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In [2], U. Dudley describes probability theory as a

“lovely, coherent whole proceeding from a few
axioms with theorems both pretty and deep,
and all the more admirable for being applica-
ble.”

He then goes on to claim of statistical theory that it

“strikes many mathematicians as being a patch-
work of this and that, with ad hock solutions
to isolated problems, no unity, and no beauty
beyond that of a steel girder bridge: it does its
job in a utilitarian fashion, but the rivets show.”

In this overview, we introduce the basic notions of proba-
bility and statistics using a naïve approach (that is to say,
without referring to measure theory).

It should not be seen as a formal training replacement
for mathematics and statistics students; we present only
the bare minimum required for data analysts not to be
led astray by machine learning and data science methods.
Proofs will be few and far between – the reader interested
in more detail is directed to standard references, such as
[6,7,10–13,15,16,18,21], from which some of the examples
come.

1. Introduction to Probability Theory

Probability theory is the mathematical discipline relating
to the numerical description of the likelihood of an event.

1.1 Sample Spaces and Events
Throughout, we will deal with random experiments (e.g.
measurements of speed/ weight, number and duration of
phone calls, etc.).

For any “experiment,” the sample space is defined as
the set of all its possible outcomes, often denoted by the
symbol S . A sample space can be discrete or continuous.

An event is a collection of outcomes from the sample space
S . Events will be denoted by A, B, E1, E2, etc.

Examples

Toss a fair coin – the corresponding (discrete) sample
space is S = {Head, Tail}.
Roll a die – the corresponding (discrete) sample space
is S = {1, 2,3, 4,5, 6}, with various events repre-
sented by

– rolling an even number: {2,4, 6};
– rolling a prime number: {2,3, 5}.

Suppose we measure the weight (in grams) of a chem-
ical sample – the (continuous) sample space can be
represented by S = (0,∞), the positive half line,
and various events by subsets of S , such as

– sample is less than 1.5 grams: (0, 1.5);
– sample exceeds 5 grams: (5,∞).

For any events A, B ⊆ S :

the union A∪ B of A and B are all outcomes in S
contained in either A or B;
the intersection A∩ B of A and B are all outcomes in
S contained in both A and B;
the complement Ac of A (sometimes denoted A or
−A) is the set of all outcomes in S that are not in A.

If A and B have no outcomes in common, they are mutually
exclusive; which is denoted by A∩ B =∅ (the empty set).
In particular, A and Ac are always mutually exclusive.1

Example

Roll a die and let A= {2,3, 5} (a prime number) and
B = {3, 6} (multiples of 3). Then A∪ B = {2,3, 5, 6},
A∩ B = {3} and Ac = {1, 4,6}.
100 plastic samples are analyzed for scratch and
shock resistance.

shock resistance
high low

scratch high 70 4
resistance low 1 25

If A is the event that a sample has high shock re-
sistance and B is the event that a sample has high
scratch residence, then A∩ B consists of 70 samples.

1.2 Counting Techniques
A two-stage procedure can be modeled as having k bags,
with m1 items in the first bag, . . . , mk items in k-th bag.

The first stage consists of picking a bag, and the second
stage consists of drawing an item out of that bag. This is
equivalent to picking one of the m1 + · · ·+mk total items.

If all the bags have the same number of items

m1 = · · ·= mk = n,

then there are kn items in total, and this is the total number
of ways the two-stage procedure can occur.

Examples

How many ways are there to first roll a die and then
draw a card from a (shuffled) 52−card pack?
Answer: there are 6 ways the first step can turn out,
and for each of these (the stages are independent, in
fact) there are 52 ways to draw the card. Thus there
are 6× 52= 312 ways this can turn out.

How many ways are there to draw two tickets num-
bered 1 to 100 from a bag, the first with the right
hand and the second with the left hand?
Answer: There are 100 ways to pick the first number;
for each of these there are 99 ways to pick the second
number. Thus 100× 99= 9900 ways.

1Events can be represented graphically using Venn diagrams – mutually
exclusive events are those which do not have a common intersection.

2 P.Boily, J.Schellinck (2021)
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Multi-Stage Procedures A k-stage process is a process
for which:

there are n1 possibilities at stage 1;
regardless of the 1st outcome there are n2 possibilities
at stage 2,
...
regardless of the previous outcomes, there are nk
choices at stage k.

There are then

n1 × n2 · · · × nk

total ways the process can turn out.

1.3 Ordered Samples
Suppose we have a bag of n billiard balls numbered 1, . . . , n.
We can draw an ordered sample of size r by picking balls
from the bag:

with replacement, or
without replacement.

With how many different collection of r balls can we end
up in each of those cases (each is an r-stage procedure)?

Key Notion: all the object (balls) can be differentiated
(using numbers, colours, etc.)

Sampling With Replacement (Order Important) If we re-
place each ball into the bag after it is picked, then every
draw is the same (there are n ways it can turn out).

According to our earlier result, there are

n× n× · · · × n
︸ ︷︷ ︸

r stages

= nr

ways to select an ordered sample of size r with replace-
ment from a set with n objects {1,2, . . . , n}.

Sampling Without Replacement (Order Important) If we
do not replace each ball into the bag after it is drawn, then
the choices for the second draw depend on the result of the
first draw, and there are only n− 1 possible outcomes.

Whatever the first two draws were, there are n−2 ways
to draw the third ball, and so on.

Thus there are

n× (n− 1)× · · · × (n− r + 1)
︸ ︷︷ ︸

r stages

= nPr (common symbol)

ways to select an ordered sample of size r ≤ n without
replacement from a set of n objects {1, 2, . . . , n}.

Factorial Notation For a positive integer n, write

n!= n(n− 1)(n− 2) · · ·1.

There are two possibilities:

when r = n, nPr = n!, and the ordered selection
(without replacement) is called a permutation;

when r < n, we can write

nPr =
n(n− 1) · · · (n− r + 1) (n− r) · · ·1

(n− r) · · ·1

=
n!

(n− r)!
= n× · · · × (n− r + 1).

By convention, we set 0!= 1, so that

nPr =
n!

(n− r)!
, for all r ≤ n.

Examples

In how many different ways can 6 balls be drawn in
order without replacement from a bag of balls num-
bered 1 to 49?

Answer: We compute

49P6 = 49×48×47×46×45×44= 10,068, 347, 520.

This is the number of ways the actual drawing of
the balls can occur for Lotto 6/49 in real-time (balls
drawn one by one).

How many 6-digits PIN codes can you create from
the set of digits {0, 1, . . . , 9}?
Answer: If the digits may be repeated, we see that

10× 10× 10× 10× 10× 10= 106 = 1,000, 000.

If the digits may not be repeated, we have instead

10P6 = 10× 9× 8× 7× 6× 5= 151, 200.

1.4 Unordered Samples
Suppose now that we cannot distinguish between different
ordered samples; when we look up the Lotto 6/49 results
in the newspaper, for instance, we have no way of knowing
the order in which the balls were drawn:

1− 2− 3− 4− 5− 6

could mean that the first drawn ball was ball # 1, the sec-
ond drawn ball was ball # 2, etc., but it could also mean
that the first ball drawn was ball # 4, the second one, ball
# 3, etc., or any other combinations of the first 6 balls.

Denote the (as yet unknown) number of unordered samples
of size r from a set of size n by nCr . We can derive the ex-
pression for nCr by noting that the following two processes
are equivalent:

P.Boily, J.Schellinck (2021) 3
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take an ordered sample of size r (there are nPr ways
to do this);
take an unordered sample of size r (there are nCr
ways to do this) and then rearrange (permute) the
objects in the sample (there are r! ways to do this).

Thus

nPr = nCr × r! =⇒ nCr =
nPr

r!
=

n!
(n− r)! r!

=
�

n
r

�

.

This last notation is called a binomial coefficient (read as
“n-choose-r”) and is commonly used in textbooks.

Example: in how many ways can the “Lotto 6/49 draw” be
reported in the newspaper (where they are always reported
in increasing order)?

Answer: this number is the same as the number of un-
ordered samples of size 6 (different re-orderings of same 6
numbers are indistinguishable), so

49C6 =
�

49
6

�

=
49× 48× 47× 46× 45× 44

6× 5× 4× 3× 2× 1

=
10,068, 347,520

720
= 13, 983,816 .

There exists a variety of binomial coefficient identities, such
as

�

n
k

�

=
�

n
n− k

�

, for all 0≤ k ≤ n,

n
∑

k=0

�

n
k

�

= 2n, for all 0≤ n,

�

n+ 1
k+ 1

�

=
�

n
k

�

+
�

n
k+ 1

�

, for all 0≤ k ≤ n− 1

n
∑

j=k

�

j
k

�

=
�

n+ 1
k+ 1

�

, for all 0≤ n, etc..

1.5 Probability of an Event
For situations where we have a random experiment which
has exactly N possible mutually exclusive, equally likely
outcomes, we can assign a probability to an event A by
counting the number of outcomes that correspond to A – its
relative frequency.

If that count is a, then

P(A) =
a
N

.

The probability of each individual outcome is thus 1/N .

Examples

Toss a fair coin – the sample space isS = {Head, Tail},
i.e. N = 2. The probability of observing a Head on a
toss is thus 1

2 .

Throw a fair six sided die. There are N = 6 possible
outcomes. The sample space is

S = {1,2, 3,4, 5,6}.

If A corresponds to observing a multiple of 3, then
A= {3,6} and a = 2, so that

Prob(number is a multiple of 3)= P(A) =
2
6
=

1
3

.

The probabilities of seeing an even/odd number are:

Prob{even}= P ({2,4, 6}) =
3
6
=

1
2

;

Prob{prime}= P ({2,3, 5}) = 1− P ({1, 4, 6}) =
1
2

.

In a group of 1000 people it is known that 545 have
high blood pressure. 1 person is selected randomly.
What is the probability that this person has high blood
pressure?

Answer: the relative frequency of people with high
blood pressure is 0.545.

This approach to probability is called the frequentist in-
terpretation. It is based on the idea that the theoretical
probability of an event is given by the behaviour of the em-
pirical (observed) relative frequency of the event over long-
run repeatable and independent experiments (i.e. when
N →∞).

This is the classical definition, and the one used in this
document, but there are competing interpretations which
may be more appropriate depending on the context; chiefly,
the Bayesian interpretation (see [3, 9] for details) and
the propensity interpretation (introducing causality as a
mechanism).

Axioms of Probability The modern definition of probabil-
ity is axiomatic (according to Kolmogorov’s seminal work).

The probability of an event A ⊆ S is a numerical value
satisfying the following properties:

1. for any event A, 1≥ P(A)≥ 0;

2. for the complete sample space S , P(S ) = 1;

3. for the empty event ∅, P(∅) = 0, and

4. for two mutually exclusive events A and B, the prob-
ability that A or B occurs is P(A∪ B) = P(A) + P(B).

Since S = A∪Ac , and A and Ac are mutually exclusive, then

1
A2
= P (S ) = P (A∪ Ac)

A4
= P(A) + P (Ac)

=⇒ P(Ac) = 1− P(A).

4 P.Boily, J.Schellinck (2021)
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Examples

Throw a single six sided die and record the number
that is shown. Let A and B be the events that the
number is a multiple of or smaller than 3, respectively.
Then A= {3, 6}, B = {1, 2} and A and B are mutually
exclusive since A∩ B =∅. Then

P(A or B) = P(A∪ B) = P(A) + P(B) =
2
6
+

2
6
=

2
3

.

An urn contains 4 white balls, 3 red balls and 1 black
ball. Draw one ball, and denote the following events
by W = {the ball is white}, R= {the ball is red} and
B = {the ball is black}. Then

P(W ) = 1/2, P(R) = 3/8, P(B) = 1/8,

and P(W or R) = 7/8.

General Addition Rule This useful rule is a direct con-
squence of the axioms of probability:

P(A∪ B) = P(A) + P(B)− P(A∩ B)

Example: an electronic gadget consists of two components,
A and B. We know from experience that P(A fails) = 0.2,
P(B fails) = 0.3 and P(both A and B fail) = 0.15. Find
P(at least one of A and B fails) and P(neither A nor B fails).
Answer: write A for “A fails” and similarly for B. Then we
are looking to compute

P(at least one fails) = P(A∪ B)
= P(A) + P(B)− P(A∩ B) = 0.35 ;

P(neither fail) = 1− P(at least one fails) = 0.65 .

If A, B are mutually exclusive, P(A∩ B) = P(∅) = 0 and

P(A∪ B) = P(A) + P(B)− P(A∩ B) = P(A) + P(B).

With three events, the addition rule expands as follows:

P(A∪ B ∪ C) =P(A) + P(B) + P(C)
− P(A∩ B)− P(A∩ C)− P(B ∩ C)
+ P(A∩ B ∩ C).

1.6 Conditional Probability and Independent Events
Any two events A and B satisfying

P (A∩ B) = P(A)× P(B)

are said to be independent.2 When events are not inde-
pendent, we say that they are dependent or conditional.

Mutual exclusivity and independence are unrelated con-
cepts. The only way for events A and B to be mutually

2This is a purely mathematical definition, but it agrees with the intuitive
notion of independence in simple examples.

exclusive and independent is for either A or B (or both) to
be a non-event (the empty event):

∅= P(A∩ B) = P(A)× P(B) =⇒ P(A) = 0 or P(B) = 0

=⇒ A=∅ or B =∅.

Examples

Flip a fair coin twice – the 4 possible outcomes are
all equally likely: S = {HH, HT, T H, T T}. Let

A= {HH} ∪ {HT}

denote “head on first flip”, B = {HH}∪{T H} “head on
second flip”. Note that A∪ B 6= S and A∩ B = {HH}.
By the general addition rule,

P (A) = P({HH}) + P({HT})− P({HH} ∩ {HT})

=
1
4
+

1
4
− P(∅) =

1
2
− 0=

1
2

.

Similarly, P (B) = P({HH}) + P({T H}) = 1
2 , and so

P(A)P(B) = 1
4 . But P(A∩ B) = P({HH}) is also 1

4 , so
A and B are independent.

A card is drawn from a regular well-shuffled 52-card
North American deck. Let A be the event that it is an
ace and D be the event that it is a diamond. These
two events are independent. Indeed, there are 4 aces

P(A) =
4
52
=

1
13

and 13 diamonds

P(D) =
13
52
=

1
4

in such a deck, so that

P(A)P(D) =
1

13
×

1
4
=

1
52

,

and exactly 1 ace of diamonds in the deck, so that
P(A∩ D) is also 1

52 .

A six-sided die numbered 1 − 6 is loaded in such
a way that the probability of rolling each value is
proportional to that value. Find P(3).
Answer: Let S = {1, 2, 3, 4, 5, 6} be the value show-
ing after a single toss; for some proportional constant
v, we have P(k) = kv, for k ∈ S . By Axiom A2,
P(S ) = P(1) + · · ·+ P(6) = 1, so that

1=
6
∑

k=1

P(k) =
6
∑

k=1

kv = v
6
∑

k=1

k = v
(6+ 1)(6)

2
= 21v .

Hence v = 1/21 and P(3) = 3v = 3/21= 1/7.

P.Boily, J.Schellinck (2021) 5
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Now the die is rolled twice, the second toss indepen-
dent of the first. Find P(31, 32).

Answer: the experiment is such that P(31) = 1/7
and P(32) = 1/7, as seen in the previous example.
Since the die tosses are independent, then

P (31 ∩ 32) = P(31)P(32) = 1/49 .3

Is a 2-engine plane more likely to be forced down
than a 3-engine plane?

Answer: this question is easier to answer if we as-
sume that engines fail independently (this is no
doubt convenient, but the jury is still out as to whether
it is realistic). In what follows, let p be the probability
that an engine fails.4

The next step is to decide what type engine failure
will force a plane down:5

– A 2-engine plane will be forced down if both
engines fail – the probability is p2;

– A 3-engine plane will be forced down if any pair
of engines fail, or if all 3 fail.

∗ Pair: the probability that exactly 1 pair of
engines will fail independently (i.e. two
engines fail and one does not) is

p× p× (1− p).

The order in which the engines fail does
not matter: there are 3C2 =

3!
2!1! = 3 ways

in which a pair of engines can fail: for 3
engines A, B, C, these are AB, AC, BC.

∗ All 3: the probability of all three engines
failing independently is p3.

The probability ≥ 2 engines failing is thus

P(2+ engines fail) = 3p2(1−p)+p3 = 3p2−2p3.

Basically it’s safer to use a 2-engine plane than a 3-
engine plane: the 3-engine plane will be forced down
more often, assuming it needs 2 engines to fly.

This “makes sense”: the 2-engine plane need 50% of
its engines working, while the 3-engine plane needs
66% (see the image at the top of the column on the
right to get a sense of what the probabilities are for
0≤ p ≤ 1).

3Is it clear what is meant by “independent tosses”?
4What are some realistic values of p?
5There is nothing to that effect in the problem statement, so we have

to make another set of assumptions.

(Taken from [14]) Air traffic control is a safety-related
activity – each piece of equipment is designed to the
highest safety standards and in many cases duplicate
equipment is provided so that if one item fails another
takes over.

A new system is to be provided passing information
from Heathrow Airport to Terminal Control at West
Drayton. As part of the system design a decision has
to be made as to whether it is necessary to provide
duplication. The new system takes data from the
Ground Movements Radar (GMR) at Heathrow, com-
bines this with data from the National Airspace System
NAS, and sends the output to a display at Terminal
Control.

6 P.Boily, J.Schellinck (2021)
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For all existing systems, records of failure are kept and
an experimental probability of failure is calculated
annually using the previous 4 years.

The reliability of a system is defined as R = 1− P,
where P = P(failure).
Given: RGMR = RNAS = 0.9999 (i.e. 1 failure in
10,000 hours).

Assumption: the components’ failure probabilities
are independent.

For the system above, if a single NEW module is in-
troduced the reliability of the system (STD – single
thread design) is

RSTD = RGMR × RNEW × RNAS.

If the NEW module is duplicated, the reliability of
this dual thread design is

RDTD = RGMR × (1− (1− RNEW)
2)× RNAS.

Duplicating the NEW module causes an improvement
in reliability of

ρ =
RDTD

RSTD
=
(1− (1− RNEW)2)

RNEW
× 100%.

For the NEW module, no historical data is available.
Instead, we work out the improvement achieved by
using the dual thread design for various values of
RNEW.

RNEW 0.1 0.2 0.5 0.75
ρ (%) 190 180 150 125
RNEW 0.99 0.999 0.9999 0.99999
ρ (%) 101 100.1 100.01 100.001

If the NEW module is very unreliable (i.e. RNEW is
small), then there is a significant benefit in using the
dual thread design (ρ is large).6

If the new module is as reliable as NAS and GMR,
that is, if

RGMR = RNEW = RNAS = 0.9999,

then the single thread design has a combined reli-
ability of 0.9997 (i.e. 3 failures in 10,000 hours),
whereas the dual thread design has a combined relia-
bility of 0.9998 (i.e. 2 failures in 10,000 hours).

If the probability of failure is independent for each
component, we could conclude from this that the
reliability gain from a dual thread design probably
does not justify the extra cost.

In the last two examples, we had to make additional as-
sumptions in order to answer the questions.

6But why would we install a module which we know to be unreliable
in the first place?

Conditional Probability It is easier to understand indepen-
dence of events through the conditional probability of an
event B given that another event A has occurred, defined
by as

P(B | A) =
P(A∩ B)

P(A)
.

Note that this definition only makes sense when “A can
happen” i.e. P(A)> 0. If P(A)P(B)> 0, then

P(A∩ B) = P(A)× P(B | A) = P(B)× P(A | B) = P(B ∩ A);

A and B are thus independent if P(B | A) = P(B) and
P(A | B) = P(A).

Examples

From a group of 100 people, 1 is selected. What is the
probability that this person has high blood pressure
(HBP)?

Answer: if we know nothing else about the popula-
tion, this is an (unconditional) probability, namely

P(HBP) =
#individuals with HBP in the population

100
.

If instead we first filter out all people with low choles-
terol level, and then select 1 person. What is the
probability that this person has HBP?

Answer: this is the conditional probability

P(HBP | high cholesterol);

the probability of selecting a person with HBP, given
high cholesterol levels, presumably different from
P(HBP | low cholesterol).

A sample of 249 individuals is taken and each per-
son is classified by blood type and tuberculosis (TB)
status.

O A B AB Total
TB 34 37 31 11 113

no TB 55 50 24 7 136
Total 89 87 55 18 249

The (unconditional) probability that a random indi-
vidual has TB is P(TB) = #TB

249 =
113
249 = 0.454. Among

those individuals with type B blood, the (conditional)
probability of having TB is

P(TB | type B) =
P(TB∩ type B)

P(type B)
=

31
55
=

31/249
55/249

= 0.564.

A family has two children (not twins). What is the
probability that the youngest child is a girl given that
at least one of the children is a girl? Assume that
boys and girls are equally likely to be born.

P.Boily, J.Schellinck (2021) 7
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Answer: let A and B be the events that the youngest
child is a girl and that at least one child is a girl,
respectively:

A= {GG, BG} and B = {GG,BG, GB},

so that A∩ B = A. Then P(A | B) = P(A∩B)
P(B) =

P(A)
P(B) =

2/4
3/4 =

2
3 (and not 1

2 , as might naively be believed).

Incidentally, P(A∩ B) = P(A) 6= P(A)× P(B), which
means that A and B are not independent events.

Law of Total Probability Let A and B be two events. From
set theory, we have

B = (A∩ B)∪ (A∩ B).

Note that A∩ B and A∩ B are mutually exclusive, so that,
according to Axiom A4, we have

P(B) = P(A∩ B) + P(A∩ B).

Now, assuming that ∅ 6= A 6= S ,

P(A∩ B) = P(B | A)P(A) and P(A∩ B) = P(B | A)P(A),

so that

P(B) = P(B | A)P(A) + P(B | A)P(A).

This generalizes as follows: if A1, ...Ak are mutually exclu-
sive and exhaustive (i.e. Ai ∩ A j = ∅ for all i 6= j and
A1 ∪ ....∪ Ak = S ), then for any event B

P(B) =
k
∑

j=1

P(B | A j)P(A j)

= P(B | A1)P(A1) + ...+ P(B | Ak)P(Ak).

Example: use the Law of Total Probability (rule above) to
compute P(TB) using the data from the previous example.

Answer: the blood types {O,A,B,AB} form a mutually ex-
clusive partition of the population, with

P(O) =
89

249
, P(A) =

87
249

, P(B) =
55

249
, P(AB) =

18
249

.

It is easy to see that P(O) + P(A) + P(B) + P(AB) = 1.
Furthermore,

P(TB | O) = P(TB∩O)
P(O) =

34
89 , P(TB | A) = P(TB∩A)

P(A) =
37
87 ,

P(TB | B) = P(TB∩B)
P(B) =

31
55 , P(TB | AB) = P(TB∩AB)

P(AB) =
11
18 .

According to the law of total probability,

P(TB) = P(TB | O)P(O) + P(TB | A)P(A)
+ P(TB | B)P(B) + P(TB | AB)P(AB),

so that

P(TB) =
34
89
·

89
249

+
37
87
·

87
249

+
31
55
·

55
249

+
11
18
·

18
249

=
34+ 37+ 31+ 11

249
=

113
249

= 0.454,

which matches with the result of the previous example.

1.7 Bayes’ Theorem
After an experiment generates an outcome, we are often
interested in the probability that a certain condition was
present given an outcome (or that a particular hypothesis
was valid, say).

We have noted before that if P(A)P(B)> 0, then

P(A∩ B) = P(A)× P(B | A) = P(B)× P(A | B) = P(B ∩ A);

this can be re-written as Bayes’ Theorem:

P(A | B) =
P(B | A)× P(A)

P(B)
.

Bayes’ Theorem is a powerful tool in probability analysis,
but it is a simple corollary of the rules of probability.

Central Data Analysis Question Given everything that
was known prior to the experiment, does the collected/ob-
served data support (or invalidate) the hypothesis/presence
of a certain condition?

The problem is that this is usually impossible to com-
pute directly. Bayes’ Theorem offers a possible solution:

P(hypothesis | data) =
P(data | hypothesis)× P(hypothesis)

P(data)
∝ P(data | hypothesis)× P(hypothesis),

in which the terms on the right might be easier to compute
than the term on the left.

