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Mathematical Analysis Chapter 9 — Metric Spaces and Sequences

Overview
One of the natural ways we can extend the concepts we have discussed in
the previous chapters is by moving from R to R™.

Some of the notions that generalize nicely to vectors and functions on
vectors include norms and distances, sequences, and continuity.

Notation: The symbol K is sometimes used to denote either R or C.
Cr(]0, 1]) represents the R—vector space of continuous functions [0, 1] — R.

Fr([0,1]) represents the R—vector space of functions [0, 1] — R.
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9.1 — Preliminaries
Most of the results of the previous chapters rely heavily on the properties
of the absolute value.

lts fundamental role in R is being a measure of the magnitude of a
real number: |x| is the distance from the real number z to the origin.

In higher-dimensional spaces, the concept of the absolute value can be
generalized in multiple ways.

In this chapter, we discuss norms and metrics, as well as the topologies
they induce.
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0.1.1 — Norms and Metrics

Let £/ be a K—vector space, such as R, C" or Cg([0, 1]), say. A norm over F
is a mapping || - || : £ — R for which the following properties hold:

1. Vx € F,

x|| >0
2. x| =0<=x=0

3. vx € B,VA € K, | \x|| = [A||x]

4. ¥x,y € B, [[x +yll < [[x] + [l

If the 4 properties hold, we say of (E, || -||) that it is a normed space.
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Examples:
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The open ball of radius 1 induced by the p—norm around the origin
in R™ is the set of vectors

BP(0,1) = {x | [[x]l, <1}.

There are equivalent definitions for closed balls, or for general balls of radius
r centered at some point a € R".

Different values of p lead to different geometrical sets B?(0,1).
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BP(0,1), for p=2,00,1 (left to right).

The open balls have different shapes, but we shall soon see that they are
all equivalent, in the sense that they all induce the same topologies.

There are similarities between summations and integration (the Riemann-
integral of a function over an interval is, essentially, the limit of a sum).
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As such, it is tempting to conclude that there are equivalent p—norms over
Fr([0,1]): something along the lines of

= ( | 1rim) " )

where m is the Lebesgue measure, but these mappings are not norms.

Consider the function xq € Fr([0,1]), say. It can be shown that || f||; = 0.
However, xg # 0 which contradicts the second property of norms (in fact,
| - ||, is @ seminorm on Fy([0, 1])).

If we restrict the function space to Cgr([0,1]), || - ||, is indeed a norm
for all p > 1, but unfortunately, (Cr([0,1]), || - |l) is not complete (more on
this later).
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Let £ be any set. A metric over E is a mapping d : E X £ — R for which
the following properties hold:

1. Vx,y € F, d(x,y) >0

2. Vx € E, d(x,x) =0

3. d(x,y) =0<=x=y

4 Wx,y € F, dx,y) = d(y,x)

5. Vx,y,z € E, d(x,y) < d(x,2z) + d(z,y)

If the 5 properties hold, we say that (E, d) is a metric space.
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Normed spaces give rise to metric spaces.

Theorem 88. [If (E,|| - ||) is a normed space, defined : E x E — R by

d(x,y) = |lx =yl
Then (E,d) is a metric space.

Proof.
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Not every metric space arises from a norm, however.
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Let (F,d) be a metric space. The open ball centered at a € E with
radius r > 0 is the set

B(a,r) = B+d(a,r) ={x e FE|d(a,x) <r};
the closed ball centered at a with radius r > 0 is the set
D(a,r) = Dgy(a,r) ={x € FE |d(a,x) <r},
and the sphere centered at a with radius r > 0 is the set

S(a,r) = Sq(a,r) = D(a,r) \ B(a,r) ={x € E | d(a,x) =r}.
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Examples:

1. Let a € E =R and define d(z,y) = | — y| for all x,y € E. Then, for
r > 0, the balls reduce to

B(CL?T): ) D(G,,T): )
and the sphere to a discrete set S(a,r) =

2. Let (E,d) be a discrete metric space and a € E. Then

B(a,r) =
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3. Let £ = Cgr(|0,1)), doo(f,9) = ||f — g||co- Then, for e > 0,

B(f,é‘) —
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Lemma 89. Let (E,d) be a metric space, x,a € E, r > 0 and x ¢
B(a,r). Show that d(x, B(a,r)) > d(x,a) —r.

Proof.
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Let (E,d) be a metric space and let @ # A C E. The diameter of
A under d is defined by

0a(A) = sup {d(x,y)}.

X, yEA
For instance, in (R™,d2), we have d4,(B(a,r)) = 2r.

