Workflow: Predicting Algae Blooms

PROBLEM DESCRIPTION

The ability to monitor and perform early forecasts of various river algae blooms is crucial to control the ecological harm they can cause. The dataset which is used to train the learning model consists of:

- chemical properties of various water samples of European rivers
- the quantity of seven algae in each of the samples, and
- the characteristics of the collection process for each sample.

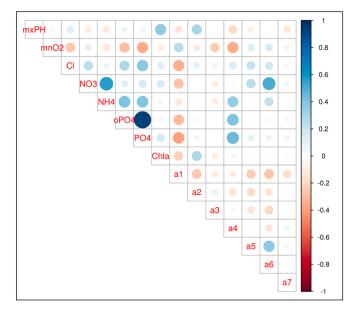
What is the data science motivation for such a model? After all, we can analyze water samples to determine if various harmful algae are present or absent. Chemical monitoring is cheap and easy to automate, whereas biological analysis of samples is expensive and slow. Another answer is that analyzing the samples for harmful content does not provide a better understanding of what drives the production of algae: it just tells us which samples contain algae.

The algae blooms dataset has 338 observations of 18 variables each: *season*, *size*, *speed*, *mxPH*, *mnO2*, *Cl*, *NO3*, *NH4*, *oPO4*, *PO4*, *Chla*, *a*1, *a*2, *a*3, *a*4, *a*5, *a*6, *a*7.

- 3 of the fields are categorical (season, size, speed, which refer to the data collection process)
- of the numerical fields, 8 have names that sound vaguely "chemical"
- the remaining fields refer to various algae blooms

We can get a better feel for the data frame by observing it as an array (first 6 rows):

season	size	speed	mxPH	mnO2	CI	NO3	NH4	oPO4	PO4	Chla	a1	a2	a3	a4	a5	a6	a7
winter	small	medium	8.00	9.8	60.800	6.238	578.000	105.000	170.000	50.0	0.0	0.0	0.0	0.0	34.2	8.3	0.0
spring	small	medium	8.35	8.0	57.750	1.288	370.000	428.750	558.750	1.3	1.4	7.6	4.8	1.9	6.7	0.0	2.1
autumn	small	medium	8.10	11.4	40.020	5.330	346.667	125.667	187.057	15.6	3.3	53.6	1.9	0.0	0.0	0.0	9.7
spring	small	medium	8.07	4.8	77.364	2.302	98.182	61.182	138.700	1.4	3.1	41.0	18.9	0.0	1.4	0.0	1.4
autumn	small	medium	8.06	9.0	55.350	10.416	233.700	58.222	97.580	10.5	9.2	2.9	7.5	0.0	7.5	4.1	1.0
winter	small	high	8.25	13.1	65.750	9.248	430.000	18.250	56.667	28.4	15.1	14.6	1.4	0.0	22.5	12.6	2.9



A portrait of the relationships between the variables is provided by the correlogram on the left (for the numerical variables).

For now, we assume that the dataset has been properly explored and understood, and that any problems related to invalid data (outliers, etc.) have been solved.

PREDICTION MODELS

Our goal is to build a predictive model for the various algae blooms $a_1 - a_7$. It is a supervised learning tasks; in order to mitigate overfitting (a consequence of the bias-variance trade-off), we set aside a test set on which the models (which will be learned on the training set) are evaluated. We use a 65%-35% split (218 – 120 randomly selected training/test observations).

GENERALIZED LINEAR MODEL

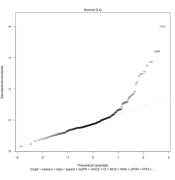
As a baseline model, we run a linear model to predict *a*₂, for example, against all the predictor variables, but using only the training set as data. The results are summarized below.

Residuals:					
Min	10 Median	3Q	Max		
-17.436 -5.2	281 -2.613	2.026 62	2.712		
Coefficients	:				
		Std. Error			
(Intercept)	-3.083e+01	1.257e+01	-2.452	0.015056	*
seasonsummer	-1.166e-01	2.112e+00	-0.055	0.956035	
seasonautumn	1.071e+00	2.370e+00	0.452	0.651934	
seasonwinter	-1.451e+00	2.000e+00	-0.726	0.468935	
sizemedium	-2.628e+00	1.895e+00	-1.387	0.166896	
sizelarge			-1.331	0.184767	
speedmedium				0.119325	
speedhigh	-1.104e+00	2.772e+00	-0.398	0.690751	
mxPH	4.859e+00	1.559e+00 3.924e-01	3.117	0.002092	**
mnO2	-1.841e-01	3.924e-01	-0.469	0.639474	
Cl	-7.432e-03	2.006e-02			
NO3	2.132e-01	3.028e-01			
NH4	-5.979e-04	5.355e-04	-1.117	0.265510	
oPO4	2.290e-03	9.876e-03	0.232	0.816875	
PO4	-1.559e-03	5.936e-03	-0.263	0.793090	
Chla	1.652e-01	4.614e-02	3.579	0.000432	***
Signif. codes	s: 0 '***'	0.001 '**'	0.01 '*	′ 0.05 '.'	0.1 ' '
Residual star					
Multiple R-so					
F-statistic:	3.493 on 1	5 and 202 DE	, p-va	lue: 2.498	e-05