Bayesian Vernacular In Bayes’ Theorem:

P(hypothesis) is the probability of the hypothesis be-
ing true prior to the experiment (called the prior);

P(hypothesis | data) is the probability of the hypoth-
esis being true once the experimental data is taken
into account (called the posterior);

P(data | hypothesis) is the probability of the exper-
imental data being observed assuming that the hy-
pothesis is true (called the likelihood).

The theorem is often presented as posterior∝ likelihood×
prior, which is to say, beliefs should be updated in the
presence of new information.
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Formulations If A, B are events for which P(A)P(B) > 0,
then Bayes’ Theorem can be re-written, using the law of
total probability, as

P(A | B) =
P(B | A)P(A)

P(B)
=

P(B | A)P(A)
P(B | A)P(A) + P(B | A)P(A)

,

or, in the general case where A1, ...Ak are mutually exclu-
sive and exhaustive events, then for any event B and for
each 1≤ i ≤ k,

P(Ai | B) =
P(B | Ai)P(Ai)

P(B)

=
P(B | Ai)P(Ai)

P(B | A1)P(A1) + ...+ P(B | Ak)P(Ak)
.

Examples

In 1999, Nissan sold three car models in North Amer-
ica: Sentra (S), Maxima (M), and Pathfinder (PA). Of
the vehicles sold that year, 50% were S, 30% were
M and 20% were PA. In the same year 12% of the S,
15% of the M, and 25% of the PA had a particular
defect D.

1. If you own a 1999 Nissan, what is the probability
that it has the defect?

Answer: in the language of conditional proba-
bility,

P(S) = 0.5, P(M) = 0.3, P(Pa) = 0.2,

P(D | S) = 0.12, P(D |M) = 0.15, P(D | PA) = 0.25,

so that

P(D) = P(D | S)× P(S) + P(D |M)× P(M)
+ P(D | Pa)× P(Pa)
= 0.12 · 0.5+ 0.15 · 0.3+ 0.25 · 0.2

= 0.155= 15.5%.

2. If a 1999 Nissan has defect D, what model is it
likely to be?

Answer: in the first part we computed the total
probability P(D); in this part, we compare the
posterior probabilities P(M | D), P(S | D), and
P(Pa | D) (and not the priors!), computed using
Bayes’ Theorem:

P(S | D) = P(D|S)P(S)
P(D) = 0.12×0.5

0.155 ≈ 38.7%

P(M | D) = P(D|M)P(M)
P(D) = 0.15×0.3

0.155 ≈ 29.0%

P(Pa | D) = P(D|Pa)P(Pa)
P(D) = 0.25×0.2

0.155 ≈ 32.3%

Even though Sentras are the least likely to have
the defect D, their overall prevalence in the pop-
ulation carry them over the hump.

Suppose that a test for a particular disease has a very
high success rate. If a patient

– has the disease, the test reports a ‘positive’ with
probability 0.99;

– does not have the disease, the test reports a
’negative’ with prob 0.95.

Assume that only 0.1% of the population has the
disease. What is the probability that a patient who
tests positive does not have the disease?

Answer: Let D be the event that the patient has the
disease, and A be the event that the test is positive.
The probability of a true positive is

P(D | A) =
P(A | D)P(D)

P(A | D)P(D) + P(A | Dc)P(Dc)

=
0.99× 0.001

0.99× 0.001+ 0.05× 0.999
≈ 0.019.

The probability of a false positive is thus 1− 0.019≈
0.981. Despite the apparent high accuracy of the test,
the incidence of the disease is so low (1 in a 1000)
that the vast majority of patients who test positive
(98 in 100) do not have the disease.

The 2 in 100 who are true positives still represent 20
times the proportion of positives found in the popu-
lation (before the outcome of the test is known).7

(Monty Hall Problem) On a game show, you are
given the choice of three doors. Behind one of the
doors is a prize; behind the others, dirty and smelly
rubbish bins.

You pick a door, say No. 1, and the host, who knows
what is behind the doors, opens another door, say No.
3, behind which is a bin. She then says to you, “Do
you want to switch from door No. 1 to No. 2?”

Is it to your advantage to do so?

7It is important to remember that when dealing with probabilities, both
the likelihood and the prevalence have to be taken into account.
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Answer: in what follows, let S and D be the events
that switching to another door is a successful strat-
egy and that the prize is behind the original door,
respectively.

– Let’s first assume that the host opens no door.
What is the probability that switching to another
door in this scenario would prove to be a suc-
cessful strategy?

If the prize is behind the original door, switching
would succeed 0% of the time:

P(S | D) = 0.

Note that the prior is P(D) = 1/3.

If the prize is not behind the original door, switch-
ing would succeed 50% of the time:

P(S | Dc) = 1/2.

Note that the prior is P(Dc) = 2/3. Thus,

P(S) = P(S | D)P(D) + P(S | Dc)P(Dc)

= 0 ·
1
3
+

1
2
·

2
3
≈ 33%.

– Now let’s assume that the host opens one of the
other two doors to show a rubbish bin. What is
the probability that switching to another door
in this scenario would prove to be a successful
strategy?

If the prize is behind the original door, switching
would succeed 0% of the time:

P(S | D) = 0.

Note that the prior is P(D) = 1/3.

If the prize is not behind the original door, switch-
ing would succeed 100% of the time:

P(S | Dc) = 1.

Note that the prior is P(Dc) = 2/3. Thus,

P(S) = P(S | D)P(D) + P(S | Dc)P(Dc)

= 0 ·
1
3
+ 1 ·

2
3
≈ 67%.

If no door is opened, switching is not a winning strat-
egy, resulting in success only 33% of the time. If
a door is opened, however, switching becomes the
winning strategy, resulting in success 67% of the time.

This problem has attracted a lot of attention over the years
due to its counter-intuitive result. There is no paradox
when one understands conditional probabilities.

2. Discrete Distributions

The principles of probability theory introduced in the previ-
ous section are simple, and they are always valid. In this
section and the next, we will see how some of the compu-
tations can be made easier with the use of distributions.

2.1 Random Variables and Distributions
Recall that, for any random “experiment,” the set of all
possible outcomes is denoted by S . A random variable
(r.v.) is a function X : S → R, which is to say, it is a rule
that associates a (real) number to every outcome of the
experiment; S is the domain of the r.v. X and X (S ) ⊆ R
is its range.

A probability distribution function (p.d.f.) is a function
f : R→ R which specifies the probabilities of the values in
the range X (S ).

When S is discrete,8 we say that X is a discrete r.v.
and the p.d.f. is called a probability mass function (p.m.f.).

Notation Throughout, we use the following notation:

capital roman letters (X , Y , etc.) denote r.v., and
corresponding lower case roman letters (x , y, etc.)
denote generic values taken by the r.v.

A discrete r.v. can be used to define events: if X takes
values X (S ) = {x i}, then we can define events

Ai = {s ∈ S : X (s) = x i} :

the p.m.f. of X is

f (x) = P ({s ∈ S : X (s) = x}) := P(X = x);

its cumulative distribution function (c.d.f.) is

F(x) = P(X ≤ x).

Properties If X is a discrete random variable with p.m.f.
f (x) and c.d.f. F(x), then

0< f (x)≤ 1 for all x ∈ X (S );
∑

s∈S f (X (s)) =
∑

x∈X (S ) f (x) = 1;

for any event A⊆ S , P(X ∈ A) =
∑

x∈A f (x);

for any a, b ∈ R,

P(a < X ) = 1− P(X ≤ a) = 1− F(a)
P(X < b) = P(X ≤ b)− P(X = b) = F(b)− f (b)

for any a, b ∈ R,

P(a ≤ X ) = 1− P(X < a)
= 1− (P(X ≤ a)− P(X = a))
= 1− F(a) + f (a)

8For the purpose of this document, a discrete set is one in which all
points are isolated: N and finite sets are discrete, but Q and R are not.
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We can use these results to compute the probability of a
discrete r.v. X falling in various intervals:

P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a)
= F(b)− F(a)

P(a ≤ X ≤ b) = P(a < X ≤ b) + P(X = a)
= F(b)− F(a) + f (a)

P(a < X < b) = P(a < X ≤ b)− P(X = b)
= F(b)− F(a)− f (b)

P(a ≤ X < b) = P(a ≤ X ≤ b)− P(X = b)
= F(b)− F(a) + f (a)− f (b)

Examples

Flip a fair coin – the outcome space isS = {Head, Tail}.
Let X : S → R be defined by X (Head) = 1 and
X (Tail) = 0. Then X is a discrete random variable (as
a convenience, we write X = 1 and X = 0).

If the coin is fair, the p.m.f. of X is f : R→ R, where

f (0) = P(X = 0) = 1/2, f (1) = P(X = 1) = 1/2,

f (x) = 0 for all other x .

Roll a fair die – the outcome space is S = {1, . . . , 6}.
Let X : S → R be defined by X (i) = i for i = 1, . . . , 6.
Then X is a discrete r.v.

If the die is fair, the p.m.f. of X is f : R→ R, where

f (i) = P(X = i) = 1/6, for i = 1, . . . , 6,

f (x) = 0 for all other x .

For the random variable X from the previous example,
the c.d.f. is F : R→ R, where

F(x) = P(X ≤ x) =











0 if x < 1

i/6 if i ≤ x < i + 1, i = 1, . . . , 6

1 if x ≥ 6

For the same random variable, we can compute the
probability P(3≤ X ≤ 5) directly:

P(3≤ X ≤ 5) = P(X = 3) + P(X = 4) + P(X = 5)

= 1
6 +

1
6 +

1
6 =

1
2 ,

or we can use the c.d.f.:

P(3≤ X ≤ 5) = F(5)− F(3) + f (3) = 5
6 −

3
6 +

1
6 =

1
2 .

The number of calls received over a specific time pe-
riod, X , is a discrete random variable, with potential
values 0, 1,2, . . ..

Consider a 5−card poker hand consisting of cards
selected at random from a 52−card deck. Find the
probability distribution of X , where X indicates the
number of red cards (♦ and ♥) in the hand.

Answer: in all there are
�52

5

�

ways to select a 5−card
poker hand from a 52−card deck. By construction, X
can take on values x = 0,1, 2,3, 4,5.
If X = 0, then none of the 5 cards in the hands are ♦
or ♥, and all of the 5 cards in the hands are ♠ or ♣.
There are thus

�26
0

�

·
�26

5

�

5−card hands that only con-
tain black cards, and

P(X = 0) =

�26
0

�

·
�26

5

�

�52
5

� .

In general, if X = x , x = 0, 1, 2, 3, 4, 5, there are
�26

x

�

ways of having x ♦ or♥ in the hand, and
� 26

5−x

�

ways
of having 5− x ♠ and ♣ in the hand, so that

f (x) = P(X = x) =

( (26
x )·( 26

5−x)
(52

5 )
, x = 0, 1,2, 3, 4, 5;

0 otherwise

Find the c.d.f. of a discrete random variable X with
p.m.f. f (x) = 0.1x if x = 1,2,3,4 and f (x) = 0
otherwise.
Answer: f (x) is indeed a p.m.f. as 0 < f (x) ≤ 1
for all x and

4
∑

x=1

0.1x = 0.1(1+ 2+ 3+ 4) = 0.1
4(5)

2
= 1.

Computing F(x) = P(X ≤ x) yields

F(x) =



























0 if x < 1

0.1 if 1≤ x < 2

0.3 if 2≤ x < 3

0.6 if 3≤ x < 4

1 if x ≥ 4
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2.2 Expectation of a Discrete Random Variable
The expectation of a discrete random variable X is

E[X ] =
∑

x

x · P(X = x) =
∑

x

x f (x) ,

where the sum extends over all values of x taken by X .

The definition can be extended to a general function of X :

E[u(X )] =
∑

x

u(x)P(X = x) =
∑

x

u(x) f (x).

As an important example, note that

E[X 2] =
∑

x

x2P(X = x) =
∑

x

x2 f (x).

Examples

What is the expectation on the roll Z of 6−sided die?

Answer: if the die is fair, then

E[Z] =
6
∑

z=1

z · P(Z = z) =
1
6

6
∑

z=1

z

=
1
6
·

6(7)
2
= 3.5.

For each 1$ bet in a gambling game, a player can win
3$ with probability 1

3 and lose 1$ with probability 2
3 .

Let X be the net gain/loss from the game. Find the
expected value of the game.

Answer: X can take on the value 2$ for a win and
−2$ for a loss (outcome − bet). The expected value
of X is thus

E[X ] = 2 ·
1
3
+ (−2) ·

2
3
= −

2
3

.

If Z is the number showing on a roll of a fair 6−sided
die, find E[Z2] and E[(Z − 3.5)2].
Answer:

E[Z2] =
∑

z

z2P(Z = z) =
1
6

6
∑

z=1

z2

=
1
6
(12 + · · ·+ 62) =

91
6

E[(Z − 3.5)2] =
6
∑

z=1

(z − 3.5)2P(Z = z)

=
1
6

6
∑

z=1

(z − 3.5)2

=
(1− 3.5)2 + · · ·+ (6− 3.5)2

6
=

35
12

.

The expectation of a random variable is the average value
that it takes.

Mean and Variance We can interpret the expectation as
the average or the mean of X , which we often denote by
µ= µX . For instance, in the example of the fair die,

µZ = E[Z] = 3.5

Note that in the final example, we could have written

E[(Z − 3.5)2] = E[(Z − E[Z])2].

This is an important quantity associated to a random vari-
able X , its variance Var[X ].

The variance of a discrete random variable X is the ex-
pected squared difference from the mean:

Var(X ) = E[(X −µX )
2] =

∑

x

(x −µX )
2P(X = x)

=
∑

x

�

x2 − 2xµX +µ
2
X

�

f (x)

=
∑

x

x2 f (x)− 2µX

∑

x

x f (x) +µ2
X

∑

x

f (x)

= E[X 2]− 2µXµX +µ
2
X · 1

= E[X 2]−µ2
X .

This is also sometimes written as Var[X ] = E[X 2]− E2[X ].

Standard Deviation The standard deviation of a discrete
random variable X is defined directly from the variance:

SD[X ] =
Æ

Var[X ] .

The mean is a measure of centrality and it gives an idea
as to where the bulk of a distribution is located; the vari-
ance and standard deviation provide information about the
spread – distributions with higher variance/SD are more
spread out about the average.

Example: let X and Y be random variables with the fol-
lowing p.d.f.

x P(X = x) y P(Y = y)
−2 1/5 −4 1/5
−1 1/5 −2 1/5
0 1/5 0 1/5
1 1/5 2 1/5
2 1/5 4 1/5

Compute the expected values and compare the variances.

Answer: We have E[X ] = E[Y ] = 0 and

2= Var[X ]< Var[Y ] = 8,

meaning that we would expect both distributions to be
centered at 0, but Y should be more spread-out than X .
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Properties Let X , Y be random variables and a ∈ R. Then

E[aX ] = aE[X ];

E[X + a] = E[X ] + a;

E[X + Y ] = E[X ] + E[Y ];

in general, E[X Y ] 6= E[X ]E[Y ];

Var[aX ] = a2Var[X ], SD[aX ] = |a|SD[X ];

Var[X + a] = Var[X ], SD[X + a] = SD[X ].

2.3 Binomial Distributions
Recall that the number of unordered samples of size r from
a set of size n is

nCr =
�

n
r

�

=
n!

(n− r)!r!
.

Examples

2!×4! = (1×2)× (1×2×3×4) = 48, but (2×4)! =
8!= 40320.
�5

1

�

= 5!
1!×4! =

1×2×3×4×5
1×(1×2×3×4) =

5
1 = 5.

In general:
�n

1

�

= n and
�n

0

�

= 1.
�6

2

�

= 6!
2!×4! =

4!×5×6
2!×4! =

5×6
2 = 15.

�27
22

�

= 27!
22!×5! =

22!×23×24×25×26×27
5!×22! = 23×24×25×26×27

120 .

Binomial Experiments A Bernoulli trial is a random ex-
periment with two possible outcomes, “success" and “fail-
ure". Let p denote the probability of a success.

A binomial experiment consists of n repeated inde-
pendent Bernoulli trials, each with the same probability of
success, p.

Examples

female/male births;
satisfactory/defective items on a production line;
sampling with replacement with two types of item,
etc.

Probability Mass Function In a binomial experiment of n
independent events, each with probability of success p, the
number of successes X is a discrete random variable that
follows a binomial distribution with parameters (n, p):

f (x) = P(X = x) =
�

n
x

�

px(1−p)n−x , for x = 0, 1, 2, . . . , n.

This is often abbreviated to “X ∼B(n, p)”.

If X ∼B(1, p), then P(X = 0) = 1−p and P(X = 1) = p, so

E[X ] = (1− p) · 0+ p · 1= p .

Expectation and Variance If X ∼B(n, p), it can be shown
that

E[X ] =
n
∑

x=0

x P(X = x) = np,

and

Var[X ] = E
�

(X − np)2
�

=
n
∑

x=0

(x−np)2P(X = x) = np(1−p) .9

Recognizing that certain situations can be modeled via a
distribution whose p.m.f. and c.d.f. are already known can
simplify eventual computations.

9We will see an easier way to derive these by interpreting X as a sum
of other discrete random variables.
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Examples

Suppose that water samples taken in some well-defined
region have a 10% probability of being polluted. If
12 samples are selected independently, then it is rea-
sonable to model the number X of polluted samples
asB(12, 0.1).
Find

a) E[X ] and Var[X ];

b) P(X = 3);

c) P(X ≤ 3).

Solution:

a) If X ∼B(n, p), then

E[X ] = np and Var[X ] = np(1− p).

With n= 12 and p = 0.1, we obtain

E[X ] = 12× 0.1= 1.2;

Var[X ] = 12× 0.1× 0.9= 1.08 .

b) By definition,

P(X = 3) =
�

12
3

�

(0.1)3(0.9)9 ≈ 0.0852.

c) By definition,

P(X ≤ 3) =
3
∑

x=0

P(X = x)

=
3
∑

x=0

�

12
x

�

(0.1)x(0.9)12−x .

This sum can be computed directly, however,
for X ∼B(12,0.1), P(X ≤ 3) can also be read
directly from tabulated values (see below):

Tabulated c.d.f. values F(x) = P(X ≤ x) for
X ∼B(12, p), p = 0.1, . . . , 0.9.

The appropriate value ≈ 0.9744 can be found
in the group corresponding to n = 12, in the
row corresponding to x = 3, and in the column
corresponding to p = 0.1.

The table can also be used to compute

P(X = 3) = P(X ≤ 3)− P(X ≤ 2)
= 0.9744− 0.8891≈ 0.0853.

An airline sells 101 tickets for a flight with 100 seats.
Each passenger with a ticket is known to have a prob-
ability p = 0.97 of showing up for their flight. What
is the probability of 101 passengers showing up (and
the airline being caught overbooking)? Make ap-
propriate assumptions. What if the airline sells 125
tickets?

Answer: let X be the number of passengers that
show up. We want to compute P(X > 100).
If all passengers show up independently of one an-
other (no families or late bus?), we can model X ∼
B(101, 0.97) and

P(X > 100) = P(X = 101)

=
�

101
101

�

(0.97)101(0.03)0 ≈ 0.046.

If the airline sells n= 125 tickets, we can model the
situation with the binomial distributionB(125, 0.97),
so that

P(X > 100) = 1− P(X ≤ 100)

= 1−
100
∑

x=0

�

125
x

�

(0.97)x(0.03)125−x .

This sum is harder to compute directly, but is very
nearly 1 (try it in R, say).

Do these results match your intuition?

2.4 Geometric Distributions
Now consider a sequence of Bernoulli trials, with probabil-
ity p of success at each step. Let the geometric random
variable X denote the number of steps before the first suc-
cess occurs.

The probability mass function is given by

f (x) = P(X = x) = (1− p)x−1p, x = 1, . . . ,

denoted X ∼ Geo(p).

For this random variable, we have

E[X ] =
1
p

and Var[X ] =
1− p

p2
.

Examples

A fair 6−sided die is thrown until it shows a 6. What
is the probability that 5 throws are required?

Answer: If 5 throws are required, we have to com-
pute P(X = 5), where X is geometric Geo(1/6):

P(X = 5) = (1− p)5−1p = (5/6)4(1/6)≈ 0.0804.

In the example above, how many throws would you
expect to need?

Answer: E[X ] = 1
1/6 = 6.

14 P.Boily, J.Schellinck (2021)
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2.5 Negative Binomial Distribution
Consider now a sequence of Bernoulli trials, with proba-
bility p of success at each step. Let the negative binomial
random variable X denote the number of steps before the
rth success occurs.

The probability mass function is given by

f (x) = P(X = x) =
�

x − 1
r − 1

�

(1− p)x−r pr , x = r, . . . ,

which we denote by X ∼ NegBin(p, r).

For this random variable, we have

E[X ] =
r
p

and Var[X ] =
r(1− p)

p2
.

Example:

A fair 6−sided die is thrown until it three 6’s are rolled.
What is the probability that 5 throws are required?

Answer: If 5 throws are required, we have to com-
pute P(X = 5), where X is geometric NegBin(1/6, 3):

P(X = 5) =
�

5− 1
3− 1

�

(1− p)5−3p3

=
�

4
2

�

(5/6)2(1/6)3 ≈ 0.0193.

In the example above, how many throws would you
expect to need?

Answer: E[X ] = 3
1/6 = 18.

2.6 Poisson Distributions
Let’s say we are counting the number of “changes” that
occur in a continuous interval of time or space.10

We have a Poisson process with rate λ, denoted by P (λ),
if:

a) the number of changes occurring in non-overlapping
intervals are independent;

b) the probability of exactly one change in a short inter-
val of length h is approximately λh, and

c) The probability of 2+ changes in a sufficiently short
interval is essentially 0.

Assume that an experiment satisfies the above properties.
Let X be the number of changes in a unit interval (this
could be 1 day, or 15 minutes, or 10 years, etc.).

What is P(X = x), for x = 0,1, . . .? We can get to the
answer by first partition the unit interval into n disjoint
sub-intervals of length 1/n. Then,

10Such as # of defects on a production line over a 1 hr period, # of
customers that arrive at a teller over a 15 min interval, etc.

1. by condition b), the probability of one change oc-
curring in one of the sub-intervals is approximately
λ/n;

2. by condition c), the probability of 2+ changes is ≈ 0,
and

3. by condition a), we have a sequence of n Bernoulli
trials with probability p = λ/n.

Therefore,

f (x) = P(X = x)≈
n!

x!(n− x)!

�

λ

n

�x �

1−
λ

n

�n−x

=
λx

x!
·

n!
(n− x)!

·
1
nx

︸ ︷︷ ︸

term 1

·
�

1−
λ

n

�n

︸ ︷︷ ︸

term 2

·
�

1−
λ

n

�−x

︸ ︷︷ ︸

term 3

.

Letting n→∞, we get

P(X = x) = lim
n→∞

λx

x!
·

n!
(n− x)!

·
1
nx

︸ ︷︷ ︸

term 1

·
�

1−
λ

n

�n

︸ ︷︷ ︸

term 2

·
�

1−
λ

n

�−x

︸ ︷︷ ︸

term 3

=
λx

x!
· 1 · exp(−λ) · 1=

λx e−λ

x!
, x = 0, 1, . . .

Let X ∼P (λ). Then it can be shown that

E[X ] = λ and Var[X ] = λ,

that is, the mean and the variance of a Poisson random
variable are identical.

Examples:

A traffic flow is typically modeled by a Poisson distri-
bution. It is known that the traffic flowing through
an intersection is 6 cars/minute, on average. What is
the probability of no cars entering the intersection in
a 30 second period?

Answer: 6 cars/min = 3 cars/30 sec. Thus λ = 3,
and we need to compute

P(X = 0) =
30e−3

0!
=

e−3

1
≈ 0.0498.

A hospital needs to schedule night shifts in the ma-
ternity ward. It is known that there are 3000 deliver-
ies per year; if these happened randomly round the
clock,11, we would expect 1000 deliveries between
the hours of midnight and 8.00 a.m., a time when
much of the staff is off-duty.

It is thus important to ensure that the night shift is
sufficiently staffed to allow the maternity ward to
cope with the workload on any particular night, or at
least, on a high proportion of nights.

11Is this a reasonable assumption?
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The average number of deliveries per night

λ= 1000/365.25≈ 2.74.

If the daily number X of night deliveries follows a
Poisson process P (λ), we can compute the probabil-
ity of delivering x = 0,1, 2, . . . babies on each night.