We say that A is bounded in (E,d) if §;(A) < .
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Distance between two subsets A, B C R?.
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Diameter of two subsets A, B C R?.
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Proposition 90. Let (E,d) be a metric space and let @ = A C E. Then,
A is bounded in (E,d) if and only if 3x € E, 3r > 0 such that A C B(x,r).

Proof.

Ac B(b,f) Bc glo)
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9.1.2 — Metric Space Topology

In this subsection, (E,d) is always a metric space.

A subset A C FE is said to be an open subset of E under d (or
simply to be open if the context is clear) if either

» A =0 or

» Vx € F, dr > 0 such that B(x,r) C A.

We denote this relationship by A Cp E.
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Open subset of R? in the Euclidean topology (image from D.J. Eck).
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Proposition 91. Open sets enjoy the following properties:

1. E QO E,’
2. Vae E,;r >0, then B(a,7) Co F;

3. the union of an arbitrary family { A;};c1 of open subsets of E is an open
subset of E/, and

4. the intersection of a finite family {A;}¢_, of open subsets of E is an
open subset of E .
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Proof.
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Examples:

1. Let a € R. Then (—00,a) and (a,00) are both open in F =R

2. The intersection of an arbitrary family of open subsets of £ could be
open, but need not be:

but
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A topology 7 on a set E is a family of subsets of E for which

1. 9, EeT

2. ifU; et foralliel, then,U, e
3. itU,UyeT,then U NUy €T
Examples:

1. Let (E,d) be a metric space. The collection of all open subsets of E
under d forms a topology on E, the

2. Let F be any set. The collection 7 = {&, E} forms a topology on F,
the
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3. Let E be any set. The collection 7 = @(F) forms a topology on FE, the

A subset A C FE is said to be a closed subset of E under d if E\ A Cp E.
We denote this relationship by A C¢ E.

As a consequence of the definition of closed sets in opposition to open
sets, we get a whole slew of properties of closed subsets, for free.

1. The empty set is closed in any metric space (F,d).
2. Any metric space (FE,d) is necessarily a closed subset of itself.

3. Every closed ball in (E,d) is closed.
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Proof.
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_dax) - K
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fF==2
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4. Every sphere in (E,d) is closed.

Proof.

5. The intersection of an arbitrary family {A;};cr of closed subsets of F is
a closed subset of E.

6. The union of a finite family {A4;}*_, of closed subsets of E is a closed
subset of E. Note however that the union of an arbitrary family of closed
subsets of F/ need not be closed (see exercise 17) in E.
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The closure of a subset A C E with respect to a metric d is the smallest
closed subset A of E (again, with respect to d) containing A (with possible
equality).

The closure has a number of interesting properties, one of which being
that A is the intersection of all closed sets containing A, and that A C A
(see exercises 18 and 19).

Examples:

1. In the Euclidean topology, (0,1) =

2. In the discrete topology, (0,1) =

3. In the Euclidean topology, S(a, R) =
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Lemma 92. Let A be a subset of E. Then A Co E <— A = A.

Proof.

A neighbourhood of x € E is a subset V C FE containing an open
subset Uy Cp E with x € Uyx. In other words, V' is a neighbourhood of x
if 3r > 0 such that B(x,r) C V (but V is not necessarily open). The set
of all neighbourhoods of x is denoted by

V(x) = {V|V is a neighbourhood of x}.
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A neighbourhood V' of x, with an open set Uk.
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Lemma 93. Let (F,d) be a metric space with U C E. Then, U is a
neighbourhood of each of its points if U Cp E.

Proof.

Proposition 94. [et A C E. The following conditions are equivalent:

1. xe A
2. Ve >0, da € A such that d(a,x) < ¢
33V eVx), VNA#D

4. d(x,A) =0
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Proof.
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A subset A of E is said to be dense in (E,d) if A=F.

Examples:

4. Weierstrass’ Theorem: Let P be the set of polynomial functions
[0,1] — R. Then P is dense in (Cg([0,1]),ds). Thus real continuous
functions on [0, 1] (which need not even be C') can be approximated as
closely as desired/needed by smooth (polynomial) functions.
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A metric space (F,d) is said to be separable if it has at least one dense
subset: R and R"™ are classical examples.

A family G = {Gr}rer, 9 # Gy Co E forms a basis for the open
subsets of FE if every non-empty open subset of £ can be written as a
union of members of G.

Examples:
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There is a nice way to characterize such bases.

Proposition 95. A family G = {G\}c is a basis for the open subsets
of E if and only ifVx € E, VYV € V(x), 3A € L such thatx € G, C V.

Proof.
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By analogy with the closure, the interior of a subset A C E is the largest
open subset of E contained in A. We denote that subset by int(A) (or
sometimes A°).

It is not hard to show that int(A) is the union of all the open subsets
of E contained in A, and that A Cp FE if and only if int(A) = A (see

exercises).

