the triangle inequality.

(b) Consider the equivalence relation ∼ on C defined by

U ∼ V ⇔ δ(U, V ) = 0.

Write Ê = C/ ∼ and denote the equivalence class of U ∈ C in Ê by Û .
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i. What is the equivalence class of a sequence which converges in E?

ii. If U ∼ U ′ and V ∼ V ′, show that δ(U, V ) = δ(U ′, V ′). Thus, for

Û, V̂ ∈ Ê, the real number δ(Û, V̂ ) = δ(U, V ) is well-defined, not being

dependent on the choice of class representatives.

iii. Show that δ is a metric on Ê.

iv. Let ι : E → Ê be defined by ι(α) = (̂α), where (α) is the constant sequence.

Show that ι is an isometry (and so also 1− 1). Furthermore, show that ι(E) is

dense in Ê.

(c) Show that (Ê, δ) is complete.

(d) Let (E1, d1) and (E2, d2) be complete metric spaces, and suppose that there are

isometries ιk : E → Ek with ιk(E) dense in Ek, for k = 1, 2. Show that there

is a unique bijective isometry ϕ : E1 → E2 such that ϕ(ι1(x)) = ι2(x) for all

x ∈ E.

70. Let A,B ⊆ E, where E is endowed with any metric you care to imagine. Show that

(a) A ⊆ A
(b) (A) = A

(c) A ∪ B = A ∪ B
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(d) ∅ = ∅
(e) in general, A ∩ B 6= A ∩ B

71. Let A be a subset of (E, d). Show that A = int(A) ∪ ∂A.

72. Let A = {1n | n ∈ N×}. Under the usual topology on R, show that every point of A

is a boundary point and that the only cluster point of A is 0.

73. Let

τ1 = {U ⊆ R | R \ U is finite or U = ∅}

τ2 = {U ⊆ R | R \ U is countable or U = ∅}

(a) Show that τ1 and τ2 define topologies on R (the co-finite topology and countable
complement topology, respectively).

(b) What is the boundary of the set A = {1n | n ∈ N×} under these two topologies?

74. Are the co-finite topologies and the countable complement topologies derived from a

metric?

75. Let A,B ⊆ (E, d). If x ∈ E is a cluster point of A ∩ B, show that x is a cluster

point of both A and B.
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76. Let {Hn | n ∈ N×} be a family of closed subsets of a metric space (E, d) such that

int(Hn) = ∅ for all n ∈ N×. Assume further that E is such that int(D(x, ε)) 6= ∅
for all x ∈ E and ε > 0. Let G ⊆O E.

(a) If x1 ∈ G \H1, show that ∃r1 > 0 such that D(x1, r1) ⊆ G and

D(x1, r1) ∩H1 = ∅.

(b) If x2 ∈ int(D(x1, r1)) \H2, show that ∃r2 > 0 such that

D(x2, r2) ⊆ int(D(x1, r1)) andD(x2, r2) ∩H2 = ∅.

(c) Continue this process to obtain a nested family of closed subsets

D(x1, r1) ) D(x2, r2) ) · · ·D(xn, rn) ) D(xn+1, rn+1) ) · · ·

such that Hn∩D(xn, rn) = ∅ for all n ∈ N. By the Cantor Intersection Theorem,

∃x0 ∈
⋂
D(xn, rn). Conclude that G cannot be contained in

⋃
Hn.

This is a special case of the Baire Category Theorem.
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77. A line in R2 is a set of points (x, y) which satisfy the equation ax + by + c = 0,

where (a, b) 6= 0. Use the Baire Category Theorem to show that R2 is not a countable

collection of lines.

78. Show that B ⊆ (Rp, d2) is closed if and only if every convergent sequence in B

converges to a point in B.

79. Let (xn) ⊆ (Rp, ‖ · ‖) such that

‖xn+1 − xn‖ ≤ r‖xn − xn−1‖

where r < 1. Show that (xn) converges.
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Solutions

25. Proof.

(a) By definition, int(B) ⊆ B ⊆ A, i.e. int(B) is an open set contained in
A. Consequently, int(B) is contained in the largest open set contained
in A, namely int(A).

(b) By definition, B ⊆ A ⊆ A, i.e. A is a closed set containing B.
Consequently, A contains the smallest closed set containing B, i.e. B.