Some of the probabilities are:

P(X = x) λx · exp(−λ)/x!
P(X = 0) 2.740 · exp(−2.74)/0!= 0.065
P(X = 1) 2.741 · exp(−2.74)/1!= 0.177
P(X = 2) 2.742 · exp(−2.74)/2!= 0.242
P(X = 3) 2.743 · exp(−2.74)/3!= 0.221
P(X = 4) 2.744 · exp(−2.74)/4!= 0.152
P(X = 5) 2.745 · exp(−2.74)/5!= 0.083
P(X = 6) 2.746 · exp(−2.74)/6!= 0.038
P(X = 7) 2.747 · exp(−2.74)/7!= 0.015
P(X = 8) 2.748 · exp(−2.74)/8!= 0.005
P(X = 9) 2.749 · exp(−2.74)/9!= 0.002

...
...

If the maternity ward wants to prepare for the great-
est possible traffic on 80% of the nights, how many
deliveries should be expected?

Answer: we seek an x for which

P(X ≤ x − 1)≤ 0.80≤ P(X ≤ x) :

since P(X ≤ 3) = 0.705 and P(X ≤ 4) = 0.857, if
they prepare for 4 deliveries a night, they will be
ready for the worst on at least 80% of the nights
(closer to 85.7%, actually). Note that this is different
than asking how many deliveries are expected nightly
(namely, E[X ] = 2.74).

On how many nights in the year would 5 or more
deliveries be expected?

Answer: we need to evaluate

365.25 · P(X ≥ 5) = 365.25(1− P(X ≤ 4))
= 365.25(1− 0.857)≈ 52.27.

Over the course of one year, what is the greatest
number of deliveries expected on any night?

Answer: we need to look for largest value of x for
which

365.25 · P(X = x)≥ 1.

A few quick computations show that x = 8.

2.7 Other Discrete Distributions
Wikipedia [22] lists other common discrete distributions:

the Rademacher distribution, which takes values 1
and −1, each with probability 1/2;

the beta binomial distribution, which describes the
number of successes in a series of independent Ber-
noulli experiments with heterogeneity in the success
probability;

the discrete uniform distribution, where all elements
of a finite set are equally likely (balanced coin, unbi-
ased die, first card of a well-shuffled deck, etc.);

the hypergeometric distribution, which describes
the number of successes in the first m of a series
of n consecutive Bernoulli experiments, if the total
number of successes is known;

the negative hypergeometric distribution, which de-
scribes the number of attempts needed to get the nth
success in a series of Bernoulli experiments;

the Poisson binomial distribution, which describes
the number of successes in a series of independent
Bernoulli experiments with different success proba-
bilities;

Benford’s Law, which describes the frequency of the
first digit of many naturally occurring data.

Zipf’s Law, which describes the frequency of words
in the English language;

the beta negative binomial distribution, which de-
scribes the number of failures needed to obtain r
successes in a sequence of independent Bernoulli ex-
periments;

etc.
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3. Continuous Distributions

How do we approach probabilities where there there are
uncountably infinitely many possible outcomes, such as
one might encounter if X represents the height of an indi-
vidual in the population, for instance (e.g., the outcomes
reside in a continuous interval)? What is the probability
that a randomly selected person is 6 feet tall, say?

3.1 Continuous Random Variables
In the discrete case, the probability mass function

fX (x) = P(X = x)

was the main object of interest. In the continuous case,
the analogous role is played by the probability density
function (p.d.f.), still denoted by fX (x), but now,

fX (x) 6= P(X = x).

The (cumulative) distribution function (c.d.f.) of any
such random variable X is also still defined by

FX (x) = P(X ≤ x) ,

viewed as a function of a real variable x; however P(X ≤ x)
is not simply computed by adding a few terms of the form
P(X = x i) anymore.

Note as well that

lim
x→−∞

FX (x) = 0 and lim
x→+∞

FX (x) = 1.

We can describe the distribution of the random variable X
via the following relationship between fX (x) and FX (x):

fX (x) =
d

d x
FX (x);

in the continuous case, probability theory is simply an ap-
plication of calculus!

Area Under the Curve For any a < b, we have

{X ≤ b}= {X ≤ a} ∪ {a < X ≤ b} ,

so that

P (X ≤ a) + P (a < X ≤ b) = P (X ≤ b)

and thus

P (a < X ≤ b) = P (X ≤ b)− P (X ≤ a)

= FX (b)− FX (a) =

∫ b

a

fX (x) d x

Probability Density Function The probability density func-
tion (p.d.f.) of a continuous random variable X is an inte-
grable function fX : X (S )→ R such that:

fX (x)> 0 for all x ∈ X (S ) and lim
x→±∞

fX (x) = 0;

∫

S fX (x) d x = 1;

for any event A= (a, b) = {X |a < X < b},

P(A) = P((a, b)) =

∫ b

a

fX (x) d x ,

and the cumulative distribution function (c.d.f.) FX is
given by

FX (x) = P(X ≤ x) =

∫ x

−∞
fX (t) d t.

Unlike discrete distributions, the absence or presence of
endpoints does not affect the probability computations for
continuous distributions: for any a, b,

P(a < X < b) = P(a ≤ X < b) = P(a < X ≤ b) = P(a ≤ X ≤ b),

all taking the value

FX (b)− FX (a) =

∫ b

a

f (x) d x .

Furthermore, for any x ,

P(x > X ) = 1− P(X ≤ x) = 1− FX (x) = 1−
∫ x

−∞
fX (t) d t;

and for any a,

P (X = a) = P (a ≤ X ≤ a) =

∫ a

a

fX (x) d x = 0.

That last result explains why it is pointless to speak of the
probability of a random variable taking on a specific value
in the continuous case; rather, we are interested in ranges
of values.

Examples

Assume that X has the following p.d.f.:

fX (x) =







0 if x < 0

x/2 if 0≤ x ≤ 2

0 if x > 2

Note that
∫ 2

0 f (x) d x = 1. The corresponding c.d.f. is
given by:

FX (x) = P(X ≤ x) =

∫ x

−∞
fX (t) d t

=







0 if x < 0

1/2 ·
∫ x

0 t d t = x2/4 if 0< x < 2

1 if x ≥ 2
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What is the probability of the event

A= {X |0.5< X < 1.5}?

Answer: we need to evaluate

P(A) = P(0.5< X < 1.5) = FX (1.5)− FX (0.5)

=
(1.5)2

4
−
(0.5)2

4
=

1
2

.

What is the probability of the event B = {X |X = 1}?

Answer: we need to evaluate

P(B) = P(X = 1) = P(1≤ X ≤ 1) = FX (1)−FX (1) = 0.

This is not unexpected: even though fX (1) = 0.5 6= 0,
P(X = 1) = 0, as we say earlier.

Assume that, for λ > 0, X has the following p.d.f.:

fX (x) =

¨

λexp(−λx) if x ≥ 0

0 if x < 0

Verify that fX is a p.d.f. for all λ > 0, and compute
the probability that X > 10.2.

Answer: that fX is a p.d.f. is obvious; the only work
goes into showing that

∫ ∞

−∞
f (x) d x =

∫ ∞

0

λexp(−λx) d x

= lim
b→∞

∫ b

0

λexp(−λx) d x

= lim
b→∞

λ

�

exp(−λx)
−λ

�b

0
= lim

b→∞
[−exp(−λx)]b0

= lim
b→∞

[−exp(−λb) + exp(0)] = 1.

The corresponding c.d.f. is given by:

FX (x;λ) = Pλ(X ≤ x) =

∫ x

−∞
fX (t) d t

=

¨

0 if x < 0

λ
∫ x

0 exp(−λt) d t if x ≥ 0

=

¨

0 if x < 0

[−exp(−λt)]x0 if x ≥ 0

=

¨

0 if x < 0

1− exp(−λx) if x ≥ 0

Then

Pλ(X > 10.2) = 1− FX (10.2;λ) = 1− [1− exp(−10.2λ)]
= exp(−10.2λ)

is a function of the distribution parameter λ itself:

λ Pλ(X > 10.2)
0.002 0.9798
0.02 0.8155
0.2 0.1300
2 1.38× 10−9

20 2.54× 10−89

200 0 (for all intents and purposes)

For λ= 0.2, for instance, the p.d.f. and c.d.f. are:
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and the probability that X > 10.2 is the area (to ∞) in
blue, below.

For λ= 2, the probability is so small (1.38× 10−9) that it
does not appear in the p.d.f. in the next column over.

Note that in all cases, the shape of the p.d.f. and the c.d.f
are the same (the spike when λ = 2 is much higher than
that when λ = 0.2 – why must that be the case?). This
is not a general property of distributions, however, but a
property of this specific family of distributions.

3.2 Expectation of a Continuous Random Variable
For a continuous random variable X with p.d.f. fX (x), the
expectation of X is defined as

E[X ] =

∫ ∞

−∞
x fX (x) d x .

For any function h(X ), we can also define

E [h(X )] =

∫ ∞

−∞
h(x) fX (x) d x .

Examples:

Find E[X ] and E[X 2] in the example on p. 17.

Answer: we need to evaluate

E[X ] =

∫ ∞

−∞
x fX (X ) d x =

∫ 2

0

x fX (x) d x

=

∫ 2

0

x2

2
d x =

�

x3

6

�x=2

x=0

=
4
3

;

E[X 2] =

∫ 2

0

x3

2
d x = 2.

Note that the expectation need not exist! Compute
the expectation of the random variable X with p.d.f.

fX (x) =
1

π(1+ x2)
, −∞< x <∞.

Answer: let’s verify that fX (x) is indeed a p.d.f.:
∫ ∞

−∞
fX (x) d x =

1
π

∫ ∞

−∞

1
1+ x2

d x

=
1
π
[arctan(x)]∞−∞ =

1
π

hπ

2
+
π

2

i

= 1.
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We can also easily see that

FX (x) = P(X ≤ x) =

∫ x

−∞
fX (t) d t

=
1
π

∫ x

−∞

1
1+ t2

d t =
1
π

arctan(x) +
1
2

.

For instance, P(X ≤ 3) = 1
π arctan(3) + 1

2 , say.

The expectation of X is

E[X ] =

∫ ∞

−∞
x fX (x) d x =

∫ ∞

−∞

x
π(1+ x2)

d x .

If this improper integral exists, then it needs to be

equal both to
∫ 0

−∞

x
π(1+ x2)

d x +

∫ ∞

0

x
π(1+ x2)

d x

︸ ︷︷ ︸

candidate 1

and to the Cauchy principal value

lim
a→∞

∫ a

−a

x
π(1+ x2)

d x

︸ ︷︷ ︸

candidate 2

.

But it is straightforward to find an antiderivative of
x

π(1+x2) . Set u = 1+ x2. Then du = 2xd x and xd x =
du
2 , and we obtain
∫

x
π(1+ x2)

d x =
1

2π

∫

u du=
1

2π
ln |u|=

1
2π

ln(1+x2).

Then the candidate 2 integral reduces to

lim
a→∞

�

ln(1+ x2)
2π

�a

−a

= lim
a→∞

�

ln(1+ a2)
2π

−
ln(1+ (−a)2)

2π

�

= lim
a→∞

0= 0;

while the candidate 1 integral reduces to
�

ln(1+ x2)
2π

�0

−∞
+

�

ln(1+ x2)
2π

�∞

0

= 0−(∞)+∞−0=∞−∞

which is undefined. Thus E[X ] cannot not exist, as
it would have to be both equal to 0 and be undefined
simultaneously.

Mean and Variance In a similar way to the discrete case,
the mean of X is defined to be E[X ], and the variance and
standard deviation of X are, as before,

Var[X ]
def
= E

�

(X − E(X ))2
�

= E[X 2]− E2[X ] ,

SD[X ] =
Æ

Var[X ] .

As in the discrete case, if X , Y are continuous random vari-
ables, and a, b ∈ R, then

E[aY + bX ] = aE[Y ] + bE[X ]

Var[a+ bX ] = b2Var[X ]
SD[a+ bX ] = |b|SD[X ]

The interpretations of the mean as a measure of centrality
and of the variance as a measure of dispersion are un-
changed in the continuous case.

For the time being, however, we cannot easily compute
the variance of a sum X + Y , unless X and Y are indepen-
dent random variables, in which case

Var[X + Y ] = Var[X ] + Var[Y ].
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3.3 Normal Distributions
A very important example of a continuous distribution is
that provided by the special probability distribution function

φ(z) =
1
p

2π
e−z2/2 .

The corresponding cumulative distribution function is de-
noted by

Φ(z) = P(Z ≤ z) =

∫ z

−∞
φ(t) d t .

A random variable Z with this c.d.f. is said to have a stan-
dard normal distribution, denoted by Z ∼N (0,1).

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

dn
or

m
(x

)

Normal density

Standard Normal Random Variable The expectation and
variance of Z ∼N (0,1) are

E[Z] =

∫ ∞

−∞
zφ(z) dz =

∫ ∞

−∞
z

1
p

2π
e−

1
2 z2

dz = 0,

Var[Z] =

∫ ∞

−∞
z2φ(z) dz = 1,

SD[Z] =
Æ

Var[Z] =
p

1= 1.

Other quantities of interest include:

Φ(0) = P(Z ≤ 0) =
1
2

, Φ(−∞) = 0, Φ(∞) = 1,

Φ(1) = P(Z ≤ 1)≈ 0.8413, etc.

Normal Random Variables Let σ > 0 and µ ∈ R.

If Z ∼N (0,1) and X = µ+σZ , then

X −µ
σ

= Z ∼N (0, 1).

Thus, the c.d.f. of X is given by

FX (x) = P(X ≤ x)

= P(µ+σZ ≤ x) = P
�

Z ≤
x −µ
σ

�

= Φ
� x −µ
σ

�

;

its p.d.f. must then be

fX (x) =
d

d x
FX (x)

=
d

d x
Φ
� x −µ
σ

�

=
1
σ
φ
� x −µ
σ

�

.

Any random variable X with this c.d.f./p.d.f. satisfies

E[X ] = µ+σE[Z] = µ,

Var[X ] = σ2Var[Z] = σ2,

SD[X ] = σ

and is said to be normal with mean µ and variance σ2,
denoted by X ∼N (µ,σ2).

As it happens, every general normal X can be obtained
by a linear transformation of the standard normal Z .

Traditionally, probability computations for normal distri-
butions are done with tables which compile values of the
standard normal distribution c.d.f., such as the one found
in [21] (see here for a preview).
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With the advent of freely-available statistical software, the
need for tabulated values had decreased.12

In R, the standard normal c.d.f. FZ(z) = P(Z ≤ z)
can be computed with the function pnorm(z)– for in-
stance, pnorm(0)=0.5. (In the example below, when-
ever P(Z ≤ a) is evaluated for some a, the value is found
either by consulting a table or using pnorm.)

Examples

Let Z represent the standard normal random variable.
Then:

a) P(Z ≤ 0.5) = 0.6915

b) P(Z < −0.3) = 0.3821

c) P(Z > 0.5) = 1− P(Z ≤ 0.5) = 1− 0.6915= 0.3085

d) P(0.1 < Z < 0.3) = P(Z < 0.3) − P(Z < 0.1) =
0.6179− 0.5398= 0.0781

e) P(−1.2 < Z < 0.3) = P(Z < 0.3)− P(Z < −1.2) =
0.5028

Suppose that the waiting time (in minutes) in a coffee
shop at 9am is normally distributed with mean 5 and
standard deviation 0.5.13 What is the probability that
the waiting time for a customer is at most 6 minutes?

Answer: let X denote the waiting time.

Then X ∼N (5, 0.52) and the standardised random
variable is a standard normal:

Z =
X − 5
0.5

∼N (0, 1) .

The desired probability is

P (X ≤ 6) = P
�

X − 5
0.5

≤
6− 5
0.5

�

= P
�

Z ≤
6− 5
0.5

�

= Φ
�

6− 5
0.5

�

= Φ(2) = P(Z ≤ 2)≈ 0.9772.

Suppose that bottles of beer are filled in such a way
that the actual volume of the liquid content (in mL)
varies randomly according to a normal distribution
with µ= 376.1 and σ = 0.4.14 What is the probabil-
ity that the volume in any randomly selected bottle
is less than 375mL?

Answer: let X denote the volume of the liquid in the
bottle. Then

X ∼N (376.1,0.42) =⇒ Z =
X − 376.1

0.4
∼N (0,1) .

12Although it would still be a good idea to learn how to read/use them.
13In theory, this cannot be the true model as this would imply that

some of the wait times could be negative, but it may nevertheless be an
acceptable assumption in practice.

14The statement from the previous footnote applies here as well – we
will assume that this is understood from this point onward.

The desired probability is thus

P (X < 375) = P
�

X − 376.1
0.4

<
375− 376.1

0.4

�

= P
�

Z <
−1.1
0.4

�

= P(Z ≤ −2.75) = Φ (−2.75)≈ 0.003 .

If Z ∼N (0,1), for which values a, b and c do:

a) P(Z ≤ a) = 0.95;

b) P(|Z | ≤ b) = P(−b ≤ Z ≤ b) = 0.99;

c) P(|Z | ≥ c) = 0.01.

Answer:

a) From the table (or R) we see that

P(Z ≤ 1.64)≈ 0.9495, P(Z ≤ 1.65)≈ 0.9505 .

Clearly we must have 1.64< a < 1.65; a linear
interpolation provides a decent guess at a ≈
1.645.15.

b) Note that

P (−b ≤ Z ≤ b) = P(Z ≤ b)− P(Z < −b)

However the p.d.f. φ(z) is symmetric about z =
0, which means that

P(Z < −b) = P(Z > b) = 1− P(Z ≤ b),

and so that

P (−b ≤ Z ≤ b) = P(Z ≤ b)− [1− P(Z ≤ b)]
= 2P(Z ≤ b)− 1

In the question, P(−b ≤ Z ≤ b) = 0.99, so that

2P(Z ≤ b)− 1= 0.99 =⇒ P(Z ≤ b) =
1+ 0.99

2
= 0.995 .

Consulting the table we see that

P(Z ≤ 2.57)≈ 0.9949, P(Z ≤ 2.58)≈ 0.9951;

a linear interpolation suggests that b ≈ 2.575.

c) Note that {|Z | ≥ c}= {|Z |< c}c , so we need to
find c such that

P (|Z |< c) = 1− P (|Z | ≥ c) = 0.99.

But this is equivalent to

P (−c < Z < c) = P(−c ≤ Z ≤ c) = 0.99

as |x | < y ⇔−y < x < y, and P(Z = c) = 0
for all c. This problem was solved in part b); set
c ≈ 2.575.

15This level of precision is usually not necessary – it is often sufficient
to simply present the interval estimate: a ∈ (1.64,1.65)
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3.4 Exponential Distributions
Assume that cars arrive according to a Poisson process
with rate λ, that is, the number of cars arriving within a
fixed unit time period is a Poisson random variable with
parameter λ.

Over a period of time x , we would then expect the num-
ber of arrivals N to follow a Poisson process with parameter
λx . Let X be the wait time to the first car arrival. Then

P(X > x) = 1− P(X ≤ x) = P(N = 0) = exp(−λx).

We say that X follows an exponential distribution Exp(λ):

FX (x) =

¨

0 for x < 0

1− e−λx for 0≤ x

fX (x) =

¨

0 for x < 0

λe−λx for 0≤ x

Note that fX (x) = F ′X (x) for all x .

If X ∼ Exp(4), then P(X < 0.5) = FX (0.5) = 1− e−4(0.5) ≈
0.865 is the area of the shaded region below:

Properties If X ∼ Exp(λ), then

µ= E[X ] = 1/λ, since

µ=

∫ ∞

0

xλe−λx d x =
�

−
λx + 1
λ

e−λx
�∞

0

=
�

0+
λ(0) + 1
λ

e−0
�

=
1
λ

;

σ2 = Var[X ] = 1/λ2, since

σ2 =

∫ ∞

0

(x − E[X ])2λe−λx d x

=

∫ ∞

0

�

x −
1
λ

�2

λe−λx d x

=

�

−
λ2 x2 + 1
λ2

e−λx

�∞

0

=

�

0+
λ2(0)2 + 1

λ2
e−0

�

=
1
λ2

;

and P(X > s+ t | X > t) = P(X > s), for all s, t > 0,
since

P(X > s+ t | X > t) =
P(X > s+ t and X > t)

P(X > t)

=
P(X > s+ t)

P(X > t)
=

1− FX (s+ t)
1− FX (t)

=
exp(−λ(s+ t))

exp(−λt)
= exp(−λs) = P(X > s)

(we say that exponential distributions are memory-
less).

In a sense, Exp(λ) is the continuous analogue to the geo-
metric distribution Geo(p).

Example: the lifetime of a certain type of light bulb follows
an exponential distribution whose mean is 100 hours (i.e.
λ= 1/100).

What is the probability that a light bulb will last at
least 100 hours?

Answer: Since X ∼ Exp(1/100), we have

P(X > 100) = 1− P(X ≤ 100) = exp(−100/100)≈ 0.37.

Given that a light bulb has already been burning for
100 hours, what is the probability that it will last at
least 100 hours more?

Answer: we seek P(X > 200 | X > 100). By the
memory-less property,

P(X > 200 | X > 100) = P(X > 200−100) = P(X > 100)≈ 0.37.

The manufacturer wants to guarantee that their light
bulbs will last at least t hours. What should t be in
order to ensure that 90% of the light bulbs will last
longer than t hours?

Answer: we need to find t such that P(X > t) = 0.9.
In other words, we are looking for t such that

0.9= P(X > t) = 1− P(X ≤ t) = 1− FX (t) = e−0.01t ,

that is,

ln0.9= −0.01t =⇒ t = −100 ln 0.9≈ 10.5 hours.

3.5 Gamma Distributions
Assume that cars arrive according to a Poisson process with
rate λ. Recall that if X is the time to the first car arrival,
then X ∼ Exp(λ).

If Y is the wait time to the rth arrival, then Y follows
a Gamma distribution with parameters λ and r, denoted
Y ∼ Γ (λ, r), for which the p.d.f. is

fY (y) =

¨

0 for y < 0
y r−1

(r−1)!λ
r e−λy for y ≥ 0
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The c.d.f. FY (y) exists (it is the area under fY from 0 to y),
but it cannot be expressed with elementary functions.

We can show that

µ= E[Y ] =
r
λ

and σ2 = Var[Y ] =
r
λ2

.

Examples

Suppose that an average of 30 customers per hour
arrive at a shop in accordance with a Poisson process,
that is to say, λ = 1/2 customers arrive on average
every minute. What is the probability that the shop-
keeper will wait more than 5 minutes before both of
the first two customers arrive?

Answer: let Y denote the wait time in minutes until
the second customer arrives. Then Y ∼ Γ (1/2, 2) and

P(Y > 5) =

∫ ∞

5

y2−1

(2− 1)!
(1/2)2e−y/2 d y

=

∫ ∞

5

ye−y/2

4
d y

=
1
4

�

−2ye−y/2 − 4e−y/2
�∞

5

=
7
2

e−5/2 ≈ 0.287.

Telephone calls arrive at a switchboard at a mean rate
of λ= 2 per minute, according to a Poisson process.
Let Y be the waiting time until the 5th call arrives.
What is the p.d.f., the mean, and the variance of Y ?

Answer: we have

fY (y) =
25 y4

4!
e−2y , for 0≤ y <∞,

E[Y ] =
5
2

, Var[Y ] =
5
4

.

The Gamma distribution can be extended to cases where
r > 0 is not an integer by replacing (r − 1)! by

Γ (r) =

∫ ∞

0

t r−1e−t d t.

The exponential and the χ2 distributions (we will discuss
the latter later) are special cases of the Gamma distribution:
Exp(λ) = Γ (λ, 1) and χ2(r) = Γ (1/2, r).

3.6 Normal Approximation of the Binomial Distribution
If X ∼B(n, p) then we may interpret X as a sum of inde-
pendent and identically distributed random variables

X = I1 + I2 + · · ·+ In where each Ii ∼B(1, p) .

Thus, according to the Central Limit Theorem (we’ll have
more to say on this topic in Section 6.2), for large n we
have

X − np
p

np(1− p)

approx
∼ N (0,1) ;

for large n if X
exact∼ B(n, p) then X

approx
∼ N (np, np(1− p)).

Normal Approximation with Continuity Correction When
X ∼B(n, p), we know that E[X ] = np and Var[X ] = np(1−
p). If n is large, we may approximate X by a normal random
variable in the following way:

P(X ≤ x) = P(X < x + 0.5) = P

�

Z <
x − np+ 0.5
p

np(1− p)

�

and

P(X ≥ x) = P(X > x − 0.5) = P

�

Z >
x − np− 0.5
p

np(1− p)

�

.

