Workflow: Predicting Algae Blooms
PROBLEM DESCRIPTION

The ability to monitor and perform early forecasts of various river algae blooms is crucial to control the ecological harm
they can cause. The dataset which is used to train the learning model consists of:

= chemical properties of various water samples of European rivers
= the quantity of seven algae in each of the samples, and
= the characteristics of the collection process for each sample.

What is the data science motivation for such a model? After all, we can analyze water samples to determine if various
harmful algae are present or absent. Chemical monitoring is cheap and easy to automate, whereas biological analysis
of samples is expensive and slow. Another answer is that analyzing the samples for harmful content does not provide
a better understanding of what drives the production of algae: it just tells us which samples contain algae.

The algae blooms dataset has 338 observations of 18 variables each: season, size, speed, mxPH, mnO2, Cl, NO3, NH4,
0PO4, PO4, Chla, a1, a2, a3, a4, a5, a6, ay.

» 3 of the fields are categorical (season, size, speed, which refer to the data collection process)
» of the numerical fields, 8 have names that sound vaguely "chemical"
» the remaining fields refer to various algae blooms

We can get a better feel for the data frame by observing it as an array (first 6 rows):
season size speed mxPH mnO2 Cl NO3 NH4 oP0O4 PO4 Chla ai a2 a3 a4 a5 a6 a7

winter small medium 8.00 9.8 60.800 6.238 578.000 105.000 170.000 50.0 00 0.0 0.0 0.0 342 83 0.0
spring small medium 8.35 8.0 57.750 1.288 370.000 428.750 558.750 13 14 76 48 19 6.7 00 21
autumn small medium 8.10 11.4 40.020 5.330 346.667 125.667 187.057 156 3.3 536 19 0.0 0.0 0.0 9.7
spring small medium 8.07 48 77364 2302 98.182 61.182 138.700 1.4 3.1 410 189 00 14 00 14

autumn small medium 8.06 9.0 55.350 10.416 233.700 58.222 97580 105 92 29 75 00 75 41 1.0

winter small high 825 13.1 65750 9.248 430.000 18250 56.667 28.4 151 146 1.4 0.0 225 126 2.9
1 A portrait of the relationships between the variables is provided
i " , by the correlogram on the left (for the numerical variables).
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a3 04 blooms a1 - ay. It is a supervised learning tasks; in order to
a4 s mitigate overfitting (a consequence of the bias-variance trade-
a5 off), we set aside a test set on which the models (which will be
a6 08 learned on the training set) are evaluated. We use a 65%-35%
a7 _1 split (218 — 120 randomly selected training/test observations).




GENERALIZED LINEAR MODEL

As a baseline model, we run a linear model to predict a2, for example, against all the predictor variables, but using
only the training set as data. The results are summarized below.

Residuals:
Min 10 Median 30 Max

-17.436 -5.281 -2.613 2.026 62.712
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.083e+01 1.257e+01 -2.452 0.015056 *
seasonsummer -1.166e-01 2.112e+00 -0.055 0.956035
seasonautumn 1.071e+00 2.370e+00 0.452 0.651934
seasonwinter -1.451e+00 2.000e+00 -0.726 0.468935
sizemedium -2.628e+00 1.895e+00 -1.387 0.166896
sizelarge -3.210e+00 2.412e+00 -1.331 0.184767
speedmedium 3.887e+00 2.485e+00 1.564 0.119325
speedhigh -1.104e+00 2.772e+00 -0.398 0.690751
mxPH 4.859e+00 1.559e+00 3.117 0.002092 **
mn02 -1.841e-01 3.924e-01 -0.469 0.639474
Cl -7.432e-03 2.006e-02 -0.371 0.711351
NO3 2.132e-01 3.028e-01 0.704 0.482249
NH4 -5.979e-04 5.355e-04 -1.117 0.265510
oP0O4 2.290e-03 9.876e-03 0.232 0.816875
P04 -1.559e-03 5.936e-03 -0.263 0.793090
Chla 1.652e-01 4.614e-02 3.579 0.000432 ***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ’
Residual standard error: 10.74 on 202 degrees of freedom
Multiple R-squared: 0.206, Adjusted R-squared: 0.147
F-statistic: 3.493 on 15 and 202 DF, p-value: 2.498e-05

We see that the adjusted R2 coefficient is fairly small.
Furthermore, if the linear model is a good fit, the
residuals should have a mean of zero and be "small",
which doesn’t seem to be the case (at least, relative
to the range of a2, see 6-pt summary to the right).