(c) Since int(A) ∩ int(B) ⊆O E and since int(A) ⊆ A and int(B) ⊆ B,
we must have int(A) ∩ int(B) ⊆ A ∩ B. As such, int(A) ∩ int(B)
must be contained in the largest open set contained in A∩B, so that
int(A)∩ int(B) ⊆ int(A∩B). On the other hand, since A∩B ⊆ A,B,
then we must have int(A ∩B) ⊆ int(A), int(B) and so

int(A ∩B) ⊆ int(A) ∩ int(B).
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(d) Basically the same proof with ∩! ∪, ⊆!⊇, int(·)! (·).
(e) Since A,B ⊆ A ∪ B, then int(A), int(B) ⊆ int(A ∪ B). Hence

int(A) ∪ int(B) ⊆ int(A ∪B).
(f) Basically the same proof with ∩! ∪, ⊆!⊇, int(·)! (·). �

P. Boily (uOttawa) 107



Mathematical Analysis Chapter 9 – Metric Spaces and Sequences

26. Solution.

(a) Let E = R with the Euclidean metric, and let A = [a, b] and B = [b, c]
with c > b > a, for instance. Then

int(A)= (a, b), int(B) = (b, c), A ∪B = [a, c],

int(A ∪B)= (a, c), int(A) ∪ int(B) = (a, b) ∪ (b, c) = (a, c) \ {b}

(b) Let E = R with the Euclidean metric, and A = (a, b) and B = (b, c)
with c > b > a, for instance. Then

A = [a, b], B = [b, c], A ∩B = ∅, A ∩B = ∅, A ∩B = {b}
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27. Proof.

(a) We have

int(A) ⊆ A, by definition

E \A ⊆ E \ int(A), again by definition

E \A ⊆ E \ int(A) = E \ int(A), as E \ int(A) ⊆C E

On the other hand, we have

E \A ⊆ E \A, by definition

E \ E \A ⊆ E \ (E \A) = A, again by definition

E \ E \A = int(E \ E \A) ⊆ int(A) = E \ int(A), as E \ E \A ⊆O E

E \ int(A) ⊆ E \A
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(b) We have

A ⊆ A, by definition

E \A ⊆ E \A, again by definition

E \A = int(E \A) ⊆ int(E \A), as E \A ⊆O E

On the other hand, we have

int(E \A) ⊆ E \A, by definition

A = E \ (E \A) ⊆ E \ int(E \A), again by definition

A ⊆ E \ int(E \A) = E \ int(E \A) as E \ int(E \A) ⊆C E

int(E \A) ⊆ E \A
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(c) Since int(A) ⊆ A, we have int(A) ⊆ A and so

∂ int(A) = int(A) \ int(A) ⊆ A \ int(A) = ∂A.

(d) Basically the same idea, but now we have X \ int(A) ⊆ X \ int(A). �
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28. Solution. Let E = R with the Euclidean metric, and let A = Q∪ (0, 1),
for instance. Then

A = Q ∪ (0, 1) = Q ∪ (0, 1) = R

int(A) = {x ∈ R | ∃r > 0 s.t. B(x, r) ⊆ A} = (0, 1)

∂(int(A)) = int(A) \ int(A) = (0, 1) \ (0, 1) = [0, 1] \ (0, 1) = {0, 1}

∂A = A \ int(A) = R \ (0, 1)

∂A = A \ int(A) = R \ int(R) = R \ R = ∅

which are all distinct. �
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29. Solution. Let E = R with the Euclidean metric, and let A = [
√

2, e] and
B = [e, π], for instance. Then

A ∪B = [
√

2, π]

int(A) ∪B = (
√

2, π]

A ∪ int(B) = [
√

2, π)

int(A) ∪ int(B) = (
√

2, π) \ {e}

int(A ∪B) = (
√

2, π)

which are all distinct. �
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30. Solution. Let E = R with the Euclidean metric, and let

A = [
√

2, ϕ) ∪ (ϕ, e) ∪ {π} ∪ (Q ∩ (8, 9)), ϕ =
1 +
√

5

2

for instance. Then

int(A) = (
√

2, ϕ) ∪ (ϕ, e), A = [
√

2, e] ∪ {π} ∪ [8, 9]

int(A) = (
√

2, e) ∪ (8, 9)

int(A) = [
√

2, e]

int(A) = [
√

2, e] ∪ [8, 9]

int
(

int(A)
)

= (
√

2, e)

are all distinct. �
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31. Proof. By definition,

int(A) ⊆ A =⇒ int(A) ⊆ A = A =⇒ int
(

int(A)
)
⊆ int(A).

On the other hand, whenever B is open we have

B ⊆ B =⇒ B = intB ⊆ int(B).

Set B = int(A). Then B is open and

int(A) ⊆ int(B) = int
(

int(A)
)
,

which completes the proof. �

(Could we replace (R, d2) by any metric space? Any topological space?)
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34. Proof.

(a) =⇒ If int(A) = ∅, then

E = E \∅ = E \ int(A) = E \A = intE \A.

Hence int(E \A) is dense in E.

⇐= It’s pretty much the same thing: if int(E \A) = E, then

E = intE \A = E \A = E \ int(A).

Hence int(A) = ∅.
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(b) =⇒ If int(A) = ∅, then A does not have interior points. Since

A ⊆C E and since A ⊆ A, then A is contained in a closed set whose
interior is empty.
⇐= Let A ⊆ B, where B ⊆C E and int(B) = ∅. By definition,

A ⊆ B and so int(A) ⊆ int(B) = ∅.

(c) =⇒ If A = A and int(A) = ∅, then int(A) = int(A) = ∅. Then

∂A = A \ int(A) = A \∅ = A = A.