The continuity correction terms are the corresponding ±0.5
in the expressions (they are required).

Example: suppose X ∼B(36,0.5). Provide a normal ap-
proximation to the probability P(X ≤ 12).16

Answer: the expectation and the variance of a binomial r.v.
are known:

E[X ] = 36(0.5) = 18 and Var[X ] = 36(0.5)(1−0.5) = 9,

and so

P(X ≤ 12) = P
�

X − 18
3

≤
12− 18+ 0.5

3

�

norm.approx’n
≈ Φ(−1.83)

table
≈ 0.033 .

Computing Binomial Probabilities There are thus at least
four ways of computing (or approximating) binomial prob-
abilities:

using the exact formula – if X ∼ B(n, p) then for
each x = 0,1, . . . , n, P(X = x) =

�n
x

�

px(1− p)n−x ;

using tables: if n ≤ 15 and p is one of 0.1, . . . , 0.9,
then the corresponding c.d.f. can be found in many
textbook (we must first express the desired probabil-
ity in terms of the c.d.f. P(X ≤ x)), such as in

P(X < 3) = P(X ≤ 2);
P(X = 7) = P(X ≤ 7)− P(X ≤ 6) ;
P(X > 7) = 1− P(X ≤ 7);
P(X ≥ 5) = 1− P(X ≤ 4), etc.

16The binomial probabilities are not typically available in textbooks (or
online) for n= 36, although they could be computed directly in R, such
as with pbinom(12,26,0.5)=0.0326.
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using statistical software (pbinom() inR, say), and

using the normal approximation when np and n(1−p)
are both ≥ 5:

P(X ≤ x)≈ Φ
�

x + 0.5− np
p

np(1− p)

�

P(X ≥ x)≈ 1−Φ
�

x − 0.5− np
p

np(1− p)

�

.

3.7 Other Continuous Distributions
Other common continuous distributions are listed in [22]:

the Beta distribution, a family of 2-parameter distri-
butions with one mode and which is useful to estimate
success probabilities (special cases: uniform, arcsine,
PERT distributions);

the logit-normal distribution on (0, 1), which is used
to model proportions;

the Kumaraswamy distribution, which is used in sim-
ulations in lieu of the Beta distribution (as it has a
closed form c.d.f.);

the triangular distribution, which is typically used
as a subjective description of a population for which
there is only limited sample data (it is based on a
knowledge of the minimum and maximum and a
guess of the mode);

the chi-squared distribution, which is the sum of the
squares of n independent normal random variables,
is used in goodness-of-fit tests in statistics;

the F−distribution, which is the ratio of two chi-
squared random variables, used in the analysis of
variance;

the Erlang distribution is the distribution of the sum
of k independent and identically distributed expo-
nential random variables, and it is used in queueing
models (it is a special case of the Gammma distribu-
tion);

the Pareto distribution, which is used to describe
financial data and critical behavior;

Student’s T statistic, which arise when estimating
the mean of a normally-distributed population in sit-
uations where the sample size is small and the popu-
lation’s standard deviation is unknown;

the logistic distribution, whose cumulative distribu-
tion function is the logistic function;

the log-normal distribution, which describing vari-
ables that are the product of many small independent
positive variables;

etc.

4. Joint Distributions

Let X , Y be two continuous random variables. The joint
probability distribution function (joint p.d.f.) of X , Y is
a function f (x , y) satisfying:

1. f (x , y)≥ 0, for all x , y;

2.
∫∞
−∞

∫∞
−∞ f (x , y) d xd y = 1, and

3. P(A) =
∫∫

A f (x , y) d xd y , where A⊆ R2.

For a discrete variable, the properties are the same, except
that we replace integrals by sums, and we add a property
to the effect that f (x , y)≤ 1 for all x , y .

Property 3 implies that P(A) is the volume of the solid
over the region A in the x y plane bounded by the surface
z = f (x , y).

Examples:

Roll a pair of unbiased dice. For each of the 36 pos-
sible outcomes, let X denote the smaller roll, and Y
the larger roll (taken from [7]).

a) How many outcomes correspond to the event
A= {(X = 2, Y = 3)}?
Answer: the rolls (3, 2) and (2, 3) both give rise
to event A.

b) What is P(A)?

Answer: there are 36 possible outcomes, so
P(A) = 2

36 ≈ 0.0556.

c) What is the joint p.m.f. of X , Y ?

Answer: only one outcome, (X = a, Y = a),
gives rise to the event {X = Y = a}. For every
other event {X 6= Y }, two outcomes do the trick:
(X , Y ) and (Y, X ). The joint p.m.f. is thus

f (x , y) =

¨

1/36 1≤ x = y ≤ 6

2/36 1≤ x < y ≤ 6

The first property is automatically satisfied, as
is the third (by construction). There are only 6
outcomes for which X = Y , all the remaining
outcomes (of which there are 15) have X < Y .

Thus,

6
∑

x=1

6
∑

y=x

f (x , y) = 6 ·
1
36
+ 15 ·

2
36
= 1.
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d) Compute P(X = a) and P(Y = b), for a, b =
1, . . . , 6.
Answer: for every a = 1, . . . , 6, {X = a} corre-
sponds to the following union of events:

{X = a, Y = a}∪{X = a, Y = a+ 1} ∪ · · ·
· · · ∪ {X = a, Y = 6}.

These events are mutually exclusive, so that

P(X = a) =
6
∑

y=a

P({X = a, Y = y})

=
1

36
+

6
∑

y=a+1

2
36

=
1

36
+

2(6− a)
36

, a = 1, . . . , 6.

Similarly, we get

P(Y = b) =
1
36
+

2(b− 6)
36

, b = 1, . . . , 6.

These marginal probabilities can be found in
the margins of the p.m.f.

e) Compute P(X = 3 | Y > 3), P(Y ≤ 3 | X ≥ 4).
Answer: the notation suggests how to compute
these conditional probabilities:

P(X = 3 | Y > 3) =
P(X = 3∩ Y > 3)

P(Y > 3)

The region corresponding to P(Y > 3) = 27
36 is

shaded in red (see image at the top of the fol-
lowing column); the region corresponding to
P(X = 3) = 7

36 is shaded in blue.

The region corresponding to

P(X = 3∩ Y > 3) =
6

36
is the intersection of the regions:

P(X = 3 | Y > 3) =
6/36

27/36
=

6
27
≈ 0.2222.

As P(Y ≤ 3∩ X ≥ 4) = 0, P(Y ≤ 3|X ≥ 4) = 0.

f) Are X and Y independent?

Answer: why didn’t we simply use the multi-
plicative rule to compute

P(X = 3∩ Y > 3) = P(X = 3)P(Y > 3)?

It’s because X and Y are not independent, that
is, it is not always the case that

P(X = x , Y = y) = P(X = x)P(Y = y)

for all allowable x , y .

As it is, P(X = 1, Y = 1) = 1
36 , but

P(X = 1)P(Y = 1) =
11
36
·

1
36
6=

1
36

,

so X and Y are dependent (this is often the
case when the domain of the joint p.d.f./p.m.f.
is not rectangular).

There are 8 similar chips in a bowl: three marked
(0, 0), two marked (1, 0), two marked (0, 1) and one
marked (1, 1). A player selects a chip at random and
is given the sum of the two coordinates, in dollars
(taken from [7]).

a) What is the joint probability mass function of
X1, and X2?

Answer: let X1 and X2 represent the coordi-
nates; we have

f (x1, x2) =
3− x1 − x2

8
, x1, x2 = 0, 1.

a) What is the expected pay-off for this game?

Answer: the pay-off is simply X1 + X2. The
expected pay-off is thus

E[X1 + X2] =
1
∑

x1=0

0
∑

x2=1

(x1 + x2) f (x1, x2)

= 0 ·
3
8
+ 1 ·

2
8
+ 1 ·

2
8
+ 2 ·

1
8

= 0.75.
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Let X and Y have joint p.d.f.

f (x , y) = 2, 0≤ y ≤ x ≤ 1.

a) What is the support of f (x , y)?
Answer: the support is the set S = {(x , y) :
0 ≤ y ≤ x ≤ 1}, a triangle in the x y plane
bounded by the x−axis, the line y = 1, and the
line y = x .

The support is the blue triangle shown below.

b) What is P(0≤ X ≤ 0.5,0≤ Y ≤ 0.5)?
Answer: we need to evaluate the integral over
the shaded area:

P(0≤X ≤ 0.5, 0≤ Y ≤ 0.5)
= P(0≤ X ≤ 0.5, 0≤ Y ≤ X )

=

∫ 0.5

0

∫ x

0

2 d yd x

=

∫ 0.5

0

[2y]y=x
y=0 d x

=

∫ 0.5

0

2x d x = 1/4.

c) What are the marginal probabilities P(X = x)
and P(Y = y)?
Answer: for 0≤ x ≤ 1, we get

P(X = x) =

∫ ∞

−∞
f (x , y) d y

=

∫ y=x

y=0

2 d y = [2y]y=x
y=0 = 2x ,

and for 0≤ y ≤ 1,

P(Y = y) =

∫ ∞

−∞
f (x , y) d x =

∫ x=1

x=y

2 d x

= [2x]x=1
x=y = 2− 2y.

d) Compute E[X ], E[Y ], E[X 2], E[Y 2], and E[X Y ].

Answer: we have

E[X ] =

∫∫

S

x f (x , y) dA=

∫ 1

0

∫ x

0

2x d yd x

=

∫ 1

0

[2x y]y=x
y=0 d x =

∫ 1

0

2x2 d x

=
�

2
3

x3
�1

0
=

2
3

;

E[Y ] =

∫∫

S

y f (x , y) dA=

∫ 1

0

∫ 1

y

2y d xd y

=

∫ 1

0

[2x y]x=1
x=y d y =

∫ 1

0

(2y − 2y2) d y

=
�

y2 −
2
3

y3
�1

0
=

1
3

;

E[X 2] =

∫∫

S

x2 f (x , y) dA=

∫ 1

0

∫ x

0

2x2 d yd x

=

∫ 1

0

�

2x2 y
�y=x

y=0 d x =

∫ 1

0

2x3 d x

=
�

1
2

x4
�1

0
=

1
2

;

E[Y 2] =

∫∫

S

y2 f (x , y) dA=

∫ 1

0

∫ 1

y

2y2 d xd y

=

∫ 1

0

�

2x y2
�x=1

x=y d y =

∫ 1

0

(2y − 2y3) d y

=
�

2
3

y3 −
1
2

y4
�1

0
=

1
6

;

E[X Y ] =

∫∫

S

x y f (x , y) =

∫ 1

0

∫ x

0

2x y d yd x

=

∫ 2

0

�

x y2
�y=x

y=0 =

∫ 1

0

x2 d x

=

�

x4

4

�1

0

=
1
4

.

e) Are X and Y independent?

Answer: they are not independent as the sup-
port of the joint p.d.f. is not rectangular.

The covariance of two random variables X and Y can give
some indication of how they depend on one another:

Cov(X , Y ) = E[(X − E[X ])(Y − E[Y ])]
= E[X Y ]− E[X ]E[Y ].

When X = Y , the covariance reduces to the variance.17

Example: in the last example, Var[X ] = 1
2 − (

2
3 )

2 = 1
18 ,

Var[X ] = 1
6 − (

1
3 )

2 = 1
18 , and Cov(X , Y ) = 1

4 −
2
3 ·

1
3 =

1
36 .

17Note that the covariance could be negative, unlike the variance.
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5. Descriptive Statistics

In a sense, the underlying reason for statistical analysis is
to reach an understanding of the data.

5.1 Data Descriptions
Studies and experiments give rise to statistical units. These
units are typically described with variables (and measure-
ments), which are either qualitative (categorical) or quan-
titative (numerical).

Categorical variables take values (levels) from a finite set
of pre-determined categories (or classes); numerical vari-
ables from a (potentially infinite) set of quantities.

Examples:

1. Age is a numerical variable, measured in years, al-
though is is often reported to the nearest year integer,
or in an age range of years, in which case it is an ordi-
nal variable (mixture of qualitative or quantitative).

2. Typical numerical variables include distance in m,
volume in cm3, etc.

3. Disease diagnosis is a categorical variable with (at
least) 2 categories (positive/negative).

4. Compliance with a standard is a categorical variable:
there could be 2 levels (compliant/non-compliant)
or more (compliance, minor non-compliance issues,
major non-compliance issues).

5. Count variables are numerical variables.

Numerical Summaries In a first pass, a variable can be
described along (at least) 2 dimensions: its centrality and
its spread (the skew and the kurtosis are sometimes also
used):

centrality measures include the median, the mean,
and, less frequently, the mode;
spread (or dispersion) measures include the stan-
dard deviation (sd), the quartiles, the inter-quartile
range (IQR), and, less frequently, the range.

The median, range, and quartiles are all easily calculated
from an ordered list of the data.

Sample Median The median med(x1, . . . , xn) of a sample
of size n is a numerical value which splits the ordered data
into 2 equal subsets: half the observations below below
the median, and half above it:

if n is odd, then the position of the median (or its
rank) is (n+ 1)/2 – the median observation is the
n+1

2
th

ordered observation;

if n is even, then the median is the average of the n
2

th

and the ( n
2 + 1)th ordered observations.

The procedure is simple: order the data, and follow the
even/odd rules to the letter.

Examples

1. med(4,6,1,3,7) = med(1,3,4,6,7) = x(5+1)/2 =
x3 = 4. There are 2 observations below 4 (1,3),
and 2 observations above 4 (6,7).

2. med(1,3,4,6,7,23) =
x6/2+x6/2+1

2 = x3+x4
2 = 4+6

2 =
5. There are 3 observations below 5 (1,3,4), and 3
observations above 4 (6,7, 23).

3. med(1, 3, 3, 6, 7) = x(5+1)/2 = x3 = 3. There seems to
be only 1 observation below 3 (1), but 2 observations
above 3 (6,7).

This is not quite the correct interpretation of the me-
dian: above and below in the definition should be
interpreted as after and before, respectively. In this
example, there are 2 observations (x1 = 1, x2 = 3)
before the median (x3 = 3), and 2 after the median
(x4 = 6, x5 = 7).

Sample Mean The mean of a sample is simply the arith-
metic average of its observations. For observations x1, . . . , xn,
the sample mean is

AM(x1, . . . , xn) = x =
x1 + · · ·+ xn

n
=

1
n

�

n
∑

i=1

x i

�

Other means exist, such as the harmonic mean and the
geometric mean:

HM(x1, . . . , xn) =
n

1
x1
+ · · ·+ 1

xn

GM(x1, . . . , xn) = n
p

x1 · · · xn.

Examples:

1. AM(4,6,1,3,7) = 4+6+1+3+7
5 = 21

5 = 4.2 ≈ 4 =
med(4,6, 1,3, 7).

2. AM(1, 3, 4, 6, 7, 23) = 1+3+4+6+7+23
6 = 44

6 ≈ 7.3, which
is not nearly as close to med(1, 3,4, 6,7, 23) = 5.

3. HM(4,6, 1,3, 7) = 5
1
4+

1
6+

1
1+

1
3+

1
7
= 5

53/28 =
140
53 ≈ 2.64.

4. GM(4,6, 1,3, 7) = 5
p

4 · 6 · 1 · 3 · 7≈ 5
p

(504)≈ 3.47.

It can be shown that if x = (x1, . . . , xn) and x i > 0 for all i,
then

min(x)≤ HM(x)≤ GM(x)≤ AM(x)≤max(x).

There is no need to decide on a single centrality measure
when reporting on the data; in practice, we may use as many
of them as we want to. But there are situations where the
mean (or the median) could prove to be a better choice.

On the one hand, the use of the mean is theoretically
supported by the Central Limit Theorem (see Section 6.2),
and when the data distribution is roughly symmetric, then
the median and the mean will be near one another.
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If the data distribution is skewed then the mean is pulled
toward the long tail and as a result gives a distorted view
of the centre. Consequently, medians are generally used for
house prices, incomes, etc., as the median is robust against
outliers and incorrect readings (whereas the mean is not).

Standard Deviation While the mean, the median, and the
mode provide an idea as to where some of the distribution’s
“mass” is located, the standard deviation provides some
notion of its spread. The higher the standard deviation, the
further away from the mean the variable values are likely
to fall (see below). We will have more to say on this topic.

Quartiles Another way to provide information about the
spread of the data is via centiles, deciles, and/or quartiles.

The lower quartile Q1(x1, . . . , xn) of a sample of size n,
or Q1, is a numerical value which splits the ordered data
into 2 unequal subsets: 25% of the observations fall be-
low Q1 and 75% of the observations fall above Q1.

Similarly, the upper quartile Q3 splits the ordered data
into 75% of the observations below Q3, and 25% of the
observations above Q3.

The median can be interpreted as the middle quar-
tile Q2, of the sample, the minimum as Q0, and the maxi-
mum as Q4: the vector (Q0,Q1,Q2,Q3,Q4) is the 5-pt sum-
mary of the data.

Centiles pi , i = 0, . . . , 100 and deciles d j , j = 0, . . . , 10
run through different splitting percentages

p25 =Q1, p75 =Q3, d5 =Q2, etc.

Sort the sample observations {x1, x2, . . . , xn} in an increas-
ing order as

y1 ≤ y2 ≤ . . .≤ yn.

The smallest y1 has rank 1 and the largest yn has rank n.

Any value that falls between the observations of ranks:

b n
4 c and b n

4 c+ 1 is a lower quartile Q1;
b 3n

4 c and b 3n
4 c+ 1 is an upper quartile Q3;

b in
100 c and b in

100 c+ 1 is a centile pi , for i = 1, . . . , 99;
b jn

10 c and b jn
10 c+ 1 is a decile d j , for j = 1, . . . , 9.

In practice, we compute the m−quantile of order k for the
data, where k = 1, . . . , m− 1 by averaging the observations
of rank

�

kn
m

�

and
�

kn
m

�

+ 1.

Examples

Q1(1,3, 4,6, 7) =
1
2

�

yb5/4c + yb5/4c+1

�

=
1
2
(y1 + y2)

=
1
2
(1+ 3) = 2;

d7(1, 3,4, 6,7, 23) =
1
2

�

yb7(6)/10c + yb7(6)/10c+1

�

=
1
2

�

y4 + y5

�

=
1
2
(6+ 7) = 13/2.

Dispersion Measures Some of the dispersion measures
are fairly simple to compute: the sample range is

range(x1, . . . , xn) =max{x i} −min{x i};

the inter-quartile range is IQR=Q3 −Q1.

The sample standard deviation s and sample variance
s2 are estimates of the underlying distribution’s σ and σ2.
For observations x1, . . . , xn,

s2 =
1

n− 1

n
∑

i=1

(x i − x)2 =
1

n− 1

� n
∑

i=1

x2
i −

1
n

�

n
∑

i=1

x i

�2�

;

it differs from the (population) standard deviation and the
(population) variance in the denominator: n − 1 is used
instead of n.18

Example: the sample variance of {1, 3,4,6, 7} is

1
5− 1

 

5
∑

i=1

x2
i −

1
5

�

5
∑

i=1

x i

�2!

=
1
4

�

111−
1
5
(21)2

�

= 5.7.

18In statistical parlance, we say that 1 degree of freedom is lost when
we use the sample to estimate the sample mean.
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Outliers An outlier is an observation that lies outside the
overall pattern in a distribution.19

Let x be an observation in the sample;20 it is a

suspected outlier if

x <Q1 − 1.5 IQR or x >Q3 + 1.5 IQR,

definite outlier if

x <Q1 − 3 IQR or x >Q3 + 3 IQR.

5.2 Visual Summaries
The boxplot (also known as the box-and-whisker plot) is
a quick and easy way to present a graphical summary of a
univariate distribution:

1. draw a box along the observation axis, with endpoints
at the lower and upper quartiles Q1 and Q3, and with
a “belt” at the median Q2;

2. draw a line extending from Q1 to the smallest value
closer than 1.5IQR to the left of Q1;

3. draw a line extending from Q3 to the largest value
closer than 1.5IQR to the right of Q3;

4. any suspected outlier is plotted separately (as below):

Skewness For symmetric distributions, the median and
mean are equal, and the Q1 and Q3 are equidistant from Q2:

if Q3 − Q2 > Q2 − Q1 then the data distribution is
skewed to the right;
if Q3 − Q2 < Q2 − Q1 then the data distribution is
skewed to left.

In the boxplots below, the data is skewed to the right.

19Outlier analysis (and anomaly detection) is its own discipline – an
overview is provided here [1].

20In theory, this definition only applies to normally distributed data,
but it is often used as a first pass during outlier analysis even when the
data is not normally distributed.

Histograms Visual information can about the distribution
of the sample can also be provided via histograms.

A histogram for the sample {x1, . . . , xn} is built according
to the following specifications:

the range of the histogram is r =max{x i}−min{x i};
the number of bins should approach k =

p
n, where

n is the sample size;
the bin width should approach r/k, and
the frequency of observations in each bin should be
represented by the bin height.

Shapes of Datasets Boxplots and histograms provide an
easy visual impression of the shape of the data set, which
can eventually suggest a mathematical model for the situa-
tion of interest: another way to define skewness is to say
that data is said to be skewed to the right if the corre-
sponding boxplot or histogram is stretched to the right.

5.3 Coefficient of Correlation
Consider the following data, consisting of n = 20 paired
measurements (x i , yi) of hydrocarbon levels (x) and pure
oxygen levels (y) in fuels:

x: 0.99 1.02 1.15 1.29 1.46
y: 90.01 89.05 91.43 93.74 96.73

x: 1.36 0.87 1.23 1.55 1.40
y: 94.45 87.59 91.77 99.42 93.65

x: 1.19 1.15 0.98 1.01 1.11
y: 93.54 92.52 90.56 89.54 89.85

x: 1.20 1.26 1.32 1.43 0.95
y: 90.39 93.25 93.41 94.98 87.33

Assume that we are interested in measuring the strength
of association between x and y .

We can use a graphical display to provide an initial descrip-
tion of the relationship: it appears that the observations lie
around a hidden line.
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For paired data (x i , yi), i = 1, . . . , n, the sample correla-
tion coefficient of x and y is

ρX Y =

∑

(x i − x)(yi − y)
Æ
∑

(x i − x)2
∑

(yi − y)2
=

Sx y
Æ

Sx x Sy y

.

The coefficient ρX Y is defined only if Sx x 6= 0 and Sy y 6= 0,
i.e. neither x i nor yi are constant.

The variables x and y are uncorrelated if ρX Y = 0 (or
very small, in practice), and correlated if ρX Y 6= 0 (or |ρX Y |
is “large”, in practice).

Example: for the data on the previous page, we have

Sx y ≈ 10.18, Sx x ≈ 0.68, Sy y ≈ 173.38,

so that

ρX Y ≈
10.18

p
0.68 · 173.38

≈ 0.94.

Properties

ρX Y is unaffected by changes of scale or origin. Adding
constants to x does not change x− x and multiplying
x and y by constants changes both the numerator
and denominator equally;

ρX Y is symmetric in x and y (i.e. ρX Y = ρY X ) and
−1 ≤ ρX Y ≤ 1; if ρX Y = ±1, then the observations
(x i , yi) all lie on a straight line with a positive (nega-
tive) slope;

the sign of ρX Y reflects the trend of the points;

a high correlation coefficient value |ρX Y | does not
necessarily imply a causal relationship between the
two variables;

note that x and y can have a very strong non-linear
relationship without ρX Y reflecting it (−0.12 on the
left, 0.93 on the right).

6. Central Limit Theorem and Sampling
Distributions

In this section, we introduce one of the fundamental results
of probability theory and statistical analysis.

6.1 Sampling Distributions
A population is a set of similar items which of interest in
relation to some questions or experiments.

In some situations, it is impossible to observe the entire
set of observations that make up a population – perhaps
the entire population is too large to query, or some units
are out-of-reach.

In these cases, we can only hope to infer the behaviour
of the entire population by considering a sample (subset)
of the population.

Suppose that X1, . . . , Xn are n independent random vari-
ables, each having the same c.d.f. F , i.e. they are identi-
cally distributed. Then, {X1, . . . , Xn} is a random sample
of size n from the population, with c.d.f. F .

Any function of such a random sample is called a statistic
of the sample; the probability distribution of a statistic is
called a sampling distribution.