Examples:

1. In the Euclidean topology, int([0,1]) =
2. In the discrete topology, int([0, 1]) =

3. In the Euclidean topology, int(S(a, R)) =
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4. In the Euclidean topology, int(D(a, R)) =

5. In the Euclidean topology, int((a,b)) =

6. In the Euclidean topology, int([a,b]) =

7. In general, int(W) # W, as you can see with W =

When U Cp E and int(U) = U, U is a regular open subset of E; when
B C¢ F and int(B) = B, B is a regular closed subset of F.

These concepts are not crucial to understand analysis of functions of
R™, but they conform to what our intuition expects of nicely behaved sets.
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Not all metrics are derived from a norm (the discrete metric fails in that
regard, for instance). Normed vector spaces have a very nice property
when it comes to closure and balls.

Lemma 96. /f (E,d) is a normed vector space, then D(0,1) = B(0,1).
Proof.
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We can use this lemma to show that the discrete metric is not derived from
a norm: were it so, we would have D(0,1) = B(0,1). However, in R™ we
have

B(0,1) ={0} CcRand D(0,1) =R = B(0,1) ={0} #R = D(0,1).
Proposition 97. Let A C E. The following conditions are equivalent:

1. x €int(A)

2. AeV(x)

3. de > 0 such that B(x,e) C A

Proof.
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As an example of the usefulness of this result, note that by the
density of Q@ and its complement R\ @Q in R, we automatically get
int(Q) = int(R \ Q) = @ with the usual topology on R.

We end this section with a few other topological concepts. The boundary
of a subset A C F is simply defined by 94 = A\ int(A) and the exterior
of A is given by int(E \ A) (in a nutshell, the exterior is the largest open
subset of E which excludes A in its entirety).
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We say that x € F is a cluster point of A if
Ve > 0, dy. € B(x,¢) N A such that y. # x.

Finally, we say that x € E is an isolated point of A if d¢ > 0 for which
B(x,e) N A = {x}.

Examples: Let A ={+:n > 1}.
1. 0 is a cluster point of A since

2. Foralln>1, % is an isolated point of A, as

Lemma 98. /f x is a cluster point of A, then x € A and every
neighbourhood of x contains an infinite set of points in A.
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Proof.

Finally, if (E,d) is a metric space and FF C FE, then (F.,d) is also a
metric space, called a metric subspace of E. The topology on F' is
completely determined by the topology on E:

Proposition 99. Let (E,d) be a metric space and F C E. Then

BCopF<«—=dACp FE suchthat B=ANF
BCo F <= dAC¢ E suchthat B=ANF
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9.1.3 — Continuity

The concept of continuity is fundamental in analysis.

Let (A,d4), (B,dp) be metric spaces. As d4(a,x) and dp(f(a), f(x)) are
generalizations of |a — x| and |f(a) — f(x)|, respectively, amap f: A — B
is continuous at a € A if

Ve >0, 30 > 0,(x € Aand da(a,x) <) = dp(f(a), f(x)) < e;

or, equivalently, if for any open e—ball W centered at f(a), there is an
open d—ball V' centered at a such that f(V) C W; or equivalently, if for
any neighbourhood W Cp B of f(a), there is a neighbourhood V' Cp A
of a such that f(V) C W.
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Continuity of f at a € R? in the usual topology (image from D.J. Eck).

P. Boily (uOttawa)

51



Mathematical Analysis Chapter 9 — Metric Spaces and Sequences

That these definitions are equivalent is left as an exercise.

The map f is continuous on A if it is continuous at each a € A.

Proposition 100. Let (E,d),(E,d) be metric spaces, and let f : E — E.
The following conditions are equivalent:

1. f is continuous on E;
2. foranyW Co E, f=*(W) ={x € E|f(x) e W} Co E, and
3. foranyY Cc E, f~1(Y) C¢ E.

Proof.
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Consider a map f : E — E as above. If f(W) Co E for all W Co E,
then we say that f is an open mapping; by analogy, if f(Y) Cc E for all
Y C¢ E, then we say that f is a closed mapping.
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Generally speaking, continuous maps are neither open nor closed; the
constant function f : R — R defined by f(x) = a provides an example

of a continuous function which is not open in the standard topology, as
(0,1) Co R, but f((0,1)) = {a} Ce R, for instance.

Proposition 101. Let f : (E,d) — (E,d) and ¢ : (E,d) — (E,d) be
continuous. Then the composition go f : (E,d) — (F,d) is continuous.

Proof.
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In many instances, the broad strokes of proofs in the multi-dimensional
cases follow those of the one-dimensional proofs.

Corollary 102. Let f : (E,d) — (E,d) be a continuous function. If
F C E, then the restriction f|p : (F,d|r) — (E,d) is continuous.