⇐= We have A = ∂A ⇔ A = A \ A =⇒ A ⊆ A \ int(A). However

int(A) ⊆ A so that int(A) 6= ∅ =⇒ A 6⊆ A \ int(A). Consequently,
int(A) = ∅, which means that A = ∂A = A and so A ⊆C E. Then
int(A) = int(A) = ∅.
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(d) If int(A) = ∅, we have A ⊆ A =⇒ int(A) ⊆ int(A) = ∅. Hence

∂A = A \ int(A) = A \∅ = A.

What condition must hold for the converse to be satisfied? �
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51. Proof. We could do it directly, but notice that these metrics are all
derived from norms on R2. Since R2 is a finite-dimensional vector space,
all norms on R2 are equivalent. Hence the three metrics are equivalent.
That is all there is to it. �
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52. Proof. Consider the subset U = U1 × · · · × Un ⊆ E, where Ui ⊆O Ei
for all i. Let x ∈ U . Then πi(x) = xi ∈ Ui for all i. But Ui ⊆O Ei so
that ∃ηi > 0 with Bdi(xi, ηi) ⊆ Ui. Set η = min{ηi}ni=1 > 0. Then

B(x, η) = {y|d(x,y) < η} = {y| sup{di(xi,yi)}ni=1 < η}

= {y|di(xi,yi) < η ∀i = 1, . . . , n} =

n∏
i=1

Bdi(xi, η) ⊆
n∏
i=1

Ui = U

Consequently, U ⊆O E. �

P. Boily (uOttawa) 120



Mathematical Analysis Chapter 9 – Metric Spaces and Sequences

53. Proof. Let i ∈ {1, . . . , n} and U ⊆O Ei. Since

π−1i (U) = E1 × · · ·Ei−1 × U × Ei+1 × · · ·En,

then π−1i (U) ⊆0 E1 × · · · × En according to the previous problem, and
so πi is continuous.

Now, suppose that V ⊆O E1 × · · · × En. We need to show that

πi(V ) = {x ∈ Ei|x = πi(y),y ∈ V } ⊆O Ei.

Let u ∈ πi(V ) and consider x ∈ π−1i (u). Since V ⊆O E1 × · · · × En,
∃rx > 0 such that Bd(x, rx) ⊆ V . We will show that Bdi(u, rx) ⊆ πi(V ).
Let z ∈ Bdi(u, rx). Then di(u, z) < rx.
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Set w = x, except in the ith position, where wi = z. Then πi(w) = z
and

d(w,x) = sup{di(wi,xi)} = sup{0, . . . , di(z,u), . . . , 0} = di(z,u) < rx,

that is, w ∈ Bd(x, rx) ⊆ V . Thus z = πi(w) ∈ πi(V ), and so πi is
open. �
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54. Proof. If f is continuous at a, then π ◦ f is continuous at a for all i,
since πi is continuous and the composition of continuous functions is
continuous.

Now, if πi ◦ f is continuous at a ∈ F for all i, then, for all
ε > 0, ∃η1, . . . , ηn > 0 such that di(πi(f(x)), πi(f(a))) < ε whenever
δ(x,a) < ηi for all i = 1, . . . , n.

Set η = sup{ηi} > 0. Then, for all ε > 0,

d(f(x), f(a)) = sup{di(πi(f(x)), πi(f(a)))} < ε

whenever δ(x,a) < η; as such, f is continuous at a. �
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55. Proof. By continuity of f , for all ε > 0, ∃η > 0 such that

d(x,a) < η =⇒ δ(f(x), f(a)) < ε.

For any x ∈ Ei, write x̃ = (a1, . . . ,ai−1,x,ai+1, . . . ,an). Then, if
d(x̃,a) < η, we have

δ(fi(x), fi(a)) = δ(f(x̃), f(a)) < ε.

Since di(x,ai) ≤ d(x̃,a) < η, fi is continuous at a. �
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56. The only property which is not immediately obvious is the Triangle
Inequality (and even at that, it is pretty obvious). Let x,y, z ∈ E. Then

d(x,y) = sup{di(xi,yi)} ≤ sup{di(xi, zi) + di(zi,yi)}
≤ sup{di(xi, zi)}+ sup{di(zi,yi)} = d(x, z) + d(z,y)

So we’ve got that going for us, which is nice. �
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57. Assume (E, d) is complete, and let (xn) be a Cauchy sequence in (Ei, di)
for some i. Then for all ε > 0, ∃M ∈ N such that di(xn,xm) < ε
whenever n,m > M .

For each j 6= i, pick aj ∈ Ej.

Write wn = (a1, . . . ,ai−1,xn,ai+1, . . . ,an). Then (wn) is a Cauchy
sequence in E: indeed for all ε > 0, we have

d(wn,wm) = sup{di(πi(wn), πi(wm))}
= sup{d1(a1,a1), . . . , di(xn,xm), . . . , dn(an,an)}
= sup{0, . . . , 0, di(xn,xm), 0, . . . , 0} = di(xn,xm) < ε

whenever n,m > M .
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Since (E, d) is complete, ∃w ∈ E for which wn → w. Furthermore, πi is
continuous, so that xn = πi(wn)→ πi(w) ∈ Ei, and so (xn) converges
in (Ei, di). Consequently, (Ei, di) is complete for all i.