Recall the linear properties of the expectation and the vari-
ance: if X is a random variable and a, b ∈ R, then

E [a+ bX ] = a+ bE[X ] ,

Var [a+ bX ] = b2Var[X ] ,
SD [a+ bX ] = |b|SD[X ] .

Sum of Independent Random Variables For any random
variables X and Y , we have

E[X + Y ] = E[X ] + E[Y ].

In general,

Var[X + Y ] = Var[X ] + 2Cov(X , Y ) + Var[Y ];

if in addition X and Y are independent, then

Var[X + Y ] = Var[X ] + Var[Y ].

More generally, if X1, X2, . . . , Xn are independent, then

E

�

n
∑

i=1

X i

�

=
n
∑

i=1

E[X i] and Var

�

n
∑

i=1

X i

�

=
n
∑

i=1

Var[X i] .

Independent and Identically Distributed Random Variables
A special case of the above occurs when all of X1, . . . , Xn
have exactly the same distribution. In that case we say
they are independent and identically distributed, which
is traditionally abbreviated to “iid”.
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If X1, . . . , Xn are iid, and

E [X i] = µ and Var [X i] = σ
2 for i = 1, . . . , n,

then

E

�

n
∑

i=1

X i

�

= nµ and Var

�

n
∑

i=1

X i

�

= nσ2 .

Examples

A random sample of size 100 is taken from a pop-
ulation with mean 50 and variance 0.25. Find the
expected value and variance of the sample total.

Answer: this problem translates to “if X1, . . . , X100
are iid with E[X i] = µ= 50 and Var[X ] = σ2 = 0.25
for i = 1, . . . , 100, find E [τ] and Var [τ] for

τ=
n
∑

i=1

X i .”

According to the iid formulas,

E

�

n
∑

i=1

X i

�

= 100µ= 5000

Var

�

n
∑

i=1

X i

�

= 100σ2 = 25 .

The mean value of potting mix bags weights is 5 kg,
with standard deviation 0.2. If a shop assistant carries
4 bags (selected independently from stock) then what
is the expected value and standard deviation of the
total weight carried?

Answer: there is an implicit “population” of bag
weights. Let X1, X2, X3, X4 be iid with E[X i] = µ= 5,
SD[X i] = σ = 0.2 and Var[X i] = σ2 = 0.22 = 0.04
for i = 1, 2,3, 4. Let τ= X1 + X2 + X3 + X4.

According to the iid formulas,

E[τ] = nµ= 4 · 5= 20

Var[τ] = nσ2 = 4 · 0.04= 0.16.

Thus, SD[τ] =
p

0.16= 0.4.

Sample Mean (Reprise) The sample mean is a typical
statistic of interest:

X =
1
n

n
∑

i=1

X i .

If X1, . . . , Xn are iid with E[X i] = µ and Var[X i] = σ2 for
all i = 1, . . . , n, then

E
�

X
�

= E

�

1
n

n
∑

i=1

X i

�

=
1
n

E

�

n
∑

i=1

X i

�

=
1
n
(nµ) = µ

Var
�

X
�

= Var

�

1
n

n
∑

i=1

X i

�

=
1
n2

Var

�

n
∑

i=1

X i

�

=
1
n2

�

nσ2
�

=
σ2

n
.

Example: a set of scales returns the true weight of the
object being weighed plus a random error with mean 0 and
standard deviation 0.1 g. Find the standard deviation of
the average of 9 such measurements of an object.

Answer: suppose the object has true weight µ. The “ran-
dom error” indicates that each measurement i = 1, . . . , 9 is
written as X i = µ+ Zi where E[Zi] = 0 and SD[Zi] = 0.1
and the Zi ’s are iid.

The X i ’s are iid with E[X i] = µ and SD[X i] = σ = 0.1.
If we average X1, . . . , Xn (with n= 9) to get X , then

E
�

X
�

= µ and SD
�

X
�

= σp
n =

0.1p
9
= 1

30 ≈ 0.033 .

We do not need to know the actual distribution of the X i;
only µ and σ2 are required to compute E[X ] and Var[X ].

Sum of Independent Normal Random Variables Another
interesting case occurs when we have multiple indepen-
dent normal random variables on the same experiment.

Suppose X i ∼ N
�

µi ,σ
2
i

�

for i = 1, . . . , n, and all the X i
are independent. We already know that

E[τ] = E[X1 + · · ·+ Xn] = E[X1] + · · ·+ E[Xn]
= µ1 + · · ·+µn ;

Var[τ] = Var[X1 + · · ·+ Xn] = Var[X1] + · · ·+ Var[Xn]

= σ2
1 + · · ·+σ

2
n .

It turns out that, under these hypotheses, τ is also normally
distributed, i.e.

τ=
n
∑

i=1

X i ∼N (E[τ], Var[τ]) =N
�

µ1 + · · ·+µn,σ2
1 + · · ·+σ

2
n

�

.

Thus, if {X1, . . . , Xn} is a random sample from a normal
population with mean µ and variance σ2, then

∑n
i=1 X i

and X are also normal, which, combined with the above
work, means that

n
∑

i=1

X i ∼N
�

nµ, nσ2
�

and X ∼N
�

µ,
σ2

n

�

.

Example: suppose that the population of students’ weights
is normal with mean 75 kg and standard deviation 5 kg. If
16 students are picked at random, what is the distribution
of the (random) total weight τ? What is the probability
that the total weight exceeds 1250 kg?

Answer: If X1, . . . , X16 are iid as N (75,25), then the sum
τ= X1 + · · ·+ X16 is also normally distributed with

τ=
16
∑

i=1

X i ∼N (16 · 75,16 · 25) =N (1200, 400), and

Z =
τ− 1200
p

400
∼N (0,1).
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Thus,

P(τ > 1250) = P
�

τ− 1200
p

400
>

1250− 1200
20

�

= P(Z > 2.5) = 1− P(Z ≤ 2.5)
≈ 1− 0.9938= 0.0062 .

6.2 Central Limit Theorem
Suppose that a professor has been teaching a course for the
last 20 years. For every cohort during that period, the mid-
term exam grades of all the students have been recorded.

Let X i, j be the grade of student i in year j. Looking back
on the class lists, they find that

E[X i, j] = 56 and SD[X i, j] = 11.

This year, there are 49 students in the class. What should
the professor expect for the class mid-term exam average?

Of course, the professor cannot predict any of the stu-
dent grades or the class average with absolute certainty, but
they could try the following approach:

1. simulate the results of the class of 49 students by gen-
erating sample grades X1,1, . . . , X1,49 from a normal
distribution N (65, 152);

2. compute the sample mean for the sample and record
it as X 1;

3. repeat steps 1-2 m times and compute the standard
deviation of the sample means X 1, . . . , X m;

4. plot the histogram of the sample means X 1, . . . , X m.

What do you think is going to happen?

Central Limit Theorem: If X is the mean of a random
sample of size n taken from an unknown population with
mean µ and finite variance σ2 , then

Z =
X −µ
σ/
p

n
∼N (0,1),

as n→∞.

More precisely, this is a limiting result. If we view the
standardization

Zn =
X −µ
σ/
p

n
,

as functions of n, we have, for each z,

lim
n→∞

P (Zn ≤ z) = Φ(z) and

P (Zn ≤ z)≈ Φ(z), if n is large enough,

whether the original X i ’s are normal or not.
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Examples

The examination scores in an university course have
mean 56 and standard deviation 11. In a class of
49 students, what is the probability that the average
mark is below 50? What is the probability that the
average mark lies between 50 and 60?

Answer: let the marks be X1, ..., X49 and assume the
performances are independent. According to the cen-
tral limit theorem,

X = (X1 + X2 + · · ·+ X49)/49,

with E[X ] = 56 and Var[X ] = 112/49.
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We thus have

P(X < 50)≈ P
�

Z <
50− 56

11/7

�

= P(Z < −3.82) = 0.0001

and

P(50< X < 60)≈ P
�

50− 56
11/7

< Z <
60− 56

11/7

�

= P(−3.82< Z < 2.55)
= Φ(2.55)−Φ(−3.82)
= 0.9945.

Note that this says nothing about whether the scores
are normally distributed or not, only that the average
scores follow an approximate normal distribution.21

Systolic blood pressure readings for pre-menopausal,
non-pregnant women aged 35−40 have mean 122.6
standard deviation 11 mm Hg. An independent sam-
ple of 25 women is drawn from this target population
and their blood pressure is recorded.

What is the probability that the average blood pres-
sure is greater than 125 mm Hg? How would the
answer change if the sample size increases to 40?

Answer: according to the CLT, X ∼N (122.6, 121/25),
approximately. Thus

P(X > 125)≈ P

�

Z >
125− 122.6

11/
p

25

�

= P(Z > 1.09) = 1−Φ(1.09)
= 0.14.

However, if the sample size is 40, then

P(X > 125)≈ P

�

Z >
125− 122.6

11/
p

40

�

= 0.08.

Increasing the sample size reduces the probability
that the average is far from the expectation of each
original measurement.

Suppose that we select a random sample X1, . . . , X100
from a population with mean 5 and variance 0.01.

What is the probability that the difference between
the sample mean of the random sample and the mean
of the population exceeds 0.027?

Answer: according to the CLT, we know that, approx-

imately, Z = X−µ
σ/
p

n has standard normal distribution.

21If the scores did arise from a normal distribution, the ≈ would be
replaced by a =, as per Section 6.1.

The desired probability is thus

P = P(|X −µ| ≥ 0.027)

= P(X −µ≥ 0.027 or µ− X ≥ 0.027)

= P

�

X − 5

0.1/
p

100
≥

0.027

0.1/
p

100

�

+ P

�

X − 5

0.1/
p

100
≤
−0.027

0.1/
p

100

�

≈ P (Z ≥ 2.7) + P (Z ≤ −2.7)
= 2P (Z ≥ 2.7)≈ 2(0.0035) = 0.007.

6.3 Sampling Distributions (Reprise)
We now revisit sampling distributions.

Difference Between Two Means Statisticians are often in-
terested in the difference between various populations; a
result akin to the central limit theorem provides guidance
in that area.

Theorem: Let {X1, . . . , Xn} be a random sample from a pop-
ulation with mean µ1 and variance σ2

1, and {Y1, . . . , Ym} be
another random sample, independent of X , from a popula-
tion with mean µ2 and variance σ2

2.

If X and Y are the respective sample means, then

Z =
X − Y − (µ1 −µ2)

r

σ2
1

n +
σ2

2
m

has standard normal distribution N (0, 1) as n, m→∞.22

Example: two different machines are used to fill cereal
boxes on an assembly line. The critical measurement influ-
enced by these machines is the weight of the product in the
boxes.

The variances of these weights is identical, σ2 = 1. Each
machine produces a sample of 36 boxes, and the weights
are recorded. What is the probability that the difference
between the respective averages is less than 0.2, assuming
that the true means are identical?

Answer: we have µ1 = µ2, σ2
1 = σ

2
2 = 1, and n= m= 36.

The desired probability is

P
�

|X − Y |< 0.2
�

= P
�

−0.2< X − Y < 0.2
�

= P

�

−0.2− 0
p

1/36+ 1/36
<

X − Y − (µ1 −µ2)
p

1/36+ 1/36
<

0.2− 0
p

1/36+ 1/36

�

= P(−0.8485< Z < 0.8485)

≈ Φ(0.8485)−Φ(−0.8485)≈ 0.6.

22Like the CLT, this is a limiting result.
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Sample Variance S2 When the underlying variance is un-
known (which is usually the case in practice), it must be
approximated by the sample variance.

Theorem: Let {X1, . . . , Xn} be a random sample taken from
a normal population with mean σ2, and

S2 =
1

n− 1

n
∑

i=1

(X i − X )2

be the sample variance. The statistic

χ2 =
(n− 1)S2

σ2
=

n
∑

i=1

(X i − X )2

σ2

follows a chi-squared distribution with ν = n−1 degrees
of freedom (d.f.), where χ2(ν) = Γ (1/2,ν).

Notation: for 0 < α < 1 and ν ∈ N∗, χ2
α(ν) is the critical

value for which

P(χ2 > χ2
α(ν)) = α ,

where χ2 ∼ χ2(ν) follows a chi-squared distribution with
ν degrees of freedom.

The values of χ2
α(ν) can be found in various textbook

tables, or by using R or specialized online calculators.

Example: for instance, when ν = 8 and α = 0.95, we
have

χ2
0.95(8) = 2.732 , 23

therefore P(χ2 > 2.732) = 0.95 , where χ2 ∼ χ2(8), i.e.
χ2 has a chi-squared distribution with ν = 8 degrees of
freedom.

In other words, 95% of the area under the curve of the
probability density function of χ2(8) is found to the right
of 2.732.

23qchisq(0.95, df=8,lower.tail = FALSE)

Sample Mean With Unknown Population Variance Sup-
pose that Z ∼ N (0,1) and V ∼ χ2(ν). If Z and V are
independent, then the distribution of the random variable

T =
Z

p

V/ν

is a Student t−distribution with ν degrees of freedom,
which we denote by T ∼ t(ν).24

Theorem: let X1, . . . , Xn be independent normal random
variables with mean µ and standard deviation σ . Let X and
S2 be the sample mean and sample variance, respectively.
Then the random variable

T =
X −µ
S/
p

n
∼ t(n− 1),

follows a Student t−distribution with ν = n− 1 degrees
of freedom.

Using the same notation as with the chi-squared distri-
bution, let tα(ν) represent the critical t-value above which
we find an area under the p.d.f. of t(ν) equal to α , i.e.

P(T > tα(ν)) = α ,

where T ∼ t(ν).
For all ν, the Student t-distribution is a symmetric dis-

tribution around zero, so we have t1−α(ν) = −tα(ν). The
critical values can be found in tables, or by using the R
function qt().

If T ∼ t(ν), then for any 0< α < 1, we have

P
�

|T |< tα/2(ν)
�

= P
�

−tα/2(ν)< T < tα/2(ν)
�

= P
�

T < tα/2(ν)
�

− P
�

T < −tα/2(ν)
�

= 1− P
�

T > tα/2(ν)
�

− (1− P
�

T > −tα/2(ν)
�

)

= 1− P
�

T > tα/2(ν)
�

− (1− P
�

T > t1−α/2(ν)
�

)

= 1−α/2− (1− (1−α/2)) = 1−α.

24The probability density function of t(ν) is

f (x) =
Γ (ν/2+ 1/2)

p
πνΓ (ν/2)(1+ x2/ν)ν/2+1/2

.
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Consequently,

P

�

−tα/2(n− 1)<
X̄ −µ
S/
p

n
< tα/2(n− 1)

�

= 1−α .

We can show that t(ν)→N (0,1) as ν→∞; intuitively,
this makes sense because the estimate S gets better at esti-
mating σ when n increases.

Example: in R, we can see that when T ∼ t(8),

P (T > 2.306) = 0.025, 25

which implies P (T < −2.306) = 0.025 , so t0.025(8) = 2.306
and

P (|T | ≤ 2.306) = P (−2.306≤ T ≤ 2.306)
= 1− P (T < −2.306)− P (T > 2.306)
= 1− 2P (T < −2.306) = 0.95 .

The Student t−distribution will be useful when the time
comes to compute confidence intervals and to do hypothesis
testing (see Sections 7 and 8).

F−Distributions Let U ∼ χ2(ν1) and V ∼ χ2(ν2). If U
and V are independent, then the random variable

F =
U/ν1

V/ν2

follows an F -distribution with ν1 and ν2 degrees of free-
dom, which we denote by F ∼ F(ν1,ν2).

The probability density function of F(ν1,ν2) is

f (x) =
Γ (ν1/2+ ν2/2)(ν1/ν2)ν1/2 xν1/2−1

Γ (ν1/2)Γ (ν2/2)(1+ xν1/ν2)ν1/2+ν2/2
, x ≥ 0.

Theorem: If S2
1 and S2

2 are the sample variances of indepen-
dent random samples of size n and m, respectively, taken
from normal populations with variances σ2

1 and σ2
2 , then

F =
S2

1/σ
2
1

S2
2/σ

2
2

∼ F(n− 1, m− 1)

follows an F -distribution with ν1 = n− 1, ν2 = m− 1 d.f.

Notation: for 0 < α < 1 and ν1,ν2 ∈ N∗, fα(ν1,ν2) is
the critical value for which P(F > fα(ν1,ν2)) = α where
F ∼ F(ν1,ν2). Critical values can be found in tables, or by
using the R function qf().

It can be shown that

f1−α(ν1,ν2) =
1

fα(ν2,ν1)
;

for instance, f0.95(6, 10) = 1
f0.05(10,6) =

1
4.06 = 0.246 .26

These distributions play a role in linear regression and
ANOVA models (see Section 9).

25qt(0.025, df=8, lower.tail=FALSE)
26qf(0.95, df1=6, df2=10, lower.tail=FALSE)

7. Point and Interval Estimation

Statistical inference (generalizing from a sample to the
population) is one of the objectives of statistical analysis.

7.1 Statistical Inference
One of the goals of statistical inference is to draw conclu-
sions about a population based on a random sample from
the population.

Examples

Can we assess the reliability of a product’s manufac-
turing process by randomly selecting a sample of the
final product and determining how many of them
are compliant according to some quality assessment
scheme?
Can we determine who will win an election by polling
a small sample of respondents?

Specifically, we seek to estimate an unknown parameter θ ,
say, using a single quantity called the point estimate θ̂ .

This point estimate is obtained viar a statistic, which is
simply a function of a random sample.

The probability distribution of the statistic is its sampling
distribution; as an example, we have discussed the sam-
pling distribution of the sample mean in the previous sec-
tion. Describing such sampling distributions is a main area
of research.

Example: consider a process that manufactures gear wheels
(in some standard gauge). Let X be the random variable
that records the weight of a randomly selected gear wheel.
What is the population mean µX = E[X ]?.

Answer: in the absence of the p.d.f. f (x), we can estimate
µ = X with the help of a random sample X1, . . . , Xn of gear
wheel weight measurements, via the sample mean statistic:

X =
X1 + · · ·+ Xn

n
,

which approximately followsN
�

µ,σ2/n
�

, according to the
central limit theorem.

Statistics Common examples of statistics include:

the sample mean and the sample median;
the sample variance and the sample standard devia-
tion;
sample quantiles (median, quartiles, quantiles);
test statistics (t−statistics, χ2−statistics, f −statistics,
etc.);
order statistics (sample maximum and minimum, sam-
ple range, etc.);
sample moments and functions thereof (skewness,
kurtosis, etc.);
etc.
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Estimator Variance and Standard Error In practice, the
point estimator θ̂ varies depending on the choice of the
sample {X1, . . . , Xn}.

The standard error of a statistic is the standard devia-
tion of its sampling distribution.

For instance, if observations X1, . . . , Xn come from a a
population with unknown mean µ and known variance
σ2, then Var(X ) = σ2/n and the standard error of X is

σX =
σ
p

n
.

If the variance of the original population is unknown, then
it is estimated by the sample variance S2 and the estimated
standard error of X is

σ̂X =
S
p

n
, where S2 =

1
n− 1

n
∑

i=1

(X i − X )2.

Examples

1. A sample of 20 baseball player heights (in inches) is
shown below.

74,74,72,72,73,69,69,71,76,71,
73,73,74,74,69,70,72,73,75,78.

What is the standard error of the sample mean X?

Answer: the sampling mean of the heights is

X =
X1 + · · ·+ X20

20
= 72.6

and the sample variance S2 is

S2 =
1

20− 1

20
∑

i=1

(X i − 72.6)2 ≈ 5.6211.

The standard error of X is thus

σ̂X =
S
p

20
≈

√

√5.6211
20

≈ 0.5301.

2. Consider a sample {X1, . . . , X100} of independent obser-
vations selected from a normal population N (µ,σ2)
where σ = 50 is known, but µ is not. What is the
best estimate of µ? What is the sampling distribution
of that estimate?

Answer: the sample mean X = X1+···+X100
100 provides

the best estimate of µX = µX and the standard error
of X is σX =

50p
100
= 5.

Since the observations are sampled independently
from a normal population with mean µ and standard
deviation 50, X ∼ N (µ, 52) = N (µ, 25), according
to the CLT.

7.2 Confidence Interval for µ when σ is Known
In general, consider a sample {x1, . . . , xn} from a normal
population with known varianceσ2 and unknown meanµ.
The sample mean

x =
x1 + · · ·+ xn

n

is a point estimate of µ.27

Of course, this estimate is not exact, because x is an
observed value of X ; it is unlikely that the observed value
x should coincide with µ.

We know that X ∼N (µ,σ2/n), so that

Z =
X −µ
σ/
p

n
∼N (0, 1).

The 68− 96− 99.7 Rule For the standard normal distri-
bution, it can be shown that:

P(|Z |< 1)≈ 0.683, P(|Z |< 2)≈ 0.955, P(|Z |< 3)≈ 0.997.

This says that about 68% of the observations from N (0, 1)
fall within one standard deviation (σ = 1) from the mean
(µ = 0), about 96% within two standard deviations, and
about 99.7% within three.

In other words, whenever we observe a sample mean X
(with sample size n) from a normal population with mean
µ, we would expect the inequality

−k < Z =
X −µ
σ/
p

n
< k

to hold approximately

g(k) =







68.3% of the time, if k = 1

95.5% of the time, if k = 2

99.7% of the time, if k = 3
27In general, upper case letters are reserved for a general sample, and

lower case letters for a specifically observed sample.
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Confidence Intervals By re-arranging the terms, we can
build a symmetric g(k) confidence interval (C.I.) for µ:

X − k
σ
p

n
< µ < X + k

σ
p

n
=⇒ C.I.(µ; g(k))≡ X ± k

σ
p

n
.

Examples

Consider a sample {X1, . . . , X64} from a normal popu-
lation with standard deviation σ = 72 and unknown
mean µ. The sample mean is X = 375.2. Build a
symmetric 68.3% confidence interval for µ.

Answer: according to the formula, the symmetric
68.3% confidence interval (k = 1) for µ would be

C.I.(µ; 0.683)≡ X ± k
σ
p

n
≡ 375.2± 1 ·

72
p

64
,

which is to say

C.I.(µ; 0.683)≡ (375.2−9,375.2+9) = (366.2,384.2).

VERY IMPORTANT: this does not say that we are
68.3% sure that the true µ is between 366.2 and
384.2. Rather, what it says is that when a sample of
size 64 is taken from a normal population N (µ, 722)
and a symmetric 68.3% confidence interval for µ is
built, µ will fall between the endpoints of the interval
about 68.3% of the time.28

Build a symmetric 95.5% confidence interval for µ.

Answer: the same formula applies, with k = 2:

C.I.(µ; 0.955)≡ X ± k
σ
p

n
≡ 375.2± 2 ·

72
p

64
,

which is to say

C.I.(µ; 0.995)≡ (375.2− 18, 375.2+ 18)
= (357.2, 393.2).

Build a symmetric 99.7% confidence interval for µ.

Answer: again, the same formula applies, with k = 3:

C.I.(µ; 0.997)≡ X ± k
σ
p

n
≡ 375.2± 3 ·

72
p

64
,

which is to say

C.I.(µ; 0.995)≡ (375.2− 27, 375.2+ 27)
= (348.2, 402.2).

Note that the C.I. increases in size with the confidence
level.

28This less than intuitive interpretation of the confidence interval is one
of the disadvantages of using the frequentist approach; the analogous
concept in Bayesian statistics is called the credible interval, which agrees
with our naïve expectation of a confidence interval as saying something
about how certain we are that the true parameter is in the interval [3,20].

The interpretation stays the same, no matter the required
confidence level or the parameter of interest.

A 95.5% C.I. for the mean, for instance, indicates that
we would expect 19 out of 20 samples from the same popu-
lation to produce confidence intervals that contain the true
population mean, on average.

Confidence Interval for µ when σ is Known (Reprise)
Another approach to C.I. building is to specify the propor-
tion of the area under φ(z) of interest, and then to de-
termine the critical values (which is to say, the endpoints
of the interval).

Let {X1, . . . , Xn} be drawn from N(µ,σ2). Recall that

X −µ
σ/
p

n
∼N (0, 1).

For a symmetric 95% C.I. for µ, we need to find z∗ > 0
such that P(−z∗ < Z < z∗) ≈ 0.95. But the left-hand side
of this “equality” can be re-written as

P(−z∗ < Z < z∗) = Φ(z∗)−Φ(−z∗)
= Φ(z∗)− (1−Φ(z∗))
= 2Φ(z∗)− 1;

we are thus looking for a critical value z∗ such that

0.95= 2Φ(z∗)− 1=⇒ Φ(z∗) =
0.95+ 1

2
= 0.975.