Proof.
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Examples:
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A metric d on E gives rise to a topology by defining the open sets of E. A
natural question to ask is: can two different metrics could give rise to the
same topology? In order to answer that question, we need to introduce a
new concept.

Let (E,d),(E,d) be metric spaces. A function f+E — E is a
homeomorphism if f is bijective and both f and f'" are continuous
(alternatively, f is a homeomorphism if it is bijective, continuous and open).

Examples:
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These examples illustrate that the notion of boundedness is not necessarily

preserved by homeomorphisms: for instance, R is unbounded while (—g, g)
is bounded, but both spaces are homemorphic to one another via the arctan.

Furthermore, neither is the notion of distance necessarily preserved by
homeomorphisms: in general,

~

d(x1,w2) # d(f(z1), f(22)).

For instance, in the first example,

d(0,2) =10 —2| =2 #d(03,2%) =10° - 23| = 9.
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However, homeomorphisms f : E — E preserve the topologies of E and E:

W Co E < f(W)Co E = f(E)
Y Co E <= f(Y)Ce E= f(E).

Two metrics d,d on E are said to be topologically equivalent if

id : (E,d) — (E,d) is a homeomorphism. In that case, d and d give
rise to the same topologies on E.

Example: if p,q > 1, d, and d, induce the same topologies on R".
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Qo

O

2—ball filled with with co—balls oco—ball filled with with 2—balls
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Two metrics d,d on E are (strongly) equivalent if 34, B > 0 such that
Ad(x,y) < d(x,y) < Bd(x,y) Vx,y € E.

Intuitively, two metrics are equivalent if it is always possible to fit a d—ball
between two d—balls, while maintaining the ratios of the balls’ radii.

Clearly, if two metrics are equivalent on F/, they must also be topologically
equivalent, but the converse may not always hold (see exercise 43).

Example: if p,q > 1, d, and d, are equivalent on R".
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Given the geometry of squares and circles, what values can A and B take?
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There is also a similar notion for norms. Two norms || - ||*, || - ||° on E are

equivalent if da, b > 0 such that
al[x[|" < [Ix[* < bf|x[]", Vvx € E.

Clearly, two equivalent norms on E' give rise to two equivalent metrics on FE.
Over a finite—dimensional vector space, any two norms are equivalent:

1. WLOG, assume || - [|* = || - ||1;
2. only vectors x € S1(0,1) need to be considered;

3. show that || - ||® is continuous with respect to || - ||1, and

4. use the Max/Min Theorem over S1(0,1) to bound a < ||x]||° < b.
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We end this section on preliminaries with two definitions that generalize the
notion of a continuous function.

~

Let f: (E,d) — (E,d). We say that f is

1. uniformly continuous if Ve >0, 30 = d(¢) > 0 such that Vx,y € F,
d(x,y) <6 = d(f(x), f(y)) <s

2. Lipschitz continuous if 3K > 0 such that d(f(x), f(y)) < Kd(x,y).

The conceptual difference between continuity and uniform continuity is that
0 may depend on x and y as well as ¢ if the function is continuous, but it
can only depend on ¢ for uniformly continuous functions.
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Two metrics d,d on E are uniformly equivalent if id : (E,d) — (F,d) is
uniformly continuous, and so is its inverse.

Uniformly equivalent metrics are topologically equivalent, as uniform
continuity also implies continuity, but there are topologically equivalent
metrics that are not uniformly equivalent. However, uniform equivalence
and strong equivalence of metrics are ... well, equivalent.

Lastly, note that uniform continuity, unlike continuity, is not a topological
notion: given a function f : E — E, the knowledge of the topologies on E
and F/, respectively, is sufficient to determine if f is continuous.

But more must be known in order to determine if f is uniformly continuous.
There is something fundamental at play here; we will return to it at a later
stage.
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9.2 — Sequences in a Metric Space

Consider the sequence (x,,) C (E,d). The sequence converges to x €
(E,d), denoted by x,, — x, if

Ve >0, N € N such that n > N = d(x,,x) < €.

In light of the notions presented in the previous section, this is equivalent
to the following definition: x,, - x € EF if

VV € V(x), AN € Nsuch thatn > N = x, € V.

Thus a sequence converges to x if any neighbourhood of x contains infinitely
many terms in the sequence.
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A subsequence of (x,,) is a sequence (y,) such that y, = x,(,) for some
strictly increasing function ¢ : N — N. It is easy to show that if x,, — x,
then any subsequence of (x,,) also converges to x (see the exercises).

Let (x,) be a sequence in a metric space (E,d). We say that a € F
is a limit point of (x,,) if Ve > 0, Vp € N, In > p such that d(x,,a) < €.