On the other hand, suppose that (Ei, di) is complete for all i, and
let (wn) be a Cauchy sequence in (E, d).

Since di(πi(wn), πi(wm)) ≤ d(wn,wm) for all i, (πi(wn)) is a Cauchy
sequence in (Ei, di) for all i. As all (Ei, di) are complete, ∃x1, . . . ,xn,
xi ∈ Ei, such that πi(wn) → xi for all i, i.e. for all ε > 0,
∃M1, . . . ,Mn ∈ N such that

∀i, di(πi(wn),xi) < ε whenever n > Mi.

Set M = max{Mi|i = 1, . . . , n} <∞ and w = (x1, . . . ,xn). Let ε > 0.
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Then

d(wn,w) = sup{di(πi(wn), πi(w))} = sup{di(πi(wn),xi)} < ε

whenever n > M .

As we have shown that wn → w ∈ E, we conclude that (E, d) is
complete. �
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58. Proof. The problem is that f(x, 0) is continuous at x = 0, f(0, y) is
continuous at y = 0, but f(x, y) is not continuous at (x, y) = (0, 0)

since, among other things, lim
z→0

f(z, z) =
1

2
6= 0. �
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59. Proof.

(a) The only property which is not immediately obvious is the Triangle
Inequality.

If d1(m,n) = 0, then 0 = d1(m,n) ≤ d1(m, k) + d1(k, n) for all k.

If d1(m,n) 6= 0 and d1(m, k) = 0, then d1(m,n) ≤ d1(m, k)+d1(k, n).

If d1(m,n), d1(m, k), d1(k, n) 6= 0, then

d1(m,n) = 1 +
1

m+ n
≤ 2 +

1

m+ k
+

1

k + n
= d1(m, k) + d1(k, n)

since 1
m+n < 1.
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For d2, notice that

d2(m, k) + d2(k, n) =
|m− k|
mk

+
|k − n|
kn

=
n|m− k|+m|k − n|

mkn

=
|nm− nk|+ |mk −mn|

mkn

≥ |mk − nk|
mkn

=
|m− n|k
mkn

=
|m− n|
mn

= d2(m,n)

(b) For all n ∈ N, we need to show that {n} is open in both (N, d1) and
(N, d2), that is, we must show ∃r1, r2 > 0 such that Bdi(n, ri) ⊆ {n}.

Pick any r1 < 1. Then

Bd1(n, r1) = {y ∈ N |1 (y, n) < r1} =
{
y ∈ N | y = n or 1

n+y < 1
}

= {n}.
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Simple algebraic manipulations show that d2(n,m) ≥ 1
n(n+1) whenever

n 6= m ∈ N. Set r2 = 1
n(n+1) > 0. Then

Bd2(n, r2) =

{
y ∈ N |2 (n, y) <

1

n(n+ 1)

}
= {n}

(c) For completeness:

Let (kn) be a Cauchy sequence in (N, d1). Then, for all 1 > ε > 0,
∃M ∈ N such that d1(kn, km) < ε whenever n,m > M .

Since d1(x, y) > 1 for all x 6= y, we must have kn = km for all
n,m > M . Then (kn) is constant for all n > M , and as such, it is a
convergent sequence in (N, d1).
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Consider the sequence (n) in (N, d2). To show that (n) is a Cauchy
sequence, let ε > 0 and M > 2

ε. Then

d2(m,n) =
|m− n|
mn

≤ m+ n

mn
=

1

m
+

1

n
≤ 2

min{m,n}
<

2

M
< ε

whenever m,n > M .

Now, if n → K in (N, d2), then, for ε = 1
K(K+1), ∃M ∈ N such

that d(K,n) < 1
K(K+1) whenever n > M (except for possibly K = n).

But this contradicts the fact that d(K,n) ≥ 1
K(K+1) whenever K 6= n.

Hence (n) cannot converge in (N, d2).

(d) Another example that completeness is not a topological property... �
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61. Proof.

(a) The only property which is not immediately obvious is the Triangle
Inequality.

Let x,y, z ∈ E.

Write t = d(x,y) ≥ 0, k = d(x, z) ≥ 0, ` = d(z,y) ≥ 0. Since
d is a metric, t ≤ k + `. Since the function f(w) = w

1+w is increasing
over [0,∞),

d1(x,y) =
t

1 + t
≤ k + `

1 + k + `
=

k

1 + k + `
+

`

1 + k + `

≤ k

1 + k
+

`

1 + `
= d1(x, z) + d1(z,w).
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Let x,y, z ∈ E. If d2(x, z) ≥ 1 or d2(z,y) ≥ 1, then

d2(x, z) + d2(z,y) ≥ 1 ≥ d2(x,y).