We see that the adjusted R² coefficient is fairly small. Furthermore, if the linear model is a good fit, the residuals should have a mean of zero and be "small", which doesn't seem to be the case (at least, relative to the range of *a*₂, see 6-pt summary to the right).

The normal QQ-plot for the residuals (see figure on the right), in particular, seem to indicate that linearity of the data is probably not met, as an assumption.

On the other hand, the F-statistic seems to indicate some (linear) dependence on the predictor variables. a2 Min. : 0.000 lst Qu.: 0.000 Median : 2.800 Mean : 7.207 3rd Qu.:10.025 Max. :72.600



Backward elimination stepwise selection suggests that the best linear model for a2 involves speed, mxPH, and Chla.

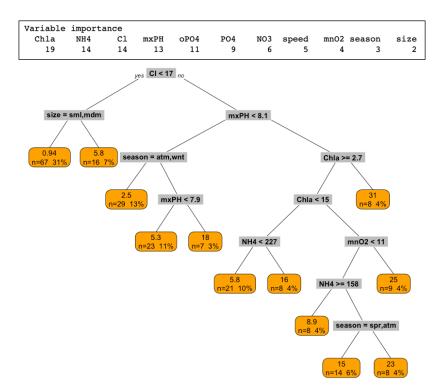
1

Residuals:						
Min	1Q	Median	3Q	Max		
-16.195 -6.	800	-2.530	2.024	63.589		
Coefficients						
	Est	imate St	d. Error	t value	Pr(> t)	
(Intercept)	-27.	13270	11.07921	-2.449	0.015134	*
speedmedium	4.	17176	2.34330	1.780	0.076453	
speedhigh	-0.	32929	2.41899	-0.136	0.891850	
mxPH	3.	89794	1.35358	2.880	0.004387	**
Chla	0.	15945	0.04387	3.635	0.000349	***
Signif. code	es:	0 '***'	0.001 '*'	*′ 0.01	'*' 0.05	·.' 0.1 ' ' 1
Residual sta	ndar	d error:	10.58 01	n 213 deo	rees of :	freedom
Multiple R-s						
F-statistic:						

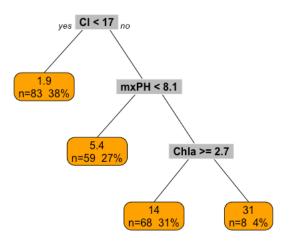
The fit is still not ideal (the value of the adjusted R² is quite small).

REGRESSION TREE MODEL

An alternative to regression is the use of regression trees. A recursive partition tree for a_2 is shown below, as is a pruned tree, with the relative importance of the variables for both models:



Variable	importance							
Chla	C1	NH4	mxPH	oP04	P04	speed	N03	mn02
19	18	14	13	12	11	7	5	2



MODEL EVALUATION

At this stage, we know that the linear model is not great for *a*₂, and we have grown regression trees for *a*₂ but we have not yet discussed whether these models are good fits for *a*₂, to say nothing of the remaining 6 algae concentrations.

Various metrics can be used to determine how the predicted values on the test set compare to the actual values: we will use the normalized mean squared error (NMSE). NMSE is unitless: values between 0 and 1 indicate that the model performs better than the baseline; values greater than 1 indicate that the model's performance is sub-par.

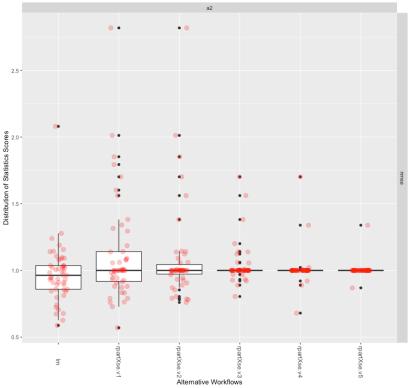
The test NMSE for the linear model and for a family of regression tree models (one for 5 different values of a growth/pruning parameter) is estimated using 5 repetitions of 10-fold cross-validation. For each model, the results for the 50 cross-validated models are shown in the image to the right. Summaries for the 50 models for each approach are found below.