Proposition 103. Let(x,) C (F,d), a € E. The following are equivalent:
1. ais a limit point of (x,);

2. there is a subsequence of (x,) which converges to a;

3. Vp €N, we havea € A,, where A, = {x,|n > p}, and

4. either a is a cluster point of A1 or {x, | x, = a} is infinite.
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If {x,, | x, = a} is infinite, a is a replicating point of (x,).

Proof. We prove 1. — 2. — 3. — 4. — 1.
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9.2.1 — Closure, Closed Subsets and Continuity

We can conclude from Proposition 103 that the set ﬂpeNA—p of limit points
of (x,,) is closed and that if x,, — X, then x is the unique limit point of (x,,).

There is a nice way to characterize closure, closed subsets and continuity
using sequences and convergence.

Proposition 104. Let (E,d) be a metric space, A C F and x € E.
Then,

x € A < 3(x,) C A such that x,, — x.

Proof.
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Proposition 105. Let (FE,d) be a metric space, with F C E. Then,
F C¢o E if and only if any sequence (x,) C F which converges in E
converges to a point in F'.

Proof.
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~

Proposition 106. Let (E,d),(E,d) be a metric spaces. Then f : E — E
is continuous if and only f(x,) — f(x) whenever x,, — x.

Proof.
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9.2.2 — Complete Spaces and Cauchy Sequences

The sequence (x,,) C (FE,d) is a Cauchy sequence if
Ve > 0,dN € N such that n,m > N = d(x,,Xm) < €.

Some properties of Cauchy sequences in R carry over to metric spaces.
Proposition 107. Convergent sequences in (E,d) are Cauchy.

Proof.
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In a normed space (F, || - ||), a sequence (x,,) is bounded if M € N such
that ||x,| < M for all n € N.

But a metric space (E,d) is not necessarily a normed vector space, so
there might not be a norm to use to determine boundedness.

In a general metric space (F, d), a sequence (X,) is bounded if 3M > 0 s.t.
x, € B(0, M) for all n € N. Similarly, A C E is bounded if §(A4) < oc.

Proposition 108. Every Cauchy sequence in (E,d) is bounded.

Proof.
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But the notion of a Cauchy sequence is not topological.

Example: Let A = (0,00). Consider the following metrics on A:
di(z,y) = |z —y| and da(z,y)=|Inz—Inyl.

Show that both metrics induce the same topology on A, but that Cauchy
sequences under one are not necessarily Cauchy sequences under the other.
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Solution.

P. Boily (uOttawa) 78



Mathematical Analysis Chapter 9 — Metric Spaces and Sequences

This could not happen, however, if the metrics are strongly equivalent, which
further illustrates the distinctness of the notions of strong equivalence and
topological equivalence (and also justifies the use of the “strong” qualifier).

Proposition 109. Let d and d be two equivalent metrics on E. Then,
(Xn) is @ Cauchy sequence in (E,d) if and only if (x,,) is a Cauchy sequence
in (E,d).
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Proof.
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A metric space (F,d) is said to be complete if every single one of its
Cauchy sequences is convergent. |f a complete metric space is also a
normed vector space, then it is said to be a Banach space. If a Banach
space is also an inner product space, then it is said to be a Hilbert space.

Examples: (COMPLETE, BANACH AND HILBERT SPACES)
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Closed subsets of complete spaces are especially well-behaved.

Proposition 110. Every closed subset of a complete metric space is

complete.
Proof.

|
Proposition 111. Every complete subspace of a metric space is closed.
Proof.

|
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Proposition 112. Let (F;,d;) be metric spaces for i = 1,...,n. The
metric space (E,d) = (Ey X -+ X Ey,sup,_y . ,1d:}) is complete if and
only if (E;,d;) foralli=1,... n.

Proof. |

The following result is a generalization of the Nested Intervals Theorem.

Proposition 113. Let (E,d) be a complete metric space. If (F,) is a
decreasing sequence of non-empty closed subsets of

EDFiDFD---DF, D

such that lim 6(F,) = 0, then ﬂ F, = {x} for somex € F.

n— 00
n>1
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Proof.
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The following result about contractions is representative of a family of
extremely useful theorems.

Theorem 114. (FixED PoINT THEOREM)
Let (E,d) be a a complete metric space and let f : E — E be a
contraction on E, that is,

dk € (0,1) such that d(f(x), f(y)) < kd(x,y) for all x,y € E.

Then 3!x* € E such that f(x*) = x*; x* is a fixed point of f.

Proof.
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But the choice of x3 € E was arbitrary. If f is a contraction, the
sequence (f™(x)) converges to the unique fixed point for all x € F.
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The restriction & € (0,1) is necessary, as the following example
demonstrates.