If d2(x, z) < 1 and d2(z,y) < 1, then

d2(x, z) ≤ d(x,y) ≤ d(x, z) + d(z,y) = d2(x, z) + d2(z,y).

(b) Since d2 ≤ d, Bd(x, r) ⊆ Bd2(x, r) for all x ∈ E and r > 0. That is,
Bd2(x, r) is open in the d−topology.

Similarly, Bd2(x,min{r, 1}) ⊆ Bd(x, r) for all x ∈ E. That is, Bd(x, r)
is open in the d2−topology. Hence d and d2 are equivalent.
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(c) Lengthy but simple manipulations show that

d1︸︷︷︸
red

≤ d2︸︷︷︸
green

≤ 2d1︸︷︷︸
yellow

and so the metrics are equivalent. �
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68. Proof.

(a) The function g : E → F that does the trick is given by

g(x) =

{
f(x), x ∈ A
limy→x,y∈A f(y), x ∈ E \A

(4)

In order to show that g is continuous, let x ∈ E and (xn) ⊆ E be such
that xn → x. For all n ∈ N, g(xn) = limy→xn,y∈A f(y). Consequently,
for any n ∈ N, ∃yn ∈ A such that

d(xn,yn) ≤ 1

n
and d̂(g(xn), f(yn)) <

1

n
.
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From the Triangle Inequality

d(x,yn) ≤ d(x,xn) + d(xn,yn) ≤ 1

n
+ d(x,xn)

we conclude that yn → x and so that f(yn) → g(x). Combining this
result with

d̂(g(xn), g(x)) ≤ d̂(g(xn), f(yn))+d̂(f(yn), g(x)) ≤ 1

n
+d̂(f(yn), g(x)),

we conclude that g(xn) → g(x). By the Sequential Criterion, g is thus
continuous at x for all x ∈ E, and so it is continuous on E.

It remains only to show that g is the unique function satisfying the
conditions outlined in the statement of the problem.
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Let g, h : E → F be two continuous functions with g|A = h|A = f |A.
Then g(x) = h(x) for all x ∈ A.

Now, let x ∈ E \ A. Since A is dense in E, there is a sequence
(xn) ⊆ A such that xn → x. Since g and h are continuous,

g(x) = lim
n→∞

g(xn) = lim
n→∞

f(xn) = lim
n→∞

h(xn) = h(x).

Hence g(x) = h(x) for all x ∈ E. Consequently, g = h on E.

(b) Let x0 ∈ E \A and ε > 0. Since f is uniformly continuous on A, ∃α > 0

such that d̂(f(x), f(y)) < ε whenever x,y ∈ A and d(x,y) < α.

In particular, if x,y ∈ A are such that d(x,x0), d(y,x0) <
α
2 , then

d(x,y) < α and d̂(f(x), f(y)) < ε.
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Since (F, d̂) is complete, the Cauchy Criterion for Functions (see chapter
12) applies and we conclude that limy→x0,y∈A f(y) exists. According
to the result of part (a), the function g : E → F defined by (4) is
continuous on E.

It remains only to show that g is uniformly continuous on E.

Let ε > 0. By hypothesis, f is uniformly continuous on A. As a result,
∃α > 0 such that d̂(f(x), f(y)) < ε whenever x,y ∈ A and d(x,y) < α.

Let x,y ∈ E satisfy d(x,y) < α. Since A is dense in E, two sequences
(xn), (yn) ⊆ A can be found such that xn → x and yn → y. Since
d is a continuous mapping, d(xn,yn) → d(x,y) < α which shows the
existence of an index N ∈ N such that d(xn,yn) < α for all n > N .
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Hence, d̂(f(xn), f(yn)) < ε for all n > N . By continuity,

d̂(f(xn), f(yn))→ d̂(g(x), g(y)) ≤ ε,

which shows that g is uniformly continuous on E. �
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69. Proof.

(a) i. Since R is complete, it will suffice to show that (d(un,vn)) is a Cauchy
sequence. For all p, q ∈ N,

d(up,vp) ≤ d(up,uq) + d(uq,vq) + d(vp,vq)

d(uq,vq) ≤ d(up,uq) + d(up,vp) + d(vp,vq)

whence

d(up,vp)− d(uq,vq) ≤ d(up,uq) + d(vp,vq)

d(uq,vq)− d(up,vp) ≤ d(up,uq) + d(vp,vq)

and so |d(up,vp)− d(uq,vq)| ≤ d(up,uq) + d(vp,vq)→ 0, since both
U and V are Cauchy sequences. Consequently, (d(un,vn)) is a Cauchy
sequence.
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ii. Symmetry is clear, since the limit of a convergent sequence is unique
in a metric space and

δ(V,U)← d(vn,un) = d(un,vn)→ δ(U, V ).

The Triangle Inequality is also obvious since

δ(U, V )← d(un,vn) ≤ d(un,wn) + d(wn,vn)→ δ(U,W ) + δ(W,V )

implies that δ(U, V ) ≤ δ(U,W ) + δ(W,V ).