The normal QQ-plot for the residuals (see
figure on the right), in particular, seem to
indicate that linearity of the data is
probably not met, as an assumption.

On the other hand, the F—statistic seems
to indicate some (linear) dependence on
the predictor variables.
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Backward elimination stepwise selection suggests that the best linear model for a2 involves speed, mxPH, and Chla.

Residuals:
Min 10 Median 30 Max
-16.195 -6.008 -2.530 2.024 63.589

Coefficients:

Residual standard error: 10.58 on 213 degrees of freedom
Multiple R-squared: 0.1874, Adjusted R-squared:
F-statistic: 12.28 on 4 and 213 DF, p-value: 5.289e-09

Estimate Std. Error t value Pr(>|t|)
(Intercept) -27.13270 11.07921 -2.449 0.015134 *
speedmedium 4.17176 2.34330 1.780 0.076453 .
speedhigh -0.32929 2.41899 -0.136 0.891850
mxPH 3.89794 1.35358 2.880 0.004387 **
Chla 0.15945 0.04387 3.635 0.000349 ***
Signif. codes: 0 ‘“***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 *

0.1721

The fit is still not ideal (the value of the adjusted R2 is quite small).

REGRESSION TREE MODEL

An alternative to regression is the use of regression trees. A recursive
partition tree for a2 is shown below, as is a pruned tree, with the

relative importance of the variables for both models:

Variable importance Variable importance
Chla NH4 Cl mxPH oP04 PO4 NO3 speed mnO2 season size Chla cl NH4 mxPH oPO4 PO4 speed NO3  mno2
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MODEL EVALUATION

Cross Validation Performance Estimation Results

At this stage, we know that the linear model is not
great for a2, and we have grown regression trees for
a2 but we have not yet discussed whether these
models are good fits for a2, to say nothing of the
remaining 6 algae concentrations.

Various metrics can be used to determine how the
predicted values on the test set compare to the
actual values: we will use the normalized mean
squared error (NMSE). NMSE is unitless: values
between 0 and 1 indicate that the model performs
better than the baseline; values greater than 1
indicate that the model's performance is sub-par.

~

Distribution of Statistics Scores

The test NMSE for the linear model and for a family -

of regression tree models (one for 5 different values
of a growth/pruning parameter) is estimated using 5
repetitions of 10-fold cross-validation. For each
model, the results for the 50 cross-validated models
are shown in the image to the right. Summaries for
the 50 models for each approach are found below.

Im nmse | rpartXse.vl nmse | rpartXse.v2 nmse
avg 0.9880781 | avg 1.0333720 | avg 1.0596868
std 0.3682616 | std 0.3406970 | std 0.3147441
med 0.9470239 | med 1.0000000 | med 1.0000000
igr 0.2817843 | iqgr 0.1842643 | iqgr 0.0435684
min 0.4869917 | min 0.6171205 | min 0.5049684
max 2.5236216 | max 2.4535376 | max 2.4535376
rpartXse.v3 nmse | rpartXse.v4 nmse | rpartXse.v5 nmse
avg 1.028517 | avg 1.012748 | avg 1.001631
std 0.230181 | std 0.078035 | std 0.011533
med 1.000000 | med 1.000000 | med 1.000000
igr 0.000000 | iqgr 0.000000 | igr 0.000000
min 0.528342 | min 0.819828 | min 1.000000
max 2.365684 | max 1.413850 | max 1.081548

This might seem disheartening at first given how poorly the
linear model performed, but it is helpful to remember that there
is no guarantee that a decent predictive model even exists.
Furthermore, regression trees and linear models are only two of
a whole collection of possible models. How do support vector
regression or random forests models perform, for instance?