Example: Let f : R — R be defined by

f(a:):{l’ x <0

a:—|—%+1, >0

It is not hard to see that f has no fixed point (see exercise 62), yet

d(f(z), f(y)) < d(z,y) forall z,y € R.
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0.3 — Exercises

Show that the absolute value defines a norm on R.

Show that the modulus defines a norm on C.

Show that the sup norm || - || is indeed a norm on Ck([0, 1]).

Let co > p > 1. Show that the p—norm || - || is indeed a norm on R".

Let p > 1. Show that (1, p. 9), defines a norm on LF([0, 1]).

Prove Lemma 88, p. 11.

Let E be any set. Show that (2, p. 13) defines a metric on E.

Let £ = R"™. Show that d» is a metric on E.

Let E =R, d(z,y) = |r —y|, A=Nand B = {&1 | n € N}. Compute
d(A, B), where d is as in (3, p. 17)). Can you use this result to show that (3, p. 17)
does not define a metric on p(FE) \ @7

10. In a metric space, show that 6(A) € [0, co]. Also, show that §(A) = 0 <= A is a
singleton.

© 0 NSO N =
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11.
12,

13.

14,
15.

16.

17,

18.

19.
20.

Prove or disprove: In any metric space (E, d), d4(B(a,r)) = 2r.

Prove or disprove: Let d, d be metrics on E. Then, A is bounded in (E, d) if and
only if A is bounded in (E,d’).

Where does the proof that a finite intersection of open subsets is open fail for arbitrary
intersections?

Show that the metric space topology on a discrete metric space is the discrete topology.

Show that the intersection of an arbitrary family { A;};cr of closed subsets of E is a
closed subset of E.

Show that the union of a finite family {Ai}le of closed subsets of E is a closed
subset of .

Show that the union of an arbitrary family of closed subsets of E' need not be closed
in E.

Let A be a subset of a metric space (E, d). Show that A is the intersection of all
closed subsets of E containing A.

Let A be a subset of a metric space (E, d). Show that A C A.
Prove Lemma 92, p. 34.
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21.
22.

23.
24.
25.

26.

In Proposition 94, p. 37, show that 2. <— 3 <— 4.

Let A be a subset of a metric space (E,d). Show that int(A) is the union of all
open subsets of F contained in A.

Let A be a subset of a metric space (E, d). Show that int(A) C A.
Let A be a subset of a metric space (E, d). Show that A Cp F <= A = int(A).

Let A, B be subsets of a metric space (E, d). Show that
(a) BC A — int(B) Cint(A)
() BCA = BCA
(c) int(AN B) = int(A) Nint(B)
(d) AUB=AUB
(e) int(A) Uint(B) C int(A U B)
f) ANBC AnB
In each instance, give an example showing that, in general,
(a) int(A) Uint(B) # int(AU B)
(b) ANB#ANB
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27. Let A be subset of a metric space (E, d). Show that
(a) E\int(A) =FE\ A
(b) E\ A =int(E\ A)
(c) O(int(A)) C 0A
(d) A C 0A
28. Find an example of a subset A of a metric space (E, d) for which 9(int(A)), 0A
and O A are all different.
29. Find two subsets A, B C (R, dy) for which A U B, int(A) U B, A U int(B),
int(A) U int(B), and int(A U B) are all distinct.

30. Find a subset A C (R, dy) for which A, int(A), A, int(A), int(A), int(A) and
int (int(A)) are all distinct.

31. For any subset A C (R, d2), show that int (int(Z)) = int(A).
32. Complete the proof of Lemma 98, p. 48.
33. Prove Proposition 99, p. 49.
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34.

35.
36.

37.
38.
39.
40.
41.

We say that A C E is meagre (or nowhere dense) if and only if int(A) = @. Show
that

(a) A is meagre if and only if int(E \ A) is dense in E (a set A is dense in B if
AC BCA),
(b) A is meagre if and only if A is contained in a closed subset of EZ whose interior is
empty;
(c) A is closed and meagre if and only if A = O A, and
(d) Ais meagre = A = 0A.
Show that the three definitions of continuity are equivalent.

let f: C — D, AC C and B C D. Show that f*(f(A)) = A and that in
general, the best we can say is that f(f '(B)) C B.

Can you find a function f : E — E which is continuous but not closed?

Can you find a function f : E — E which is open and closed but not continuous?
Can you find a function f : E — E which is open and continuous but not closed?
Complete the proof of Proposition 101, p. 54.

Complete the proof of Corollary 102, p. 55.
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42.
43.

44,

45.
46.
47.
48.
49.
50.