From any normal table (or via qnorm(0.975) in R), we
see that Φ(1.96)≈ 0.9750, so that

P(−1.96< Z < 1.96) = P

�

−1.96<
X −µ
σ/
p

n
< 1.96

�

≈ 0.95.

In other words, the inequality

−1.96<
X −µ
σ/
p

n
< 1.96

holds with probability 0.95, or, equivalently,

C.I.(µ; 0.95)≡ X ± 1.96
σ
p

n

is the (symmetric) 95% C.I. for µ when σ is known.
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A similar argument shows that

C.I.(µ; 0.99)≡ X ± 2.575
σ
p

n

is the (symmetric) 99% C.I. for µ when σ is known.

The confidence level 1− α is usually expressed in terms
of a small α, so that α= 0.05 corresponds to a confidence
level of 1−α= 0.95.

For α ∈ (0,1), the value zα for which P(Z > zα) = α is
called the 100(1−α)% quantiles of the standard normal
distribution.

For general 2−sided confidence intervals (the ones we
have been building so far), the appropriate numbers are
found by solving P(|Z |> z∗) = α for z∗. By the properties
of N (0, 1),

α= P(|Z |> z∗) = 1− P(−z∗ < Z < z∗)
= 1− (2Φ(z∗)− 1)
= 2(1−Φ(z∗)),

so that
Φ(z∗) = 1−α/2 =⇒ z∗ = zα/2.

For instance,

P(|Z |> z0.025) = 0.05 =⇒ z0.025 = 1.96

P(|Z |> z0.005) = 0.01 =⇒ z0.005 = 2.575.

The symmetric 100(1−α)% C.I. for µ can thus generally
be written as

C.I.(µ; 1−α)X ± zα/2
σ
p

n
.

For a given confidence level α, shorter confidence inter-
vals are better in relation to estimating the mean:

estimates improve when the sample size n increases;
estimates improve when σ decreases.

For a given sample, if α1 > α2 then

100(1−α1)% C.I. ⊆ 100(1−α2)% C.I.

For instance, the 95% C.I. built from a sample is always
contained in the corresponding 99% C.I.

If the sample comes from a normal population, then the
C.I. is exact. Otherwise, if n is large, we may use the CLT
and get an approximate C.I.

Examples

A sample of 9 observations from a normal population
with known standard deviation σ = 5 yields a sample
mean X = 19.93. Provide a 95% and a 99% C.I. for
the unknown population mean µ.

Answer: the point estimate of µ is the sample mean
X = 19.93. The 100(1−α)% C.I.s are

X ± zα/2
σ
p

n
.

Thus,

C.I.(µ; 0.95)≡ 19.93± 1.96
5
p

9
= (16.66, 23.20)

C.I.(µ; 0.99)≡ 19.93± 2.575
5
p

9
= (15.64, 24.22).
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A sample of 25 observations from a normal popula-
tion with known standard deviation σ = 5 yields a
sample mean X = 19.93. Provide a 95% and a 99%
C.I. for the unknown population mean µ.

Answer: the point estimate of µ is the sample mean
X = 19.93. The 100(1−α)% C.I.s are

C.I.(µ; 0.95)≡ 19.93± 1.96
5
p

25
= (17.97,21.89)

C.I.(µ; 0.99)≡ 19.93± 2.575
5
p

25
= (17.35,22.51).

A sample of 25 observations from a normal popula-
tion with known standard deviation σ = 10 yields a
sample mean X = 19.93. Provide a 95% and a 99%
C.I. for the unknown population mean µ.

Answer: the point estimate of µ is the sample mean
X = 19.93. The 100(1−α)% C.I.s are

C.I.(µ; 0.95)≡ 19.93± 1.96
10
p

25
= (16.01,23.85)

C.I.(µ; 0.99)≡ 19.93± 2.575
10
p

25
= (14.78,25.08).

Note how the confidence intervals are affected byα, n, andσ.

7.3 Choice of Sample Size
The error E we commit by estimatingµ via the sample mean
X is smaller than zα/2

σp
n , with probability 100(1−α)% (in

the frequentist interpretation).

At this stage, if we want to control the error E, the only
thing we can really do is control the sample size:29

E > zα/2
σ
p

n
=⇒ n>

�zα/2σ

E

�2

.

Examples

A sample {X1, . . . , Xn} is selected from a normal popu-
lation with standard deviationσ = 100. What sample
size should be used to insure that the error on the
population estimate is at most E = 10, at a confidence
level α= 0.05?

Answer: as long as

n>
�zα/2σ

E

�2

=
�

z0.025 · 100
10

�2

= (19.6)2 = 384.16,

then the error committed by using X to estimate µ
will be at most 10, with 95% probability.

29Sampling strategies can also help, but this is a topic for another report.

Repeat the first example, but with σ = 10.

Answer: we need

n>
�zα/2σ

E

�2

=
�

z0.025 · 10
10

�2

= (1.96)2 = 3.8416.

Repeat the first example, but with E = 1.

Answer: we need

n>
�zα/2σ

E

�2

=
�

z0.025 · 100
1

�2

= (196)2 = 38416.

Repeat the first example, but with α= 0.01.

Answer: we need

n>
�zα/2σ

E

�2

=
�

z0.005 · 100
10

�2

= (25.75)2 = 663.0625.

The relationship between α, σ, E, and n is not always
intuitive, but it follows a simple rule.

7.4 Confidence Interval for µ when σ is Unknown
So far, we have been in the fortunate situation of sampling
from a population with known variance σ2. What do we
do when the population variance is unknown (a situation
which occurs much more frequently in real world applica-
tions).

The solution is to estimate σ using the sample variance

S2 =
1

n− 1

n
∑

i=1

(X i − X )2

and the sample standard deviation S =
p

S2; we use X
instead of µ since we do not know the value of the latter
(that is indeed the parameter whose value we are trying to
estimate in the first place).30

If σ is unknown, it can be shown that X−µ
S/
p

n follows approxi-
mately the Student t−distribution with n− 1 degrees of
freedom, t(n− 1).

Consequently, at a confidence level α, we have

P

�

−tα/2(n− 1)<
X −µ
S/
p

n
< tα/2(n− 1)

�

≈ 1−α,

where tα/2(n−1) is the 100(1−α/2)th quantile of t(n−1).31

100(1−α)% C.I. for µ≈ X ± tα/2(n− 1)
S
p

n
.

Equality is reached if the underlying population is normal.
30Remember, when σ is known (and n is large enough), we already

know from the CLT that Z = X−µ
σ/
p

n is approximately N (0, 1).
31Read from a table or computed using the R function qt().
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For instance, if α = 0.05 and {X1, X2, X3, X4, X5} are sam-
ples from a normal distribution with unknown mean µ and
unknown variance σ2, then t0.025(5− 1) = 2.776 and

P

�

−2.776<
X −µ
S/
p

5
< 2.776

�

= 0.95.

Examples

For a given year, 9 measurements of ozone concen-
tration are obtained:

3.5,5.1, 6.6,6.0, 4.2,4.4, 5.3,5.6, 4.4.

Assume that the measured ozone concentrations fol-
low a normal distribution with variance σ2 = 1.21,
build a 95% C.I. for the population mean µ. Note
that X = 5.01 and that S = 0.97.

Answer: since the variance is known, we use the
standard normal quantile zα/2 = z0.025 = 1.96 :

X ± z0.025
σ
p

n
= 5.01± 1.96

p
1.21
p

9
= (4.29,5.73).

Do the same thing, this time assuming that the true
variance of the underlying population is unknown.

Answer: since variance is unknown, we use the Stu-
dent quantile tα/2(n− 1) = t0.025(8) = 2.306:

X±t0.025(n−1)
S
p

n
= 5.01±2.306

0.97
p

9
= (4.26,5.76).

When the underlying variance is known, the C.I. is tighter
(smaller), which is only natural as we are more confident
about our results when we have more information.

Note: we have seen that when the underlying distribu-
tion is normal, or when it is not normal but the sample size
is “large” enough, we can build a C.I. for the population
mean, whether the population variance is known or not.

If, however, the underlying population is not normal
and the sample size is “small”, the approach used in this
section cannot guarantee the C.I.’s accuracy.

7.5 Confidence Interval for a Proportion
If X is the number of successes in n independent trials, then
X ∼B(n, p), E[X ] = np and Var[X ] = np(1− p), and the
point estimator for p is P̂ = X

n .

Since X is a sum of iid random variables, its standard-
ization

Z =
X −µ
σ

=
nP̂ − np

p

np(1− p)
=

P̂ − p
Ç

p(1−p)
n

is approximately N (0, 1), when n is large enough.

Thus, for sufficiently large n,

P



−zα/2 <
P̂ − p
Ç

p(1−p)
n

< zα/2



≈ 1−α.

Using the construction presented earlier in this section, we
conclude that

P̂ − zα/2

√

√ p(1− p)
n

< p < P̂ + zα/2

√

√ p(1− p)
n

is an approximate 100(1−α)% C.I. for p. However, this
result is not useful in practice because p is unknown, so we
use the following approximation instead:

P̂ − zα/2

√

√ P̂(1− P̂)
n

< p < P̂ + zα/2

√

√ P̂(1− P̂)
n

.

Examples

Two candidates (A and B) are running for office. A
poll is conducted: 1000 voters are selected randomly
and asked for their preference: 52% support A, while
48% support their rival, B. Provide a 95% C.I. for the
support of each candidate.

Answer: we use α = 0.05 and P̂ = 0.52. The approx-
imate 95% C.I. for A is thus

0.52± 1.96

√

√0.52 · 0.48
1000

≈ 0.52± 0.031,

while the one for B is 0.48± 0.031.

On the strength of this polling result, a newspaper
prints the following headline: “Candidate A Leads
Candidate B!” Is the headline warranted?

Answer: although there is a 4−point gap in the poll
numbers, the true support for candidate A is in the
48.9%−55.1% range, and, the true support for candi-
date B is in the 44.9%−51.1% range, with probability
95% (that is to say, 19 times out of 20).

Since there is overlap in the confidence intervals, the
race is more likely to be a dead heat.
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8. Hypothesis Testing

Hypothesis testing is another of the myriads of statistical
analysis concerns.

Claims and Suspicions Consider the following scenario:
person A claims they have a fair coin, but for some reason,
person B is suspicious of the claim, believing the coin to be
biased in favour of tails.

Person B flips the coin 10 times, expecting a low number
of heads, which they intend to use as evidence against the
claim. Let X = # of Heads.

Suppose X = 4. This is less than expected for a binomial
random variable X ∼B(10, 0.5) since E[X ] = 5; the results
are more in line with a coin for which P(Head) = 0.4.

Does this data really constitute evidence against the
claim P(Head) = 0.5?

If the coin is fair, then X ∼ B(10,0.5) and X = 4 is still
close to E[X ]; in fact, P(X = 4) = 0.205 (as opposed to
P(X = 5) = 0.246) so the event X = 4 is still quite likely. It
would seem that there is no real evidence against the claim
that the coin is fair.

The way the sentence “It would seem that there is no evidence
against the claim that the coin is fair” is worded is very
important.

We did not reject the claim that P(Head) = 0.5 (i.e. that
the coin is symmetric), but this doesn’t mean that, in fact,
P(Head) = 0.5.

Not rejecting (which is not quite the same as “accepting”)
a claim is a very weak statement.

To see why, let’s consider person C, who claims that the
coin from the example above has P(Head) = 0.3. Under
X ∼ B(10,0.3), the event X = 4 is still quite likely, with
P(X = 4) = 0.22; we do not have enough evidence to
reject either P(Head) = 0.5 or P(Head) = 0.3.

However, rejecting a claim is a very strong statement!

Let’s say that person B convinces person A to flip the coin
another 90 times. In the second round of flips, 36 Heads
occur, giving a total of 40 Heads out of 100 coin flips.

What can we say now? Does this constitute any evi-
dence against the claim? If so, how much?

Let Y ∼B(100, 0.5) (i.e. the coin is fair); Y = 40 is smaller
than what we would expect as E[Y ] = 50 if the claim is true,
so Y = 40 is again more in agreement with P(Head) = 0.4.

But the event Y = 40 does not lie in the probability
mass centre of the distribution; it falls in the distribution
tail (an area of lower probability).

For Y ∼B(100, 0.5), P(Y = 40) = 0.011 (compare this
with the previous value 0.205). Thus, if the coin is fair, the
event Y = 40 is quite unlikely.

Values down in the lower tail (or up in the upper tail)
provide some evidence against the claim. The question is,
how much evidence? How do we quantify it?

Since values that are “further down the left tail” provide
evidence against the claim of a fair coin (in favour of a coin
biased against Heads), we will use the actual tail area that
goes with the observation: the smaller the tail area, the
greater the evidence against the claim (and vice-versa).

For 4 Heads out of 10 tosses, the evidence is the p−value
P(X ≤ 4) if the claim is true, i.e.

P(X ≤ 4 | X ∼B(10,0.5)) = 0.377.

Thus, if P(Head) = 0.5, the event X ≤ 4 is still very likely:
we would see evidence that extreme (or more) ≈ 38% of
the time (simply by chance).

For 40 Heads out of 100 tosses, the evidence is the p−value
P(Y ≤ 40) if the claim is true, i.e.

P(Y ≤ 40 | Y ∼B(100,0.5)) = 0.028.

Thus, if P(Head) = 0.5, the event Y ≤ 40 is very unlikely:
we would only see evidence that extreme (or more) ≈ 3%
of the time.
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A claim’s p−value is the area of the tail of the distribution’s
p.d.f. under the assumption that the claim is true:

smaller p−value⇐⇒more evidence against claim.

A specific language and notation has evolved to describe
this approach to “testing hypotheses”:

the “claim” is called the null hypothesis and is de-
noted by H0.
the “suspicion” is called the alternative hypothesis
and is denoted by H1;
the (random) quantity we use to measure evidence
is called a test statistic – we need to know its distri-
bution when H0 is true, and
the p−value quantifies “the evidence against H0”.

Consider the coin tossing situation described previously.
The null hypothesis is

H0 : P(Head) = 0.5 .

The alternative hypothesis is

H1 : P(Head)< 0.5 .

The coin is tossed n times; the test statistic is the number
of heads X in n tosses.

If n= 10 and X = 4, the p−value is

P(X ≤ 4 | X ∼B(10,0.5)) = 0.377,

on the basis of which we would not reject the null
hypothesis that the coin was fair.

If n= 100 and X = 40, the p−value is

P(X ≤ 40 | X ∼B(100,0.5)) = 0.028,

on the basis of which we would reject the null hypoth-
esis that the coin was fair, in favour of the alternative
that it was not.

How Small Does the p−Value Need to Be? We concluded
that 37.7% was “not that small”, whereas 2.8% was “small
enough;. How small does a p−value need to be before we
consider that we have “compelling evidence” against H0?

There is no easy answer to this question. It depends on
many factors, including what penalties we might pay for
being wrong.

Typically, we look at the probability of making a type I
error, α= P(reject H0 | H0 is true) :

if p−value ≤ α, then we reject H0 in favour of H1;
if p−value > α, then there is not enough evidence
to reject H0 (which is not the same as accepting H0).

By convention, we often use α= 0.01 or α= 0.05.

The use of p-values has come under fire recently, as many
view them as the root cause of the current replication
crisis.32 In this twitter thread , K. Carr describes why
there isn’t something wrong with p−values per se:

Don’t know what a P-VALUE is?
Don’t know why P-VALUES work?
Don’t know why sometimes P-VALUES don’t work?
THIS IS THE THREAD FOR YOU.
DEFINITION OF A P-VALUE. Assume your theory
is false. The P-VALUE is the probability of getting
an outcome as extreme or even more extreme than
what you got in your experiment.
THE LOGIC OF THE P-VALUE. Assume my theory
is false. The probability of getting extreme results
should be very small but I got an extreme result in
my experiment. Therefore, I conclude that this is
strong evidence that my theory is true. That’s the
logic of the p-value.
THE P-VALUE IS REASONABLE IN THEORY BUT
TRICKY IN PRACTICE. In my opinion, the p-value
is just a mathematical version of the way humans
think. If we see something that seems unlikely given
our beliefs, we often doubt those beliefs. In practice,
the p-value can be tricky to use.
THE P-VALUE REQUIRES A GOOD DEFINITION OF
WHEN YOUR THEORY IS FALSE. There are usually
an infinite number of ways to define a world where
your theory is false. P-values often fail when peo-
ple use overly simplistic mathematical models of the
processes that created their data. If the mismatch
between their mathematical models of the world and
the actual world is too large then the probabilities
we compute can become completely disconnected
from reality.
THE P-VALUE MAY REQUIRE AN ACCURATE MODEL
OF YOU (THE OBSERVER). The probability of get-
ting the result you got depends on many things. If
you sometimes do things like throw out data or re-
peat measurements then you’re part of the system.
Your behavior affects the probability of getting your
experimental results. Therefore, to be completely
realistic, you need to have an ACCURATE model of
your own behavior when you gather and analyze
data. This is hard and a big part of why the p-value
often fails as a tool.
BY DEFINITION, P-VALUES MUST SOMETIMES BE
WRONG. When using p-values, we’re working off of
probabilities. By logic of the p-value itself, even with
perfect use, some of your decisions will be wrong.
You have to embrace this if you’re going to use the p-
values. Badly defining what it means for your model
to be false. Inaccurately modeling the chances of
getting your data including your own behaviors. Not
treating a p-value as a decision rule that can some-
times be wrong. These factors all contribute to mis-
use of the p-value in practice. Hope this cleared
some things up for you.
Thanks for coming to my p-value TED talk!

32The crisis concerns the prevalence of positive findings that are contra-
dicted in subsequent studies [4].
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8.1 Hypothesis Testing
A hypothesis is a conjecture concerning the value of a
population parameter.

Hypothesis testing require two competing hypotheses:

a null hypothesis, denoted by H0;
an alternative hypothesis, denoted by H1 or HA.

The hypothesis is tested by evaluating experimental evi-
dence:

if the evidence against H0 is strong enough, we reject
H0 in favour of H1, and we say that the evidence
against H0 in favour of H1 is significant;
if the evidence against H0 is not strong enough, then
we fail to reject H0 and we say that the evidence
against H0 is not significant.

In cases when we fail to reject H0, we do NOT accept H0 in-
stead – we simply do not have enough evidence to reject H0.

The hypotheses should be formulated prior to the exper-
iment or the study. The experiment or study is then con-
ducted to evaluate the evidence against the null hypothesis
– in order to avoid data snooping, it is crucial that we do
not formulate H1 after looking at the data.

Scientific hypotheses can be often expressed in terms of
whether an effect is found in the data.

In this case, we use the following null hypothesis:

H0 : there is no effect

against the alternative hypothesis:

H1 : there is an effect.

Errors in Hypothesis Testing Two types of errors can be
committed when testing H0 against H1

If we reject H0 when H0 was in fact true, we have
committed a type I error;
if we fail to reject H0 when H0 was in fact is false, we
have committed a type II error.

Decision: Decision:
reject H0 fail to reject H0

Reality: H0 is True Type I Error No Error

Reality: H0 is False No Error Type II Error

Examples

If we conclude that a drug treatment is useful for
treating a particular disease, but this is not the case
in reality, then we have committed an error of type I.

If we cannot conclude that a drug treatment is useful
for treating a particular disease, but in reality the
treatment is effective, then we have committed an
error of type II.

What type of error is worst? It depends on many factors.

Power of a Test The probability of committing a type I
error is usually denoted by

α= P(reject H0 | H0 is true);

that of committing a type II error by

β = P(fail to reject H0 | H0 is false),

and that of correctly rejecting H0 by

power= P(reject H0 | H0 is false) = 1− β .

Conventional values of α and β are usually 0.05 and 0.2,
respectively, although that is not a hard rule.

Types of Null and Alternative Hypotheses Let µ be the
population parameter of interest. The hypotheses are ex-
pressed in terms of the values of this parameter.

The null hypothesis is a simple hypothesis of the form:

H0 : µ= µ0,

where µ0 is some candidate value (“simple” means that it
is assumed to be a single value.)

The alternative hypothesis H1 is a composite hypothe-
sis, i.e. it contains more than one candidate value.

Depending on the context, hypothesis testing takes on one
of the following three forms:

H0 : µ= µ0, where µ0 is a number,

against a:

two-sided alternative: H1 : µ 6= µ0;
left-sided alternative: H1 : µ < µ0, or
right-sided alternative: H1 : µ > µ0.

The formulation of the alternative hypothesis depends on
the research hypothesis and is determined prior to experi-
ment or study.

Example: investigators often want to verify if new experi-
mental conditions lead to a change in population parame-
ters.

For instance, an investigator claims that the use of a new
type of soil will produce taller plants on average compared
to the use of traditional soil. The mean plant height under
the use of traditional soil is 20 cm.

1. Formulate the hypotheses to be tested.
2. If another investigator suspects the opposite, that is,

that the mean plant height when using the new soil
will be smaller than the mean plant height with old
soil. What hypotheses should be formulated?

3. A 3rd investigator believes that there will be an ef-
fect, but is not sure if the effect with be to produce
shorter or taller plants. What hypotheses should be
formulated then?
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Answer: let µ represent the mean plant height with the
new type of soil. In all three cases, the null hypothesis is
H0 : µ= 20.

The alternative hypothesis depends on the situation:

1. H1 : µ > 20.
2. H1 : µ < 20.
3. H1 : µ 6= 20.

For each H1, the corresponding p−values would be com-
puted differently when testing H0 against H1.

8.2 Test Statistics and Critical Regions
We test a statistical hypothesis we use a test statistic. A
test statistic is a function of the random sample and the
population parameter of interest.

In general, we reject H0 if the value of the test statistic
is in the critical region or rejection area for the test; the
critical region is an interval of real numbers.

The critical region is obtained using the definition of errors
in hypothesis testing – we select the critical region so that

α= P(reject H0 | H0 is true)

is equal to some pre-determined value, such as 0.05 or 0.01.

Examples: a new curing process developed for a certain
type of cement results in a mean compressive strength of
5000 kg/cm2, with a standard deviation of 120 kg/cm2.

We test the hypothesis H0 : µ= 5000 against the alter-
native H1 : µ < 5000 with a random sample of 49 pieces of
cement. Assume that the critical region in this specific in-
stance is X < 4970, that is, we would reject H0 if X < 4970.

Find the probability of committing a type I error when
H0 is true.

Answer: by definition, we have

α= P(type I error) = P(reject H0 | H0 is true)

= P(X < 4970 | µ= 5000).

Thus, according to the CLT, we have

α≈ P

�

X −µ
σ/
p

n
<

4970− 5000
120/7

�

≈ P(Z < −1.75)≈ 0.0401 .

The sampling distribution of X under H0 is shown in
red in the graphs (mean = 5000, sd = 120/7); the
sampling distribution of X under H1 in blue (mean
= 4990, sd = 120/7).

The critical region falls to the left of the vertical black
line X < 4970, and the probability of committing a
type I error is the area shaded in red:

α= P(reject H0 | H0 is true)

= P(X < 4970 | µ= 5000).

We would thus reject H0 if the observed value of X
falls to the left of X = 4970 (in the critical region).

Evaluate the probability of committing a type II error
if µ is actually 4990, say (and not 5000, as in H0).

Answer: by definition, we have

β = P(type II error) = P(fail to reject H0 | H0 is false)

= P(X > 4970 | µ= 4990).

Thus, according to the CLT, we have

β = P(X > 4970) = P

�

X −µ
σ/
p

n
>

4970− 4990
120/7

�

≈ P(Z > −1.17) = 1− P(Z < −1.17)≈ 0.879 .

The critical region falls to the the right of the vertical
black line, and the probability of committing a type
II error is the area shaded in blue:

β = P(fail to reject H0 | H0 is false)

= P(X > 4970 | µ= 4990).

We would thus fail to reject H0 if the observed vale of
X falls to the right of X = 4970 (outside the critical
region).
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The power of the test is easily computed as

power= P(reject H0 | H0 is false)

= P(X < 4970) = 1− β ≈ 0.121,

the area shaded in grey.

Evaluate the probability of committing a type II error
if µ is actually 4950, say (and not 5000, as in H0).

Answer: by definition, we have

β = P(type II error)
= P(fail to reject H0 | H0 is false)

= P(X > 4970|µ= 4950).