lm	nmse	rpart	Xse.vl nmse	rpart	Xse.v2 nmse
avg	0.9880781	avg	1.0333720	avg	1.0596868
std	0.3682616	std	0.3406970	std	0.3147441
med	0.9470239	med	1.0000000	med	1.0000000
iqr	0.2817843	iqr	0.1842643	iqr	0.0435684
min	0.4869917	min	0.6171205	min	0.5049684
max	2.5236216	max	2.4535376	max	2.4535376
rpart	<pre>Kse.v3 nmse</pre>	rpart	Xse.v4 nmse	rpart	Xse.v5 nmse
avg	1.028517	avg	1.012748	avg	1.001631
std	0.230181	std	0.078035	std	0.011533
med	1.000000	med	1.000000	med	1.000000
iqr	0.00000	iqr	0.000000	iqr	0.00000
min	0.528342	min	0.819828	min	1.000000
max	2.365684	max	1.413850	max	1.081548

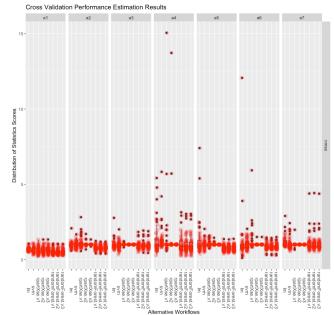
This might seem disheartening at first given how poorly the linear model performed, but it is helpful to remember that there is no guarantee that a decent predictive model even exists. Furthermore, regression trees and linear models are only two of a whole collection of possible models. How do support vector regression or random forests models perform, for instance?

We repeat the task of estimating test NMSE *via* 5 replicates of 10-fold cross-validation for 8 models (linear regression, support vector regression, 3 regression trees, 3 random forests) for all target variables ($a_1 - a_7$) simultaneously. We are not looking for a single model which will optimize all learning tasks at once, but rather that we can prepare and evaluate the models for each target variable with the same bit of code. The results are shown in the figure to the right. The top performers (average value of NMSE) for each response are shown on the next page.

Cross Validation Performance Estimation Results



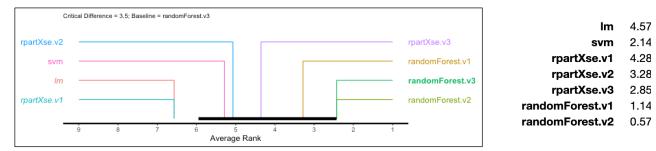
It's not necessarily clear which of the models has smaller values of NMSE overall, although it does seem that the latter versions of the regression tree models are not substantially better than the baseline model. The first regression tree model sometimes produces very small NMSE values, but that's offset by some of the larger values it also produces (similarly for the linear model). At any rate, visual evidence seems to suggest that the linear model is the best predictive model for a2 given the training data.



Rank.a1 model est.nmse	Rank.a2 model est.nmse	Rank.a3 model est.nmse	Rank.a4 model est.nmse
1 randomForest.v2 0.5217204	1 randomForest.v3 0.7798749	1 randomForest.v3 0.9377108	1 rpartXse.v3 1.001453
2 randomForest.v3 0.5228744	2 randomForest.v2 0.7806831	2 randomForest.v2 0.9400108	2 randomForest.v3 1.006496
3 randomForest.v1 0.5264328	3 randomForest.v1 0.7849360	3 randomForest.v1 0.9431801	3 randomForest.v1 1.006806
Rank.a5 model est.nmse	Rank.a6 model est.nmse	Rank.a7 model est.nmse	
1 randomForest.v1 0.7626241	1 randomForest.v2 0.8590227	1 rpartXse.v2 1.00000	
2 randomForest.v2 0.7675794	2 randomForest.v3 0.8621478	2 rpartXse.v3 1.00000	
3 randomForest.v3 0.7681834	3 randomForest.v1 0.8663869	3 rpartXse.v1 1.00797	

At first glance, the 3rd random forest model (the one that build predictions on 700 trees, as opposed to 200 and 500 for the other random forests models) seems to perform best, but these rankings do not report on the standard error, and so we cannot tell whether the differences between the estimated test NMSEs are statistically significant on the basis of the estimates alone.

Using the 3^{rd} random forest model as a baseline, we compute the rank differences to the other 7 models for all target variables. The critical rank difference is 3.52. On average, the rank difference to the other models is shown in the list on the right. We can reject with 95% certainty that the performance of the baseline method is the same as that of the linear model and the first regression tree model (rpartXse.v2), but not that it is better than the other 5 models. The information is also displayed in the Bonferroni-Dunn CD diagram below.



MODEL PREDICTIONS

The best performer for each target response was identified from the cross-validation procedure above: for each target variable $a_1 - a_7$, we run the best performer on the original training data to learn a model that is used to predict the appropriate target response for observations in the original test set. Scatterplots of predicted (y-axis) vs. actual levels (x-axis) for test observations are shown below (top: $a_1 - a_4$, bottom: $a_5 - a_7$), as are the true test NMSEs.