Provide the details showing that dy and d.. are topologically equivalent on R?.
Consider the metric space (R, d3). Define a new function d : R x R — R — R by

d(z,y)
1+d(z,y)

J(x7y) —

Show that d defines a metric on R, that d and d are topologically equivalent but that
they are not equivalent.

Let (E/,d) be a metric space. Show that d : £ X E — R is Lipschitz continuous
(with k = 2) and so that it is a continuous map.

Find a function which is uniformly continuous but not Lipschitz continuous.
Show that the two definitions of convergence of a sequence are equivalent.
Show that if x,, — x, then any subsequence of (x,,) also converges to x.
Show that the set of limit points of a sequence is closed.

Complete the proof of Proposition 103, p. 69.

Prove Proposition 112, p. 84.
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51.
52.

53.

54.

55.

56.
57.

Show that d,, di and ds are equivalent on R?.

For ¢ = 1,...,n, let (E;,d;) be metric spaces and U; Cp FE;. Show that
Ui X --- X U, is an open subset of

(E,d):(E1X ---XEn,sup{d@-M:l,...,n})

Fori=1,...,n, let (E;, d;) be metric spaces and let 7w; : £4 X --- X E, — FE;
be defined by 7;(x1,...,X,) = x;. Show that 7; is open and continuous.
Show that a map f : (F,9) — (F1,d1) X - -+ X (E,,d,) is continuous at a € F

if and only if 7r; o f is continuous at a € F for all 2.

Let f: (E1,d1) X -+ X (Ep,dp) — (F,0) anda = (a1,...,a,) € E. Forall 4,
define f; : (E;,d;) — (F,9) by fi(x) = f(ai,...,a;-1,X,a;41,...,a,). Show
that if f is continuous at a, then f; is continuous at a for all .

Show that d = sup{d; | ¢ = 1,...,n} defines a metricon E = [[,_,(E;, d;).

Let (E;, d;) be metric spaces for ¢ = 1,...,n. Show that the metric prouct space
(E,d) = (][ E:,supq{d;}) is complete if and only if (E;, d;) is complete for each 3.
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58. Show that the converse of the previous result does not hold in general, for instance for
f : R? — R defined by

flz,y) = {* (,y) # (0,0)

0, else

59. Let d1,ds : N X N — R be defined according to

0, ifm=mn lm —n
. o da(myn) = ———.
1 + =, otherwise mn

dl(m7 n) — {
(a) Show that d; and ds are metrics on N.
(b) Show that the topologies of (N, d;) and (N, dz) are both discrete.
(c) Show that (N, d;) is complete but that (N, ds) is not.
(d) What does this say about completeness as a topological property of a space?
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60. Show that the space £*(N) is a Hilbert space as follows.
(a) Show that £%(N) is a vector space over C.
(b) Show that (-|-) defined in the text is indeed an inner product over £*(N).
(c) Show that (-|-) defines a norm || - || over £%(N).
(d) Show that £*(N) is complete under || - ||.

61. Let (E,d) be a metric space. Define di,ds : E x E — R by di(x,y) = 1j_<dx(g?y)
and d2(x,y) = min{d(x,y), 1}.
(a) Show that dy and ds are metrics on F .

(b) Show that d is topologically equivalent to ds.
(c) Show that d; is topologically equivalent to ds.

62. Let f : R — R be defined by

1, <0
f(w)z{H 7

Z+10 CUZO.

Show that f has no fixed point but that d(f(x), f(y)) < d(x,y) for all z,y € R.
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63.

64.

65.

Let X be a compact metric space. Define
Cr(X) ={f|f: X = R, f continuous}.

Show that (Cr(X), || - ||oc) is @ Banach space, but that neither (Cr(X), || - ||1) nor
(Cr(X), || - ||2) is complete.

Let £ = {f € Cp(R,R)|f uniformly continuous}. Show that E is a complete
sub-algebra of C'5(R, R).

Let (E, d) be a complete metric space and f : E — FE. If there exists a positive
integer 7 and k € (0, 1) such that

fr=fofo---of

r times

and d(f"(x), f"(y)) < kd(x,y) for all z,y € E, show that f has a unique fixed
point.
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66. Let X = (0, c0). Consider the function d : X x X — R defined by

r Yy

Cz(CU,’y) —

1 1 ‘

(a) Show that d is a metric on X.

(b) Show that d and dy induce the same topology on X (i.e. the open sets of X are
exactly the same under both metrics).

(c) Show that (X, d) is not a complete metric space.

(d) Show that ((0, 1], d) is a complete metric space.

