
 8 

Workflow: Predicting Algae Blooms

PROBLEM DESCRIPTION  

The ability to monitor and perform early forecasts of various river algae blooms is crucial to control the ecological harm 
they can cause.  The dataset which is used to train the learning model consists of: 

§ chemical properties of various water samples of European rivers 
§ the quantity of seven algae in each of the samples, and  
§ the characteristics of the collection process for each sample.   

 
What is the data science motivation for such a model? After all, we can analyze water samples to determine if various 
harmful algae are present or absent. Chemical monitoring is cheap and easy to automate, whereas biological analysis 
of samples is expensive and slow. Another answer is that analyzing the samples for harmful content does not provide 
a better understanding of what drives the production of algae:  it just tells us which samples contain algae.  

The algae blooms dataset has 338 observations of 18 variables each: season, size, speed, mxPH, mnO2, Cl, NO3, NH4, 
oPO4, PO4, Chla, a1, a2, a3, a4, a5, a6, a7. 

§ 3 of the fields are categorical (season, size, speed, which refer to the data collection process) 
§ of the numerical fields, 8 have names that sound vaguely "chemical" 
§ the remaining fields refer to various algae blooms 

We can get a better feel for the data frame by observing it as an array (first 6 rows): 

 

A portrait of the relationships between the variables is provided 
by the correlogram on the left (for the numerical variables).  

For now, we assume that the dataset has been properly 
explored and understood, and that any problems related 
to invalid data (outliers, etc.) have been solved.  

PREDICTION MODELS 

Our goal is to build a predictive model for the various algae 
blooms a1 – a7. It is a supervised learning tasks; in order to 
mitigate overfitting (a consequence of the bias-variance trade-
off), we set aside a test set on which the models (which will be 
learned on the training set) are evaluated. We use a 65%-35% 
split (218 – 120 randomly selected training/test observations).  
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GENERALIZED LINEAR MODEL  

As a baseline model, we run a linear model to predict a2, for example, against all the predictor variables, but using 
only the training set as data. The results are summarized below. 

We see that the adjusted R2 coefficient is fairly small. 
Furthermore, if the linear model is a good fit, the 
residuals should have a mean of zero and be "small", 
which doesn’t seem to be the case (at least, relative 
to the range of a2, see 6-pt summary to the right).  

The normal QQ-plot for the residuals (see 
figure on the right), in particular, seem to 
indicate that linearity of the data is 
probably not met, as an assumption.  

On the other hand, the F−statistic seems 
to indicate some (linear) dependence on 
the predictor variables. 

 

Backward elimination stepwise selection suggests that the best linear model for a2 involves speed, mxPH, and Chla.  

The fit is still not ideal (the value of the adjusted R2 is quite small). 

REGRESSION TREE MODEL  

An alternative to regression is the use of regression trees. A recursive 
partition tree for a2 is shown below, as is a pruned tree, with the 
relative importance of the variables for both models: 
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MODEL EVALUATION 

At this stage, we know that the linear model is not 
great for a2, and we have grown regression trees for 
a2 but we have not yet discussed whether these 
models are good fits for a2, to say nothing of the 
remaining 6 algae concentrations. 

Various metrics can be used to determine how the 
predicted values on the test set compare to the 
actual values: we will use the normalized mean 
squared error (NMSE). NMSE is unitless: values 
between 0 and 1 indicate that the model performs 
better than the baseline; values greater than 1 
indicate that the model's performance is sub-par. 

The test NMSE for the linear model and for a family 
of regression tree models (one for 5 different values 
of a growth/pruning parameter) is estimated using 5 
repetitions of 10-fold cross-validation. For each 
model, the results for the 50 cross-validated models 
are shown in the image to the right. Summaries for 
the 50 models for each approach are found below.  

It’s not necessarily clear which of the models has smaller 
values of NMSE overall, although it does seem that the 
latter versions of the regression tree models are not 
substantially better than the baseline model. The first 
regression tree model sometimes produces very small 
NMSE values, but that's offset by some of the larger values 
it also produces (similarly for the linear model). At any rate, 
visual evidence seems to suggest that the linear model is 
the best predictive model for a2 given the training data. 

This might seem disheartening at first given how poorly the 
linear model performed, but it is helpful to remember that there 
is no guarantee that a decent predictive model even exists. 
Furthermore, regression trees and linear models are only two of 
a whole collection of possible models. How do support vector 
regression or random forests models perform, for instance?  

We repeat the task of estimating test NMSE via 5 replicates of 
10-fold cross-validation for 8 models (linear regression, support 
vector regression, 3 regression trees, 3 random forests) for all 
target variables (a1 – a7) simultaneously. We are not looking for 
a single model which will optimize all learning tasks at once, but 
rather that we can prepare and evaluate the models for each 
target variable with the same bit of code. The results are shown 
in the figure to the right. The top performers (average value of 
NMSE) for each response are shown on the next page.   
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At first glance, the 3rd random forest model (the one that build predictions on 700 trees, as opposed to 200 and 500 for 
the other random forests models) seems to perform best, but these rankings do not report on the standard error, and 
so we cannot tell whether the differences between the estimated test NMSEs are statistically significant on the basis 
of the estimates alone.   

Using the 3rd random forest model as a baseline, we compute the rank differences to the other 7 models for all target 
variables. The critical rank difference is 3.52. On average, the rank difference to the other models is shown in the list 
on the right. We can reject with 95% certainty that the performance of the baseline method is the same as that of the 
linear model and the first regression tree model (rpartXse.v2), but not that it is better than the other 5 models. The 
information is also displayed in the Bonferroni-Dunn CD diagram below.   

 

 

 

 

MODEL PREDICTIONS 
 
The best performer for each target response was identified from the cross-validation procedure above: for each target 
variable a1 – a7, we run the best performer on the original training data to learn a model that is used to predict the 
appropriate target response for observations in the original test set. Scatterplots of predicted (y-axis) vs. actual levels 
(x-axis) for test observations are shown below (top: a1 – a4, bottom: a5 – a7), as are the true test NMSEs.   

  

 