Thus, according to the CLT, we have

β = P

�

X −µ
σ/
p

n
>

4970− 4950
120/7

�

≈ P(Z > 1.17)≈ 0.121 .

The critical region falls to the the right of the vertical
black line, and the probability of committing a type
II error is the area shaded in blue:

β = P(fail to reject H0 | H0 is false)

= P(X > 4970 | µ= 4950).

We would thus fail to reject H0 if the observed value
of X falls to the right of X = 4970 (outside the critical
region).

The probability of making a type II error is substantially
larger in the first case, which means that the threshold
X = 4970 is not ideal in that situation.

8.3 Test for a Mean
Suppose X1, . . . , Xn is a random sample from a population
with mean µ and varianceσ2, and let X = 1

n

∑n
i=1 X i denote

the sample mean. We have seen that

if the population is normal, then X
exact∼ N (µ,σ2/n) ;

if the population is not normal, then as long as n is
large enough, X

approx
∼ N (µ,σ2/n).

In this section, we start by assuming that the population
variance σ2 is known, and that the hypothesis concerns
the unknown population mean µ.

Explanation: Left-Sided Alternative Consider the unknown
population mean µ. Suppose that we would like to test

H0 : µ= µ0 against H1 : µ < µ0,

where µ0 is some candidate value for µ.

To evaluate the evidence against H0, we compare X to µ0.
Under H0,

Z0 =
X −µ0

σ/
p

n
approx
∼ N (0,1).

We say that z0 =
x−µ0

σ/
p

n is the observed value of the Z−test
statistic Z0.

If z0 < 0, we have evidence that µ < µ0. However, we
only reject H0 in favour of H1 if the evidence is significant,
which is to say, if

z0 ≤ −zα, at a level of significance α.

The corresponding p−value for this test is the probability
of observing evidence as or more extreme than our current
evidence in favour of H1, assuming that H0 is true (that is,
simply by chance).33

The decision rule for the left-sided test is thus

if the p−value ≤ α, we reject H0 in favour of H1;
if the p−value > α, we fail to reject H0.

Formally, the left-sided test pits

H0 : µ= µ0 against H1 : µ < µ0;

at significance α, if z0 =
x−µ0

σ/
p

n ≤ −zα, we reject H0 in favour
of H1.

33“Even more extreme”, in this case, means further to the left, so that
p-value = P(Z ≤ z0) = Φ(z0), where z0 is the observed value for the Z-test
statistic.
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An equivalent right-sided test pits

H0 : µ= µ0 against H1 : µ > µ0;

at significance α, if z0 =
x−µ0

σ/
p

n ≥ zα, we reject H0 in favour
of H1.

The two-sided test pits

H0 : µ= µ0 against H1 : µ 6= µ0;

at significance α, if |z0| =
�

�

�

x−µ0

σ/
p

n

�

�

� ≥ zα/2, we reject H0 in

favour of H1.

The procedure to test for H0 : µ= µ0 requires 6 steps.

Step 1: set H0 : µ= µ0.

Step 2: select an alternative hypothesis H1 (what we are
trying to show using the data). Depending on the context,
we choose one of these alternatives:

H1 : µ < µ0 (one-sided test);
H1 : µ > µ0 (one-sided test);
H1 : µ 6= µ0 (two-sided test).

Step 3: chooseα = P(type I error), typicallyα ∈ {0.01, 0.05}.
Step 4: for the observed sample {x1, . . . , xn}, compute the
observed value of the test statistics z0 =

x−µ0

σ/
p

n .

Step 5: determine the critical region according to:

Alternative Hypothesis Critical Region
H1 : µ > µ0 z0 > zα
H1 : µ < µ0 z0 < −zα
H1 : µ 6= µ0 |z0|> zα/2

where zα is the critical value satisfying P(Z > zα) = α , for
Z ∼N (0, 1).

The critical values are displayed below for convenience.

α zα zα/2
0.05 1.645 1.960
0.01 2.327 2.576

Step 6: compute the associated p−value according to:

Alt. Hypothesis Critical Region
H1 : µ > µ0 P(Z > z0)
H1 : µ < µ0 P(Z < z0)
H1 : µ 6= µ0 2 ·min{P(Z > z0), P(Z < z0)}

Decision Rule: as above,

if the p−value ≤ α, reject H0 in favour of H1;
if the p−value > α, fail to reject H0.

A few examples will clarify the procedure.

Examples

Components are manufactured to have strength nor-
mally distributed with mean µ= 40 units and stan-
dard deviation σ = 1.2 units. The manufacturing
process has been modified, and an increase in mean
strength is claimed (the standard deviation remains
the same).

A random sample of n = 12 components produced us-
ing the modified process had the following strengths:

42.5, 39.8, 40.3, 43.1, 39.6, 41.0,
39.9, 42.1, 40.7, 41.6, 42.1, 40.8.

Does the data provide strong evidence that the mean
strength now exceeds 40 units? Use α= 0.05.

Answer: we follow the outlined procedure to test for
H0 : µ= 40 against H1 : µ > 40.

The observed value of the sample mean is x = 41.125.
Hence,

p−value= P(X ≥ x) = P(X ≥ 41.125)

= P

�

X −µ0

σ/
p

n
≥

41.125−µ0

σ/
p

n

�

= P(Z ≥ 3.25)≈ 0.006.

As the p−value is smaller than α, we reject H0 in
favour of H1.

Another way to see this is that if the model ’µ= 40’
is true, then it is very unlikely that we would observe
the event {X ≥ 41.125} entirely by chance, and so
the manufacturing process likely has an effect in the
claimed direction.
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A set of scales works properly if the measurements
differ from the true weight by a normally distributed
random error term with standard deviationσ = 0.007
grams. Researchers suspect that the scale is system-
atically adding to the weights.

To test this hypothesis, n = 10 measurements are
made on a 1.0g “gold-standard” weight, giving a set
of measurements which average out to 1.0038g. Does
this provide evidence that the scale adds to the mea-
surement weights? Use α= 0.05 and 0.01.

Answer: let µ be the weight that the scale would
record in the absence of random error terms. We test
for H0 : µ= 1.0 against H1 : µ > 1.0.

The observed test statistic is z0 =
1.0038−1.0
0.007/

p
10
≈ 1.7167.

Since

z0.05 = 1.645< z0 = 1.7167≤ z0.01 = 2.327,

we reject H0 for α = 0.05, but we fail to reject H0 for
α= 0.01. Case closed. Right?

In the previous example, assume that we are inter-
ested in whether the scale works properly, which
means that the investigators think there might be
some systematic misreading, but they are not sure in
which direction the misreading would occur. Does
the sample data provide evidence that the scale is
systematically biased? Use α= 0.05 and 0.01.

Answer: let µ be as in the previous example. We test
for H0 : µ= 1.0 against H1 : µ 6= 1.0.

The test statistic is still z0 = 1.7167; since |z0| ≤ zα/2
for both α= 0.05 and α= 0.01, we fail to reject H0
at either α= 0.05 or α= 0.01.

Thus, our “reading” of the test statistic depends on
what type of alternative hypothesis we have selected
(and so, on the overall context).

The marks for an “average” class are normally dis-
tributed with mean 60 and variance 100. Nine stu-
dents are selected from the class; their average mark
is 55. Is this subgroup “below average”?

Answer: let µ be the true mean of the subgroup. We
are testing for H0 : µ= 60 against H1 : µ < 60.

The observed sample test statistic is

z0 =
55− 60

10/
p

9
= −1.5.

The corresponding p−value is

P(X ≤ 55) = P(Z ≤ −1.5) = 0.07.

Thus there is not enough evidence to reject the claim
that the subgroup is ’average’, regardless of whether
we use α= 0.05 or α= 0.01.

We consider the same set-up as in the previous exam-
ple, but this time the sample size is n = 100, not 9.
Is there some evidence to suggest that this subgroup
of students is ‘below average’?

Answer: let µ be as before. We are still testing for
H0 : µ = 60 against H1 : µ < 60, but this time the
observed sample test statistic is

z0 =
55− 60

10/
p

100
= −5.

The corresponding p−value is

P(X ≤ 55) = P(Z ≤ −5)≈ 0.00.

Thus we reject the claim that the subgroup is ’average’,
regardless of whether we use α= 0.05 or α= 0.01.

The lesson from the last example is that the sample size
plays a role; in general, an estimate obtained from a larger
(representative) sample is more likely to be generalizable
to the population as a whole.

Tests and Confidence Intervals It is becoming more and
more common for analysts to bypass the computation of
the p−value altogether, in favour of a confidence interval
based approach.34

For a given α, we reject H0 : µ = µ0 in favour of H1 : µ 6= µ0
if, and only if, µ0 is not in the 100(1−α)% C.I. for µ.

Example: A manufacturer claims that a particular type
of engine uses 20 gallons of fuel to operate for one hour. It
is known from previous studies that this amount is normally
distributed with variance σ2 = 25 and mean µ.

A sample of size n = 9 has been taken and the following
value has been observed for the mean amount of fuel per
hour: X = 23. Should we accept the manufacturer’s claim?
Use α= 0.05.

Answer: we test for H0 : µ = 20 against H1 : µ 6= 20.
The observed sample test statistic is

z0 =
x −µ0

σ/
p

n
=

23− 20

5/
p

9
= 1.8.

For a 2−sided test with α = 0.05, the critical value is
z0.025 = 1.96. Since |z0| ≤ z0.025, z0 is not in the critical
region, and we do not reject H0.

The advantage of the confidence interval approach is that
it allows analysts to test for various claims simultaneously.
Since we know the variance of the underlying population,
an approximate 100(1−α)% C.I. for µ is given by

X ± zα/2σ/
p

n= 23± 1.96 · 5/
p

9= (19.73; 26.26).

Based on the data, we would thus not reject the claim that
µ= 20, µ= 19.74, µ= 26.20, etc.

34In order to avoid the controversy surrounding the crisis of replication?
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Test for a Mean with Unknown Variance If the data is nor-
mal and σ is unknown, we can estimate it via the sample
variance

S2 =
1

n− 1

n
∑

i=1

�

X i − X
�2

.

As we have seen for confidence intervals, the test statistic

T =
X −µ
S/
p

n
∼ t(n− 1)

follows a Student’s t−distribution with n− 1 df.

We can follow the same steps as for the test with known
variance, with the modified critical regions and p−values:

Alternative Hypothesis Critical Region
H1 : µ > µ0 t0 > tα(n− 1)
H1 : µ < µ0 t0 < −tα(n− 1)
H1 : µ 6= µ0 |t0|> tα/2(n− 1)

where

t0 =
x −µ0

S/
p

n

and tα(n− 1) is the t−value satisfying

P(T > tα(n− 1)) = α

for T ∼ t(n− 1), and

Alt. Hypothesis p−Value
H1 : µ > µ0 P(T > t0)
H1 : µ < µ0 P(T < t0)
H1 : µ 6= µ0 2 ·min{P(T > t0), P(T < t0)}

Example: consider the following observations, taken from
a normal population with unknown mean µ and variance:

18.0, 17.4, 15.5, 16.8, 19.0, 17.8,
17.4, 15.8, 17.9, 16.3, 16.9, 18.6,
17.7, 16.4, 18.2, 18.7.

Conduct a right-side hypothesis test for H0 : µ = 16.6
against H1 : µ > 16.6, using α= 0.05.

Answer: the sample size, sample mean, and sample vari-
ance are n= 16, X = 17.4 and S = 1.078, respectively.

Since the variance σ2 is unknown, the observed sample
test statistics of interest is

t0 =
x −µ0

S/
p

n
=

17.4− 16.6
1.078/4

≈ 2.968,

and the corresponding p−value is

p−value = P(X ≥ 17.4) = P(T > 2.968),

where T ∼ t(n− 1) = t(ν) = t(15).

From the t−tables (or by using the R function qt()), we
see that

P (T (15)≥ 2.947)≈ 0.005, P (T (15)≥ 3.286)≈ 0.0025.

The p−value thus lies in the interval (0.0025,0.005); in
particular, the p−value ≤ 0.05, which is strong evidence
against H0 : µ= 16.6.

8.4 Test for a Proportion
The principle for proportions is pretty much the same; as
we can see in the next example.

Example: a group of 100 adult American Catholics were
asked the following question: “Do you favour allowing
women into the priesthood?” 60 of the respondents inde-
pendently answered ’Yes’; is the evidence strong enough to
conclude that more than half of American Catholics favour
allowing women to be priests?

Answer: let X be the number of people who answered ‘Yes’.
We assume that X ∼B(100, p), where p is the true propor-
tion of American Catholics who favour allowing women to
be priests.

We thus test for H0 : p = 0.5 against H1 : p > 0.5. Un-
der H0, X ∼B(100, 0.5).

The p−value that corresponds to the observed sample is

P(X ≥ 60) = 1− P(X < 60) = 1− P(X ≤ 59)

≈ 1− P

�

X+0.5− np
p

np(1− p)
≤

59+0.5− 50
p

25

�

≈ 1− P(Z ≤ 1.9) = 0.0287,

where the +0.5 comes from the correction to the normal
approximation of the binomial distribution (see Section 3.6
for details).

Thus, we would reject H0 at α= 0.05, but not at α= 0.01.

8.5 Two-Sample Tests
Up to this point, we have only tested hypotheses about
populations by evaluating the evidence provided by a single
sample of observations.

Two-sample tests allows analysts to compare two (po-
tentially distinct) populations.

Paired Test Let X1,1, . . . , X1,n be a random sample from a
normal population with unknown mean µ1 and unknown
variance σ2; let X2,1, . . . , X2,n be a random sample from a
normal population with unknown mean µ2 and unknown
variance σ2, with both populations not necessarily inde-
pendent of one another (i.e., it’s possible that the 2 samples
arise from the same population, or represent two different
measurements on the same units).

P.Boily, J.Schellinck (2021) 49



AN OVERVIEW OF PROBABILITY AND STATISTICS DATA SCIENCE REPORT SERIES

We would like to test for H0 : µ1 = µ2 against H1 : µ1 6= µ2.

In order to do so, we compute the differences Di = X1,i−X2,i
and consider the t−test (as we do not know the variance).
The test statistic is

T0 =
D

SD/
p

n
∼ t(n− 1),

where

D =
1
n

n
∑

i=1

Di and S2
D =

1
n− 1

n
∑

i=1

(Di − D)2.

Example: the knowledge of basic statistical concepts for
n = 10 engineers was measured on a scale from 0− 100
before and after a short course in statistical quality control.
The result are as follows:

Engineer 1 2 3 4 5
Before X1,i 43 82 77 39 51
After X2,i 51 84 74 48 53
Engineer 6 7 8 9 10
Before X1,i 66 55 61 79 43
After X2,i 61 59 75 82 48

Let µ1 and µ2 be the mean score before and after the course,
respectively.

Assuming the underlying scores are normally distributed,
test for H0 : µ1 = µ2 against H1 : µ1 < µ2.

Answer: The differences Di = X1,i − X2,i are:

Engineer 1 2 3 4 5
Before X1,i 43 82 77 39 51
After X2,i 51 84 74 48 53
Difference Di −8 −2 3 −9 −2

Engineer 6 7 8 9 10
Before X1,i 66 55 61 79 43
After X2,i 61 59 75 82 48
Difference Di 5 −4 −14 −3 −5

The observed sample mean is d = −3.9, and the observed
sample variance is s2

D = 31.21.

The test statistic is:

T0 =
D− 0

SD/
p

n
∼ t(n− 1),

with observed value:

t0 =
−3.9

p

31.21/10
≈ −2.21.

We compute

P(D ≤ −3.9) = P(T (9)≤ −2.21) = P(T (9)> 2.21).

But t0.05(9) = 1.833< t0 = 2.21< t0.01(9) = 2.821, so we
reject H0 at α= 0.05, but not at α= 0.01.

Unpaired Test Let X1,1, . . . , X1,n be a random sample from
a normal population with unknown mean µ1 and variance
σ2

1; let Y2,1, . . . , Y2,m be a random sample from a normal
population with unknown mean µ2 and variance σ2

2, with
both populations independent of one another.

We want to test for

H0 : µ1 = µ2 against H1 : µ1 6= µ2.

Let X = 1
n

∑n
i=1 X i , Y = 1

m

∑m
i=1 Yi . As always, the ob-

served values are denoted by lower case letters: x , y .

σ2
1 and σ2

2 Known We can follow the same steps as for
the earlier test, with some modifications:

Alternative Hypothesis Critical Region
H1 : µ1 > µ2 z0 > zα
H1 : µ1 < µ2 z0 < −zα
H1 : µ1 6= µ2 |z0|> zα/2

where

z0 =
x − y

q

σ2
1/n+σ

2
2/m

,

and zα satisfies P(Z > zα) = α , for Z ∼N (0,1).

Alt Hypothesis p−Value
H1 : µ1 > µ2 P(Z > z0)
H1 : µ1 < µ2 P(Z < z0)
H1 : µ1 6= µ2 2 ·min{P(Z > z0), P(Z < z0)}

Example: a sample of n = 100 Albertans yields a sample
mean income of X = 33, 000$. A sample of m= 80 Ontari-
ans yields Y = 32, 000$. From previous studies, it is known
that the population income standard deviations are, respec-
tively, σ1 = 5000$ in Alberta and σ2 = 2000$ in Ontario.
Do Albertans earn more than Ontarians, on average?
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Answer: we test for H0 : µ1 = µ2 against H1 : µ1 > µ2.
The observed difference is X − Y = 1000; the observed test
statistic is

z0 =
X − Y

q

σ2
1/n+σ

2
2/m

=
1000

p

50002/100+ 20002/80
= 1.82;

the corresponding p−value is

P
�

X − Y > 1000
�

= P(Z > 1.82) = 0.035,

and so we reject H0 when α = 0.05, but not when α = 0.01.

σ2
1 andσ2

2 Unknown, with Small Samples In this case, the
modifications are:

Alternative Hypothesis Critical Region
H1 : µ1 > µ2 t0 > tα(n+m− 2)
H1 : µ1 < µ2 t0 < −tα(n+m− 2)
H1 : µ1 6= µ2 |t0|> tα/2(n+m− 2)

where

t0 =
X − Y

q

S2
p/n+ S2

p/m
and S2

p =
(n− 1)S2

1 + (m− 1)S2
2

n+m− 2
,

tα(n + m − 2) satisfies P(T > tα(n + m − 2)) = α , and
T ∼ t(n+m− 2).

Alt Hypothesis p−Value
H1 : µ1 > µ2 P(T > t0)
H1 : µ1 < µ2 P(T < t0)
H1 : µ1 6= µ2 2 ·min{P(T > t0), P(T < t0)}

Example: a researcher wants to test whether, on average,
a new fertilizer yields taller plants. Plants were divided into
two groups: a control group treated with an old fertilizer
and a study group treated with the new fertilizer. The
following data are obtained:

Sample Size Sample Mean Sample Variance
n= 8 X = 43.14 S2

1 = 71.65
m= 8 Y = 47.79 S2

2 = 52.66

Test for H0 : µ1 = µ2 vs. H1 : µ1 < µ2.

Answer: the observed difference is X − Y = −4.65 and
the pooled sampled variance is

S2
p =
(n− 1)S2

1 + (m− 1)S2
2

n+m− 2

=
7(71.65) + 7(52.66)

8+ 8− 2
= 62.155= 7.882.

The observed test statistic is

t0 =
X − Y

q

S2
p/n+ S2

p/m
=

−4.65

7.88
p

1/8+ 1/8
= −1.18;

the corresponding p−value is

P
�

X − Y < −4.65
�

= P(T (14)< −1.18)

= P(T (14)> 1.18) ∈ (0.1, 0.25)

(according to the table), and we do not reject H0 when
α= 0.05, or when α= 0.01.

σ2
1 and σ2

2 Unknown, with Large Samples In this case,
the modifications are:

Alternative Hypothesis Critical Region
H1 : µ1 > µ2 z0 > zα
H1 : µ1 < µ2 z0 < −zα
H1 : µ1 6= µ2 |z0|> zα/2

where

z0 =
X − Y

q

S2
1/n+ S2

2/m
,

and zα satisfies P(Z > zα) = α , for Z ∼N (0,1).

Alt Hypothesis p−Value
H1 : µ1 > µ2 P(Z > z0)
H1 : µ1 < µ2 P(Z < z0)
H1 : µ1 6= µ2 2 ·min{P(Z > z0), P(Z < z0)}

Example: consider the same set-up as in the previous ex-
ample, but with larger sample sizes: n = m = 100. Now
test for H0 : µ1 = µ2 against H1 : µ1 < µ2.

Answer: the observed difference is (still) −4.65. The ob-
served test statistic is

z0 =
X − Y

q

S2
1/n+ S2

2/m
=

−4.65
p

71.652/100+ 52.662/100
= −4.17;

the corresponding p−value is

P
�

X − Y < −4.65
�

= P(Z < −4.17)≈ 0.0000;

and we reject H0 when either α= 0.05 or α= 0.01.

8.6 Difference of Two Proportions
As always, we can transfer these tests to proportions, using
the normal approximation to the binomial distribution.

For instance, to test for H0 : p1 = p2 against H1 : p1 6= p2
in samples of size n1, n2, respectively, we use the observed
sample difference of proportions

z0 =
p̂1 − p̂2 − 0

p

p̂(1− p̂)
p

1/n1 + 1/n2

,

where p̂ is the pooled proportion

p̂ =
n1

n1 + n2
p̂1 +

n2

n1 + n2
p̂2.

and the p−value 2 ·min{P(Z > z0), P(Z < z0)}.
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9. Miscellanea

Introductory statistical analysis courses usually end with
hypothesis testing. In more advanced courses, learners may
be introduced to:

regression analysis and its various extensions [13,19];
design of experiments and analysis of variance/co-
variance [13];
survey sampling methods;
Bayesian analysis [3,20];
time series analysis and control charts;
categorical analysis;
multivariate analysis [11,13];
nonparametric methods [5,8];
advanced probability models [17];
measure theory, etc.

In this section, we will provide a brief introduction to sim-
ple linear regression and the analysis of variance. The
various concepts will be illustrated via the fuels dataset
introduced in Section 5.3.

9.1 Linear Regression
Regression analysis can be used to describe the relation-
ship between a predictor variable (or regressor) X and a
response variable Y .

We assume that they are indeed related through the lin-
ear model

Y = β0 + β1X + ε,

where ε is a random error and β0,β1 are the regression
coefficients. It is further assumed that E[ε] = 0, and that
the error’s variance σ2

ε = σ
2 stays constant when x varies.

The regression model can then be re-written as

E[Y |X ] = β0 + β1X .

Suppose that we have observations (x i , yi), i = 1, . . . , n, so
that

yi = β0 + β1 x i + εi , i = 1, . . . , n.

The aim of regression analysis is to find optimal estimators
b0, b1 of the unknown parameters β0,β1, in order to obtain
the estimated (fitted) least squares regression line

ŷi = b0 + b1 x i .

The residual or error in predicting yi using ŷi is thus

ei = yi − ŷi = yi − b0 − b1 x i , i = 1, . . . , n.

How do we find the estimators? How do we determine if the
fitted line is a good model for the data? In the fuels example,
for instance, the regression line is ŷ = 74.28+ 14.95x:

and the residuals ei = yi − ŷi are shown in red below:

Consider the Sum of Squared Errors (SSE):

SSE=
n
∑

i=1

e2
i =

n
∑

i=1

(yi − b0 − b1 x i)
2.35

The optimal values of b0 and b1 are those that minimize
the SSE: after all, if the sum of the squared residuals is
small, so would be the sum of the residuals.

As such, solving

0=
dSSE
db0

= −2
∑

(yi − b0 − b1 x i)

= −2n(y − b0 − b1 x)

0=
dSSE
db1

= −2
∑

(yi − b0 − b1 x i)x i

= −2
�∑

x i yi − nb0 x − b1

∑

x2
i

�

yields the least squares estimators b0, b1 of β0,β1.36

From dSSE
db0
= 0, we see that

y − b0 − b1 x = 0 =⇒ b0 = y − b1 x .

For the second coefficient, note that

Sx y =
∑

(x i − x)(yi − y) =
∑

x i yi − nx y and

Sx x =
∑

(x i − x)2 =
∑

x2
i − nx2

35It can be shown that SSE/σ2 ∼ χ2(n− 2), but that’s out-of-scope for
this document.

36We are minimizing the sum of squared residuals, hence “least
squares”.
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can be re-written as
∑

x i yi = Sx y + nx y and
∑

x2
i = Sx x + nx2.