(b) i. Let U = (un) be a convergent sequence in E which converges to
α ∈ E. Since any convergent sequence is a Cauchy sequence, U ∈ C.
Let V = (vn) ∈ C. Then

U ∼ V ⇔ δ(U, V ) = 0⇔ d(un,vn)→ 0.
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Thanks to the inequalities

d(α,vn) ≤ d(α,un)+d(un,vn) and d(un,vn) ≤ d(α,un)+d(α,vn),

we see that U ∼ V if and only if d(α,vn)→ 0 (since we already have
d(α,un)→ 0). Then, Û = {V = (vn) ∈ C | vn → α}.

ii. If U ∼ U ′ and V ∼ V ′, then, according to the Triangle Inequality, we
have

δ(U, V ) ≤ δ(U,U ′) + δ(U ′, V ′) + δ(V, V ′) = δ(U ′, V ′).

Similarly, δ(U ′, V ′) ≤ δ(U, V ) so that δ(U, V ) = δ(U ′, V ′).

iii. It remains only to show that δ(Û , V̂ ) = 0 if and only if Û = V̂ . But
that is exactly how the equivalence relation was built in the first place.
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iv. For any α ∈ E, let (α) ∈ C be the constant sequence. Then

δ(ι(α), ι(β)) = δ((α), (β)) = d(α, β)

and so ι is an isometry.

Let Û ∈ Ê, with U = (un) ∈ C, and ε > 0. Since U is a Cauchy
sequence, ∃N ∈ N such that for all p, q > N we have d(up,uq) < ε.
Now, fix p > N . Then

δ(Û , ι(up)) = δ(U, (up)) = lim
n→∞

d(un,up) ≤ ε.

Since this holds for all p > N , we conclude that ι(un) → Û . Hence
any element of Ê is the limit of a sequence of elements of ι(E), i.e.
ι(E) is dense in Ê.
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(c) Let (αn) be a Cauchy sequence in Ê. Since ι(E) is dense in Ê, ∀n ∈ N,
∃xn ∈ E with δ(αn, ι(xn)) < 1

n. Then

d(xp,xq) = δ(ι(xp), ι(xq)) ≤ δ(ι(xp), αp) + δ(αp, αq) + δ(αq, ι(xq))

≤ δ(αp, αq) +
1

p
+

1

q

so that d(xp,xq) → 0 as p, q → ∞, which is to say that (xn) ∈ C.

Denote α = (x̂n) ∈ Ê.

We will show that αn → α. Since

δ(αn, α) ≤ δ(αn, ι(xn)) + δ(ι(xn), α) <
1

n
+ δ(ι(xn), α),

it suffices to show that δ(ι(xn), α)→ 0.
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Let ε > 0. The sequence (xn) being Cauchy in E, ∃N ∈ N such that
d(xp,xq) < ε whenever p, q ≥ N . Thus, fixing n and letting p→∞, we
have

δ(ι(xn), α) = lim
p→∞

d(xn,xp) ≤ ε

for all n > N , whence we have the desired result.

(d) Define ϕ on ι1(E) by setting ϕ(ι1(x)) = ι2(x) for all x ∈ E. Restricted
to ι1(E), the mapping ϕ is an isometry since

d2(ϕ(ι1(x)), ϕ(ι1(y))) = d2(ι2(x), ι2(y)) = d(x,y) = d1(ι1(x), ι1(y))

for all x,y ∈ E. Thus, ϕ is uniformly continuous on ι1(E). Since ι1(E)
is dense in E1 and since E2 is complete, we can apply the result of a
previous problem to show that ϕ can be extended to a unique uniformly
continuous function on E1.
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Furthermore, ϕ is an isometry on ι1(E); since ι1(E) is dense in E1

and since ϕ is continuous on E1, ϕ is an isometry on E1 in its entirety.
In particular ϕ is 1− 1.

It remains only to show that ϕ is onto. Let β ∈ E2. As ι2(E) is
dense in E2, ∃(βn) = (ι2(xn)) ⊆ ι2(E) such that βn → β. Since

d1(ι1(xp), ι1(xq)) = d(xp,xq) = d2(ι2(xp), ι2(xq)) = d2(βp, βq)

for all p, q ∈ N, the sequence (ι1(xn)) is a Cauchy sequence in E1. But
E1 is complete so that ι1(xn)→ α ∈ E1. Since ϕ is continuous, we have

ϕ(α) = lim
n→∞

ϕ(ι1(xn)) = lim
n→∞

ι2(xn) = lim
n→∞

βn = β,

that is, ϕ is onto. �

P. Boily (uOttawa) 148



Mathematical Analysis Chapter 9 – Metric Spaces and Sequences

70. Proof.

(a) This one is clear by definition.

(b) By part (a), A ⊆ (A). Conversely, since (A) is the smallest closed set

containing A and since A is also a closed set containing A, then (A) ⊆ A.