67. Let B(X,R) denote the set of bounded functions from X to R. It is easy to see that
B(X,R) is a vector space over R. The norm of f € B(X, R) is defined by

[fIl = sup [ f(z)].

rxeX

Show that B(X, R) is a Banach space with this norm.
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68. Let (E, d) and (F, d) be two metric spaces, and let A C E be dense in E.
(a) If f : (A, d) — (F,d) is continuous and if limy_,xyca f(y) exists for all
x € E \ A, show that there exists a unique continuous function g : £ — F with
gla=f. X R
(b) Assume further that (F,d) is complete. If f : (A,d) — (F,d) is uniformly
continuous, show that there exists a unique function g : £ — F', uniformly
continuous, with gla = f.
69. Let (E,d) be a metric space. Let C denote the set of Cauchy sequences in E.
(a) i. Let U = (u,),V = (v,) € C. Show that (d(u,, v,)) converges, and denote
its limit by (U, V).
ii. Show that ¢ is symmetric and satisfies the triangle inequality.
(b) Consider the equivalence relation ~ on C defined by

U~V 55U V)=0.

Write E = C/ ~ and denote the equivalence class of U € C in E by U.
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. What is the equivalence class of a sequence which converges in E7

ii. If U ~ U and V ~ V', show that 6(U,V) = §(U’',V'). Thus, for
U,V € E, the real number §(U,V) = §(U, V) is well-defined, not being
dependent on the choice of class representatives.

iii. Show that & is a metric on E. -

iv. Let ¢ : E — E be defined by ¢(ar) = (), where () is the constant sequence.
Show that ¢ is an isometry (and so also 1 — 1). Furthermore, show that ¢(E) is
dense in F.

(c) Show that (E, §) is complete.

(d) Let (E1,d1) and (E3, d3) be complete metric spaces, and suppose that there are
isometries ¢t : £ — Ej with ¢ (FE) dense in Ey, for Kk = 1,2. Show that there
is a unique bijective isometry ¢ : E; — FEs such that ¢(t1(x)) = t2(x) for all
x € b.

70. Let A, B C E, where E is endowed with any metric you care to imagine. Show that
(a) ACA

by (A =4_
(c AuUB=AUB

P. Boily (uOttawa) 102



Mathematical Analysis Chapter 9 — Metric Spaces and Sequences

d) o =0 -
(e) ingeneral, ANB # ANB
71. Let A be a subset of (E, d). Show that A = int(A) U 0 A.

72. Let A = {% | n € N*}. Under the usual topology on R, show that every point of A
is a boundary point and that the only cluster point of A is O.

73. Let

71 ={U CR|R\U is finiteor U = &}
79 = {U C R | R\ U is countable or U = &}

(a) Show that 7; and 72 define topologies on R (the co-finite topology and countable
complement topology, respectively).
(b) What is the boundary of the set A = {X | n € N*} under these two topologies?
74. Are the co-finite topologies and the countable complement topologies derived from a
metric?
75. Let A, B C (FE,d). If x € E is a cluster point of A N B, show that x is a cluster
point of both A and B.
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76. Let {H, | n € N*} be a family of closed subsets of a metric space (F, d) such that
int(H,) = & for all n € N*. Assume further that E is such that int(D(x, ¢)) # &
forallx € Eande > 0. Let G Cp F.

(a) If x; € G\ Hjy, show that 3r; > 0 such that D(x;,71) C G and

D(xy1,m) N H = 2.
(b) If xo € int(D(x1,71)) \ H2, show that Jry > 0 such that
D(x2,72) C int(D(x1,71)) andD(x2,72) N Hy = .
(c) Continue this process to obtain a nested family of closed subsets
D(x1,71) 2 D(x2,72) 2 -+ D(Xn, ) 2 D(Xnt1, Tng1) 2 -+

such that H,,N D(x,, r,) = & for all n. € N. By the Cantor Intersection Theorem,
Jxg € (| D(xn, 7). Conclude that G cannot be contained in | H,.

This is a special case of the Baire Category Theorem.
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77. A line in R? is a set of points (x,%y) which satisfy the equation ax + by + ¢ = 0,
where (a, b) # 0. Use the Baire Category Theorem to show that R? is not a countable
collection of lines.

78. Show that B C (RP,ds) is closed if and only if every convergent sequence in B
converges to a point in B.

79. Let (x,) C (R?, || - ||) such that
[%n1 = Xnll < 7llxn — xpa]

where r < 1. Show that (x,,) converges.
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25. Proof.
(a)

(b)
(c)

Solutions
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(d)
(e)

(f) u
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26. Solution.

(a)
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27. Proof.
(2)
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(b)
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(c)

(d)
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28. Solution.
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29. Solution.
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30. Solution.
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31. Proof.
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34. Proof.
(2)
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(b)
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(d)
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51. Proof.
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52. Proof.
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53. Proof.
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54. Proof.
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55. Proof.
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56.
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57.
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58. Proof.
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59. Proof.
(2)
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(b)
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