We repeat the task of estimating test NMSE via 5 replicates of
10-fold cross-validation for 8 models (linear regression, support
vector regression, 3 regression trees, 3 random forests) for all
target variables (a1 — a7) simultaneously. We are not looking for
a single model which will optimize all learning tasks at once, but
rather that we can prepare and evaluate the models for each
target variable with the same bit of code. The results are shown
in the figure to the right. The top performers (average value of
NMSE) for each response are shown on the next page.
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Alternative Workflows

It's not necessarily clear which of the models has smaller
values of NMSE overall, although it does seem that the
latter versions of the regression tree models are not
substantially better than the baseline model. The first
regression tree model sometimes produces very small
NMSE values, but that's offset by some of the larger values
it also produces (similarly for the linear model). At any rate,
visual evidence seems to suggest that the linear model is
the best predictive model for a2 given the training data.

Cross Validation Performance Estimation Results
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Rank.al model est.nmse Rank.a2 model est.nmse Rank.a3 model est.nmse Rank.a4 model est.nmse
1 randomForest.v2 0.5217204 1 randomForest.v3 0.7798749 1 randomForest.v3 0.9377108 1 rpartXse.v3 1.001453
2 randomForest.v3 0.5228744 2 randomForest.v2 0.7806831 2 randomForest.v2 0.9400108 2 randomForest.v3 1.006496
3 randomForest.vl 0.5264328 3 randomForest.vl 0.7849360 3 randomForest.vl 0.9431801 3 randomForest.vl 1.006806
Rank.a5 model est.nmse Rank.a6 model est.nmse Rank.a7 model est.nmse
1 randomForest.vl 0.7626241 1 randomForest.v2 0.8590227 1 rpartXse.v2 1.00000
2 randomForest.v2 0.7675794 2 randomForest.v3 0.8621478 2 rpartXse.v3 1.00000
3 randomForest.v3 0.7681834 3 randomForest.vl 0.8663869 3 rpartXse.vl 1.00797

At first glance, the 3 random forest model (the one that build predictions on 700 trees, as opposed to 200 and 500 for
the other random forests models) seems to perform best, but these rankings do not report on the standard error, and
so we cannot tell whether the differences between the estimated test NMSEs are statistically significant on the basis
of the estimates alone.

Using the 3 random forest model as a baseline, we compute the rank differences to the other 7 models for all target
variables. The critical rank difference is 3.52. On average, the rank difference to the other models is shown in the list
on the right. We can reject with 95% certainty that the performance of the baseline method is the same as that of the
linear model and the first regression tree model (rpartXse.v2), but not that it is better than the other 5 models. The
information is also displayed in the Bonferroni-Dunn CD diagram below.

Critical Difference = 3.5; Baseline = randomForest.v3
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rpartXse.vi
rpartXse.v2
rpartXse.v3
randomForest.v1
randomForest.v2

4.57
2.14
4.28
3.28
2.85
1.14
0.57

The best performer for each target response was identified from the cross-validation procedure above: for each target
variable a1 — a7, we run the best performer on the original training data to learn a model that is used to predict the
appropriate target response for observations in the original test set. Scatterplots of predicted (y-axis) vs. actual levels
(x-axis) for test observations are shown below (top: a1 — a4, bottom: a5 - a7), as are the true test NMSEs.

a1 - predicted vs. actual

a2- predicted vs. actual

a5 - predicted vs. actual

a6 - predicted vs. actual

a3 - predicted vs. actual

a4 - predicted vs.

actua

a7 - predicted vs. actu

al 0.398747215629278
a2 0.873814320314933
a3 0.880148887949269
a4 0.890177426965955
a5 0.711933719392106
a6 0.850162398348735

a7 1
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