Hence, A = (A).
(c) Since the union of two closed sets is closed, A ∪ B is a closed set

containing A ∪ B and so A ∪B ⊆ A ∪ B. Conversely, A ∪B is a
closed set containing both A and B, so both A,B ⊆ A ∪B; therefore
A ∪B ⊆ A ∪B. Thus A ∪B = A ∪B.

(d) Since ∅ is always a closed set, ∅ = ∅.
(e) Consider the following counter-example in (R, d2): let A = (−1, 0) and

B = (0, 1). Then A = [−1, 0], B = [0, 1], A∩B = ∅, A ∩B = ∅ while
A ∩B = {0}. �
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71. Proof. Suppose that x ∈ int(A). Then x ∈ A ⊆ A.

Now suppose that x ∈ ∂A. We proceed by contradiction. If x 6∈ A then,
since E \ A ⊆O E, ∃r > 0 such that B(x, r) ⊆ E \ A ⊆ E \ A. This
contradicts the fact that x ∈ ∂A (how?) and so we must have x ∈ A.
Thus int(A) ∪ ∂A ⊆ A.

Conversely, suppose that x ∈ A. There are only three possibilities:
x ∈ int(A), x ∈ ∂A or x ∈ int(E \A) (why?).

If x ∈ int(E \ A), then ∃r > 0 such that B(x, r) ⊆ E \ A. This
implies that A ⊆ E \ B(x, r). Therefore A ⊆ E \ B(x, r), since
E \B(x, r) ⊆C E, which in turns implies that x 6∈ A, a contradiction.

Thus x ∈ int(A) ∪ ∂A and so A ⊆ int(A) ∪ ∂A. �
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72. Proof. To show that every point of x ∈ A is a boundary point, note that
any neighbourhood V of x contains an open interval Ir = (x− r, x+ r),
for some r > 0.

But x ∈ Ir∩A and since any open interval contains an irrational number
Ir ∩ (R \A) 6= ∅. Consequently, any neighbourhood of x contains both
points in A and points not in A, which is another definition of x ∈ ∂A.

Now, to show that 0 is a cluster point of A, note that any neighbourhood
of 0 in the usual topology contains an interval of the form (−ε, ε) for
some ε > 0.

By the Archimedean Property, ∃N ∈ N such that 1
N < ε. Hence

0 6= 1
N ∈ B(0, ε) and so 0 is a cluster point of A.
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In order to show that there are no other cluster points, first observe
that any x < 0 cannot be a cluster point of A since the neighbourhood
(−2x, 0) contains no points in A.

Likewise, any x > 1 cannot be a cluster point of A since the
neighbourhood (1, 2x) contains no point of A.

If x ∈ (0, 1], then either x ∈ A or x 6∈ A. If x = 1
n ∈ A, then

the open neighbourhood (x − r, x + r) contains no other point of A as
long as r < 1

n(n−1), and so x is not a cluster point of A.

If x 6∈ A, choose k ∈ N such that x ∈ (1k,
1

k−1). Then the
open neighbourhood (x − r, x + r) contains no other point of A if
r < min{x− 1

k,
1

k−1 − x} and so x cannot be a cluster point of A. �
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73. Proof.

(a) It suffices to verify that the three properties hold for τ1:
i. ∅ ∈ τ1 by definition; R ∈ τ1 since R \ R = ∅ is finite.

ii. Let {Xα} ⊆ τ1. Then R \Xα is finite for all α. According to the de
Morgan’s Laws, the set

R \
⋃
α

Xα =
⋂
α

(R \Xα)

is a finite set as it is the intersection of an arbitrary collection of finite
sets. Hence,

⋃
Xα ∈ τ1.

iii. Let {Xi}ni=1 ⊆ τ1. Then R \Xi is finite for all i = 1, . . . , n.
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According to the de Morgan’s Laws, the set

R \
n⋂
i=1

Xi =

n⋃
i=1

(R \Xi)

is a finite set as it is the union of a finite collection of finite sets.
Hence,

⋂n
i=1Xi ∈ τ1.

Now for τ2:
i. ∅ ∈ τ2 by definition; R ∈ τ2 since R \ R = ∅ is countable.

ii. Let {Xα} ⊆ τ2. Then R \Xα is countable for all α.
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According to the de Morgan’s Laws, the set

R \
⋃
α

Xα =
⋂
α

(R \Xα)

is a countable set as it is the intersection of an arbitrary collection of
countable sets. Hence,

⋃
Xα ∈ τ2.

iii. Let {Xi}ni=1 ⊆ τ2. Then R \ Xi is countable for all i = 1, . . . , n.
According to the de Morgan’s Laws, the set

R \
n⋂
i=1

Xi =

n⋃
i=1

(R \Xi)

is a countable set as it is the union of a finite collection of countable
sets. Hence,

⋂n
i=1Xi ∈ τ2.
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(b) In the countable complement topology, A ⊆C R, because R\(R\A) = A
is countable and so R \A ⊆O R. Consequently, A = A.

Furthermore, the only open set of R contained in A is the empty
set, as any other open set is uncountable. Hence int(A) = ∅ and
∂A = A \ int(A) = A.

In the co-finite topology, the only closed set containing A is R, as
any other closed set is finite. Consequently, A = R.

Furthermore, the only open set of R contained in A is the empty
set, as any other open set is infinite. Hence int(A) = ∅ and ∂A = R. �
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75. Proof. Let x be a cluster point of A ∩ B. Then any neighbourhood V
of x contains a point y ∈ A ∩ B ⊆ A such that y 6= x. Thus y is a
cluster point of A. The argument for B is identical. �
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76. Proof. The full statement of the Baire Category Theorem is that if {Hn}
is a countable family of closed subsets of Rp in the usual topology, with
int(Hn) = ∅ for all n, then if G ⊆O E with G ⊆

⋃
Hn, we must have

G = ∅.

Note that if ∅ 6= G ⊆O E, then G \Hn 6= ∅ for all n.

(a) Let ∅ 6= G ⊆O E. Pick x1 ∈ G \H1 and let

d1 = d(x1, H1) = inf
y∈H1

{d(y,x)}.

Since H1 is closed, d is continuous and x1 6∈ H1, then d1 > 0. Since
G is open, ∃r > 0 such that B(x1, r) ⊆ G. Select r1 > 0 so that
r1 < min{d1, r}. Then D(x1, r1) ⊆ G and D(x1, r1) ∩H1 = ∅.
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(b) The above procedure can be repeated with G replaced by int(D(x1, r1))
(which is non-empty by hypothesis) and x2 ∈ int(D(x1, r1)) \ H2 to
obtain D(x2, r2) ⊆ int(D(x1, r1)) with D(x2, r2) ∩H2 = ∅.

(c) The above procedure can be iterated using int(D(xn−1, rn−1)) (which is
non-empty by hypothesis) and xn ∈ int(D(xn−1, rn−1)) \Hn to produce
D(xn, rn) ⊆ int(D(xn−1, rn−1)) with D(xn, rn) ∩ Hn = ∅. Thus we
have a sequence

D(x1, r1) ) D(x2, r2) ) · · ·D(xn, rn) ) D(xn+1, rn+1) ) · · ·

such that Hn∩D(xn, rn) = ∅ and D(xn, rn) ⊆ G for all n ∈ N. By the
Cantor Intersection Theorem, ∃x0 ∈

⋂
D(xn, rn) ⊆ G.
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Since D(xn, rn) ⊆ E \Hn for all n ∈ N,

x0 ∈
⋂

(E \Hn) = E \
⋃
Hn.

Thus G \
⋃
Hn 6= ∅ and we cannot have any open set G ⊆

⋃
Hn. �

P. Boily (uOttawa) 160



Mathematical Analysis Chapter 9 – Metric Spaces and Sequences

77. Proof. Since R2 ⊆O R2 in the usual topology, it is sufficient to show
that any line L = {(x, y)|ax + by + c = 0} has empty interior by the
Baire Category Theorem. But that is clear since any open ball with
radius r about (x, y) ∈ L will have points in R2 \ L. Thus L has no
interior points, as required. �
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78. Proof. First, assume that B is closed. Let x = limxn. Then, for any
ε > 0, ∃nε > 0 such that xn ∈ B(x, ε) for all n ≥ nε.

Consequently, B ∩ B(x, ε) 6= ∅ for all ε > 0. Since Rp \ B ⊆O Rp, it
follows that x ∈ B (why?).

Conversely, assume that for every convergent sequence (xk) ⊆ Rp,
we have x = limxk ∈ B. If Rp \B is not open in Rp, ∃x ∈ Rp \B such
that B(x, 1n) ∩B 6= ∅ for all n ∈ N.

Then ∃xn ∈ B(x, 1n) ∩ B; the sequence (xn) ⊆ B converges to x 6∈ B,
which contradicts the hypothesis. Hence Rp \B ⊆O Rp. �
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79. Proof. We have ‖x3−x2‖ ≤ r‖x2−x1‖ and it is easily seen by induction
that if

‖xn+1 − xn‖ ≤ rn−1‖x2 − x1‖
then

‖xn+2 − xn+1‖ ≤ r‖xn+1 − xn‖ ≤ rn‖x2 − x1‖.
Therefore, if m > n,

‖xm − xn‖ =

∥∥∥∥∥
m−1∑
k=n

(xk+1 − xk)

∥∥∥∥∥ ≤
m−1∑
k=n

‖xk+1 − xk‖

≤
∞∑
k=n

‖xk+1 − xk‖ ≤
∞∑
k=n

rk−1‖x2 − x1‖ ≤
rn−1

1− r
‖x2 − x1‖.
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Let ε > 0. Since r < 1, ∃Nε so that

rn−1 < ε
1− r

‖x2 − x1‖
for all n ≥ N,

and so ‖xm − xn‖ < ε for all m ≥ n ≥ Nε. It follows that (xn) is
Cauchy and that it is convergent, since (Rp, ‖ · ‖) is a Banach space. �
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