From dSSE
db1
= 0, we can thus see that

∑

x i yi − nb0 x − b1

∑

x2
i = 0

∴ (Sx y + nx y)− nb0 x − b1(Sx x + nx2) = 0

∴ Sx y + nx y − n(y − b1 x)x − b1Sx x − nb1 x2 = 0

∴ Sx y + nx y − nx y + nb1 x2 − b1Sx x − nb1 x2 = 0

∴ Sx y − b1Sx x = 0 =⇒ b1 =
Sx y

Sx x
.

We can also show that the estimators are linear combina-
tions of the observed responses yi , a fact which can be
useful in some of the more advanced proofs:

b1 =
Sx y

Sx x
=

n
∑

i=1

ui yi , b0 = y − b1 x =
n
∑

i=1

vi yi .

Example: for the fuels data, we already know that

Sx y ≈ 10.18, Sx x ≈ 0.68, and Sy y = 173.38

(see Section 5.3). Thus, b1 =
10.18
0.68 = 14.95. Since

n= 20, x = 1.20, and y = 92.16,

we get b0 = 92.16− 20(1.20) = 74.28. Consequently, the
fitted regression line is

ŷ = 74.28+ 14.95x ,

as claimed on the previous page.

Estimating σ2 Recall that, by assumption, the variance of
the error term is σ2

ε = σ
2. By definition,

Var[ε] = E[ε2]− E2[ε]
︸ ︷︷ ︸

=02=0

= E[ε2].

The best estimator available for the variance must be some
average of the squared residuals, of the form

SSE
ℵ
=

1
ℵ

n
∑

i=1

e2
i =

1
ℵ

n
∑

i=1

(yi − ŷi)
2.

For a population, the denominator is ℵ= n; for a sample,
it is ℵ = n − 1. For the regression error, the unbiased
estimator of σ2 is in fact

σ̂2 =MSE=
SSE
n− 2

=
Sy y − b1Sx y

n− 2
,

where the SSE has n− 2 degrees of freedom.37

37The −2 appears because 2 parameters had to be estimated in order to
obtain ŷi : b0 and b1. In contrast, the sample variance has the denominator
is n− 1 because the data has to be first used to estimate one parameter,
the sample mean.

Example: what is the estimated variance of the noise in
the linear model for the fuels data?

Answer: Sx y = 10.18, Sy y = 173.38, b1 = 14.95, n= 20,
so

σ̂2 =
173.38− 14.95(10.18)

20− 2
≈ 1.18.

Properties of the Least Square Estimators Recall that the
simple linear regression model is

Y = β0 + β1X + ε, with E[ε] = 0,σ2
ε = σ

2.

Given X , Y is a random variable with mean β0 + β1X and
variance σ2:

E[Y |X ] = β0 + β1X , Var[Y |X ] = σ2.

Note that b0 and b1 depend on the observed x ’s and y ’s,
which are realizations of the random variables X and Y .

As a result, the estimators are random variables, that
is to say: different realizations (observed data) lead to dif-
ferent estimates b0, b1 for β0,β1.

Since b0, b1 are linear functions of the observed (inde-
pendent) responses yi . it can be shown that

E[b0] = β0, σ2
b0
= σ2

�

1
n
+

x2

Sx x

�

= σ2

∑n
i=1 x2

i

nSx x
,

E[b1] = β1, σ2
b1
= σ2/Sx x .

We say that b0, b1 are unbiased estimators of β0,β1. The
estimated standard errors are obtained by replacing σ2

by MSE= σ̂2 in the expressions for σ2
b1

and σ2
b0

above:

se(b0) =

√

√

√

σ̂2

�

1
n
+

x2

Sx x

�

and se(b1) =

√

√ σ̂2

Sx x
.

Example: find the estimated standard error for b0 and b1
in the fuels data.

Answer: we have n = 20, x = 1.20, Sx x = 0.68, and
σ̂2 = 1.18, so that

se(b0) =

√

√

1.18
�

1
20
+

1.202

0.68

�

≈ 1.593 and

se(b1) =

√

√1.18
0.68

≈ 1.317.

Hypothesis Testing for Linear Regression Armed with
standard errors, we can now test hypotheses on the re-
gression parameters or the regression as a whole. We can
try to ascertain if the evidence supports certain conclusions:

do the true parameters β0,β1 take on specific values;
does the line of best fit describe the dataset well;
etc.
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The steps are the same as those in Section 8:

1. set up a null hypothesis H0 and an alternative hypoth-
esis H1;

2. chose a significance level α;
3. compute the observed value of a specific test statistic

(often via some form of standardizing);
4. find the critical region or the p−value for the test

statistic under H0;
5. reject or fail to reject H0 based on the critical region

or the p−value.

Hypothesis Test for the Intercept β0 We might be inter-
ested in testing whether the true intercept β0 is equal to
some candidate value β0,0, i.e. testing for

H0 : β0 = β0,0 against H1 : β0 6= β0,0.

In order to do so, the linear regression model requires
normal errors

ε ∼N (0,σ2),

which implies that

Yi ∼N (β0 + β1X i ,σ
2), i = 1, . . . , n.

Since b0 is a linear function of the observed normal re-
sponses yi , it has itself a normal distribution

b0 ∼N
�

β0,
σ2

nSx x

∑

x2
i

�

.

Therefore, under H0,

Z0 =
b0 − β0,0
r

σ2
∑

x2
i

nSx x

∼N (0,1).

But σ2 is not known; the test statistic obtained by using
σ̂2 =MSE instead of σ2 is

T0 =
b0 − β0,0
r

σ̂2
∑

x2
i

nSx x

∼ t(n− 2),

which now follows a Student t−distribution with n− 2 de-
grees of freedom.38

The critical region in this case is provided by one of:

Alternative Hypothesis Critical/Rejection Region
H1 : β0 > β0,0 t0 > tα(n− 2)
H1 : β0 < β0,0 t0 < −tα(n− 2)
H1 : β0 6= β0,0 |t0|> tα/2(n− 2)

where t0 is the observed value of T0 and tα(n− 2) is the
t−value satisfying P(T > tα(n− 2)) = α , for T ∼ t(n− 2).

As always, we reject H0 if t0 in the critical region, and
opt not to reject H0 otherwise.

38Less is known in that case, hence the need to introduce the degrees of
freedom as an additional parameter.

Hypothesis Test for the Slope β1 We might also be inter-
ested in testing whether the true slope β1 is equal to some
candidate value β1,0, i.e.

H0 : β1 = β1,0 against H1 : β1 6= β1,0.

The same assumption of normal errors is required, leading
to

b1 ∼N
�

β1,
σ2

Sx x

�

.

Therefore, under H0,

Z0 =
b1 − β1,0
p

σ2/Sx x

∼N (0, 1).

But σ2 is not known; the test statistic obtained by using
σ̂2 =MSE instead of σ2 is

T0 =
b1 − β1,0
p

σ̂2/Sx x

∼ t(n− 2),

which also follows a Student t−distribution with n− 2 d.f.
The critical region in this case is provided by one of:

Alternative Hypothesis Critical/Rejection Region
H1 : β1 > β1,0 t0 > tα(n− 2)
H1 : β1 < β1,0 t0 < −tα(n− 2)
H1 : β1 6= β1,0 |t0|> tα/2(n− 2)

where t0 and tα(n− 2) are as in the previous column. The
decision rule is identical: we reject H0 if t0 in the critical
region, and opt not to reject H0 otherwise.

Significance of Regression As long as Sx x 6= 0 (which is
to say, as long as there are at least two distinct values of X
in the data), we can fit a regression line to the observations
using the least squares framework.

One of the goals of linear regression is to describe the
linear relationship between two variables X and Y ... as-
suming that one indeed exists. How can this be done?
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The regression line for the dataset on the previous page is

ŷ = −0.01− 0.04x .

The regression line exists, but it does not describe the bi-
variate data set at all. The relationship between X and Y
in that dataset is simply not linear.39

Given a regression line, we may want to test whether it
is significant. The test for significance of the regression
is

H0 : β1 = 0 against H1 : β1 6= 0.

If we reject H0 in favour of H1, then the evidence suggests
that there is at least a partly linear relationship between X
and Y .

Example: in the fuels dataset, we have b1 = 14.95, n = 20,
Sx x = 0.68, σ̂2 = 1.18. We test for significance of the
regression at α= 0.01:

H0 : β1 = 0 , against H1 : β1 6= 0.

Since the observed value of the test statistic is

t0 =
b1 − 0

p

σ̂2/Sx x

= 11.35> 2.88= t0.01/2(18) ,

where t0.01/2(18) is the critical value of the t−distribution
with 18 degrees of freedom at α = 0.01 for two-sided
tests,40 we reject H0 and conclude that there is indeed a
linear relationship between X and Y (at α= 0.01).41

Confidence and Prediction Intervals for Linear Regression
We can also build confidence intervals (C.I.) for the re-
gression parameters and prediction intervals (P.I.) for the
predicted values, with the same steps as in Section 7:

1. compute a point estimate W for the parameter β or
the prediction Y using the observed data;

2. find the appropriate standard error se(W );
3. select a confidence level α and find the appropriate

critical value kα/2, where k represents the correspond-
ing distribution, and

4. build the 100(1−α)% interval W ± kα/2 · se(W ).

C.I. for the Intercept β0 and the Slope β1 Since we esti-
mate the error variance with σ̂2 = MSE, we need to use
Student’s t−distribution with n− 2 degrees of freedom (re-
member that we use the data to estimate 2 parameters).

The 100(1−α)% C.I. for β0 and β1 are:

β0 : b0 ± tα/2(n− 2) · se(b0)

= b0 ± tα/2(n− 2)

√

√

√

σ̂2

∑

x2
i

nSx x

39It is more like a “blob.”
40Obtained with -qt(0.01/2,18) in R.
41As is readily apparent in the scatterplot on p. 52.

and

β1 : b1 ± tα/2(n− 2) · se(b1)

= b1 ± tα/2(n− 2)

√

√ σ̂2

Sx x

The caveat regarding the interpretation of confidence inter-
vals still applies.

Example: build 95%, 99% C.I. for β0,β1 in the fuels data.

Answer: b0 = 74.283, b1 = 14.947, se(b0) = 1.593,
se(b1) = 1.317, t0.025(18) = 2.10 and t0.005(18) = 2.88, as
we have seen in previous examples.

Then, for α= 0.05, we have

β0 : 74.283± 2.10(1.593) = (70.93,77.63)
β1 : 14.497± 2.10(1.317) = (12.18,17.71)

and for α= 0.01, we have

β0 : 74.283± 2.88(1.593) = (69.70,78.87)
β1 : 14.497± 2.88(1.317) = (11.15,18.74).

Confidence Intervals for the Mean Response We might
also be interested in estimating µY |x0

= E[Y |x0], the mean
response at an observed x0 (in practice, there could be
more than one response at the predictor, due to replication
in an experiment, say).

The predicted value can be read directly from the re-
gression line:

µ̂Y |x0
= b0 + b1 x0.

The distance (at x0) between the estimated value and the
true regression line is

µ̂Y |x0
−µY |x0

= (b0 − β0) + (b1 − β1) x0.

The predicted value µ̂Y |x0
will depend on the observed

values, and so it has a distribution. We can show that
E[µ̂Y |x0

] = µY |x0
and

Var[µ̂Y |x0
] = Var[b0 + b1 x0] = σ

2

�

1
n
+
(x0 − x)2

Sx x

�

.

Note that Var[b0 + b1 x0] 6= Var[b0] + Var[b1 x0] since b0
and b1 are dependent.

With the usual tα/2(n − 2), the 100(1 − α)% C.I. for the
mean response µY |x0

(or for the line of regression) is

µ̂Y |x0
± tα/2(n− 2)

√

√

√

σ̂2

�

1
n
+
(x0 − x)2

Sx x

�

.

Example: for the fuels dataset, the 95% C.I. for µY |x0
is

74.28+ 14.95x0 ± 2.10

√

√

1.18
�

1
20
+
(x0 − 1.12)2

0.68

�

.
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A fair number of the observations are found outside the
95% C.I. for the mean response, potentially because of the
relatively small sample size.

Predicting New Observations If x0 is the value of interest
for the regressor (predictor), then the estimated value of
the response variable Y is

ŷ = Ŷ0 = b0 + b1 x0.

If Y0 is the true future observation at X = x0 (so, if Y0 =
β0 + β1 x0 + ε) and Ŷ0 is the predicted value, given by the
above equation, then we can show that the prediction error

ep̂ = Y0 − Ŷ0 = (β0 − b0) + (β1 − b1)x0 + ε

follows a normal distribution with zero mean and variance

σ2

�

1+
1
n
+
(x0 − x)2

Sx x

�

.

If we substitute σ2 by its estimator σ̂2 = MSE, we get a
100(1−α)% prediction interval for Y0:

b0 + b1 x0 ± tα/2(n− 2)

√

√

√

σ̂2

�

1+
1
n
+
(x0 − x)2

Sx x

�

,

where tα/2 is the critical value of Student’s t−distribution
with n− 2 degrees of freedom at confidence level α.

Example: for the fuels dataset, the 95% P.I. for µY |x0
is

74.28+ 14.95x0 ± 2.10

√

√

1.18
�

1+
1
20
+
(x0 − 1.12)2

0.68

�

.

None of the observations are found outside the 95% P.I. for
new observations. In general, for a given α, the prediction
interval is wider than the confidence interval, which should
not surprising: the CLT implies that the mean response has
a smaller variance than the predicted responses.

9.2 Analysis of Variance
The test for significance of regression,

H0 : β1 = 0 against H1 : β1 6= 0,

can be restated in term of the analysis-of-variance (ANOVA),
provided by the following table:

Source of Sum of df Mean Square F ∗ p−Value
Variation Squares
Regression SSR 1 MSR MSR

MSE P(F > F ∗)
Error SSE n− 2 MSE
Total SST n− 1

In this table, the F−statistic F∗ ∼ F(1, n− 2), and

SSE=
n
∑

i=1

(yi − ŷi)
2, SSR=

n
∑

i=1

( ŷi − y)2 , SST=
n
∑

i=1

(yi − y)2,

MSR=
SSR

1
, MSE=

SSE
n− 2

, and F ∗ =
MSR
MSE

=
SSR/1

SSE/n− 2

The rejection region for the null hypothesis H0 : β1 = 0 is
�

�

�

�

�

b1 − β1,0
p

σ̂2/Sx x

�

�

�

�

�

> tα/2(n− 2),

but it can also be written as F∗ > fα(1, n − 2) , where
fα(1, n − 2) is the critical F−value of the F -distribution
with ν1 = 1 and ν2 = n− 2 df.

Example: the F−statistic for the ANOVA of the fuels data
set can be computed directly from the data: F∗ = 128.9.
The numbers of df are ν1 = 1 and ν2 = 20− 2= 18.

The critical value at α = 0.05 is f0.05(1,18) = 4.41.42

Since F∗ = 128.9 > f0.05(1,18) = 4.4, we reject the null
hypothesis H0 in favour of the regression being significant
at α= 0.05.

Coefficient of Determination The coefficient of determi-
nation is the expression

R2 = 1−
SSE
SST

,

where SSE and SST are as in the ANOVA table.
It is the proportion of the variability in the response that

is explained by the fitted model. Note that R2 always lies
between 0 and 1; when R2 ≈ 1, the fit is considered to be
very good.43

42Obtained with =qf(0.95,1,18).
43BE CAREFUL: in practice, R2 is not always the best way to determine

the goodness-of-fit of the regression. There are other factors (such as the
number of observations) which can affect the coefficient of determination.
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10. Exercises

Throughout, “NOTP” means "none of the preceding".

1. Two events each have probability 0.2 of occurring and are
independent. The probability that neither occur is:

0.64a) 0.04b) 0.2c) 0.4d) NOTPe)

2. Two events each have probability 0.2 and are mutually
exclusive. The probability that neither occurs is:

0.36a) 0.04b) 0.2c) 0.6d) NOTPe)

3. A smoke-detector system consists of two parts A and B. If
smoke occurs then the item A detects it with probability
0.95, the item B detects it with probability 0.98 whereas
both of them detect it with probability 0.94. What is the
probability that the smoke will not be detected?

0.01a) 0.99b) 0.04c) 0.96d) NOTPe)

4. Three football players will attempt to kick a field goal.
Let A1, A2, A3 denote the events that the field goal is made
by player 1,2,3, respectively. Assume that A1, A2, A3 are
independent and P(A1) = 0.5, P(A2) = 0.7, P(A3) = 0.6.
Compute the probability that exactly 1 player is successful.

0.29a) 0.21b) 0.71c) 0.79d) NOTPe)

5. In a group of 16 candidates, 7 are chemists and 9 are
physicists. In how many ways can one choose a group of 5
candidates with 2 chemists and 3 physicists?

6. There is a theorem of combinatorics that states that the
number of permutations of n objects in which n1 are alike
of kind 1, n2 are alike of kind 2, ..., and nr are alike of kind
r (that is, n= n1 + n2 + · · ·+ nr) is

n!
n1! · n2! · · · · · nr !

.

Find the number of different words that can be formed by
rearranging the letters in the following words.

NORMALa) HHTTTTb) ILLINIc) MISSISSIPPId)

7. A class consists of 490 engineering and 510 science students.
The students are divided according to their marks:

Passed Failed
Eng. 430 60
Sci. 410 100

If one person is selected randomly, what is the probability
that they failed if they were an engineering student?

0.06a) 0.12b) 0.41c) 0.81d) NOTPe)

8. A company which produces a particular drug has two facto-
ries, A and B. 70% of the drug are made in factory A, 30%
in factory B. Suppose that 95% of the drugs produced by
factory A meet standards while only 75% of those produced
by factory B meet standards. What is the probability that a
random dose meets standards?

0.81a) 0.95b) 0.75c) 0.7d) NOTPe)

9. A medical research team wished to evaluate a proposed
screening test for Alzheimer’s disease. The test was given to
a random sample of 450 patients with Alzheimer’s disease;
in 436 cases the test result was positive. The test was
also given to a random sample of 500 patients without the
disease; only in 5 cases was the result was positive. It is
known that in Canada 11.3% of the population aged 65+
have Alzheimer’s disease. Find the probability that a person
has the disease given that their test was positive (choose
the closest answer).

0.97a) 0.93b) 0.99c) 0.07d) NOTPe)

10. Twelve items are independently sampled from a production
line. If the probability that any given item is defective is
0.1, the probability of at most two defectives in the sample
is closest to ...

0.39a) 0.99b) 0.74c) 0.89d) NOTPe)

11. A student can solve 6 problems from a list of 10. For an
exam 8 questions are selected at random from the list.
What is the probability that the student will solve exactly 5
problems?

0.98a) 0.02b) 0.28c) 0.53d) NOTPe)

12. Consider the following system with six components. We
say that it is functional if there exists a path of functional
components from left to right. The probability of each com-
ponent functions is shown. Assume that the components
function or fail independently. What is the probability that
the system operates?

0.18a) 0.82b) 0.64c) 0.20d) NOTPe)

13. Pieces of aluminum are classified according to the finishing
of the surface and according to the finishing of edge. The
results from 85 samples are summarized as follows:

Edge
Surface excellent good
excellent 60 5

good 16 4

Let A denote the event that a selected piece has "excellent"
surface, and let B denote the event that a selected piece has
“excellent” edge. If samples are elected randomly, determine
the following probabilities:

P(A)a) P(B)b) P(Ac)c)

P(A∩ B)d) P(A∪ B)e) P(Ac ∪ B)f)
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14. Three events are shown in the Venn diagram below.

Shade the region corresponding to the following events:

Aca) (A∩ B)∪ (A∩ Bc)b)

(A∩ B)∪ Cc) (B ∪ C)cd)

(A∩ B)c ∪ Ce)

15. If P(A) = 0.1, P(B) = 0.3, P(C) = 0.3, and events A, B, C
are mutually exclusive, determine the following probabili-
ties:

P(A∪ B ∪ C)a) P(A∩ B ∩ C)b) P(A∩ B)c)

P((A∪B)∩C)d) P(Ac∩Bc∩C c)e) P[(A∪B∪C)c]f)

16. The probability that an electrical switch, which is kept in
dryness, fails during the guarantee period, is 1%. If the
switch is humid, the failure probability is 8%. Assume
that 90% of switches are kept in dry conditions, whereas
remaining 10% are kept in humid conditions.

a) What is the probability that the switch fails during
the guarantee period?

b) If the switch failed during the guarantee period, what
is the probability that it was kept in humid condi-
tions?

17. The following system operates only if there is a path of
functional device from left to the right. The probability that
each device functions is as shown. What is the probability
that the circuit operates? Assume independence.

18. An inspector working for a manufacturing company has a
95% chance of correctly identifying defective items and 2%
chance of incorrectly classifying a good item as defective.
The company has evidence that 1% of the items it produces
are nonconforming (defective).

(a) What is the probability that an item selected for in-
spection is classified as defective?

(b) If an item selected at random is classified as non
defective, what is the probability that it is indeed
good?

19. Consider an ordinary 52-card North American playing deck
(4 suits, 13 cards in each suit).

a) How many different 5−card poker hands can be drawn
from the deck?

b) How many different 13−card bridge hands can be
drawn from the deck?

c) What is the probability of an all-spade 5−card poker
hand?

d) What is the probability of a flush (5−cards from the
same suit)?

e) What is the probability that a 5−card poker hand
contains exactly 3 Kings and 2 Queens?

f) What is the probability that a 5−card poker hand
contains exactly 2 Kings, 2 Queens, and 1 Jack?

20. Students on a boat send messages back to shore by arrang-
ing seven coloured flags on a vertical flagpole.

a) If they have 4 orange flags and 3 blue flags, how
many messages can they send?

b) If they have 7 flags of different colours, how many
messages can they send?

c) If they have 3 purple flags, 2 red flags, and 4 yellow
flags, how many messages can they send?

21. The Stanley Cup Finals of hockey or the NBA Finals in bas-
ketball continue until either the representative team form
the Western Conference or from the Eastern Conference
wins 4 games. How many different orders are possible
(WW EEEE means that the Eastern team won in 6 games)
if the series goes

4 games?a) 5 games?b) 6 games?c) 7 games?d)

22. Consider an ordinary 52-card North American playing deck
(4 suits, 13 cards in each suit), from which cards are drawn
at random and without replacement, until 3 spades are
drawn.

a) What is the probability that there are 2 spades in the
first 5 draws?

b) What is the probability that a spade is drawn on the
6th draw given that there were 2 spades in the first 5
draws?

c) What is the probability that 6 cards need to be drawn
in order to obtain 3 spades?

d) All the cards are placed back into the deck, and the
deck is shuffled. 4 cards are then drawn from. What
is the probability of having drawn a spade, a heart, a
diamond, and a club, in that order?

23. A student has 5 blue marbles and 4 white marbles in his left
pocket, and 4 blue marbles and 5 white marbles in his right
pocket. If they transfer one marble at random from their
left pocket to his right pocket, what is the probability of
them then drawing a blue marble from their right pocket?

24. An insurance company sells a number of different policies;
among these, 60% are for cars, 40% are for homes, and 20%
are for both. Let A1, A2, A3, A4 represent people with only a
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car policy, only a home policy, both, or neither, respectively.
Let B represent the event that a policyholder renews at
least one of the car or home policies.

a) Compute P(A1), P(A2), P(A3), and P(A4).

b) Assume P(B | A1) = 0.6, P(B | A2) = 0.7, P(B | A3) =
0.8. Given that a client selected at random has a car
or a home policy, what is the probability that they
will renew one of these policies?

25. An urn contains four balls numbered 1 through 4. The balls
are selected one at a time, without replacement. A match
occurs if ball m is the mth ball selected. Let the event Ai

denote a match on the ith draw, i = 1,2, 3,4.

a) Compute P(Ai), i = 1,2, 3,4.

b) Compute P(Ai ∩ A j), i, j = 1,2, 3,4, i 6= j.

c) Compute P(Ai ∩ A j ∩ Ak), i, j, k = 1, 2, 3, 4, i 6= j, i 6=
k, j 6= k.

d) What is the probability of at least 1 match?

26. The probability that a company’s workforce has at least
one accident in a given month is (0.01)k, where k is the
number of days in the month. Assume that the number
of accidents is independent from month to month. If the
company’s year starts on January 1, what is the probability
that the first accident occurs in April?

27. A Pap smear is a screening procedure used to detect cervical
cancer. Let T− and T+ represent the events that the test is
negative and positive, respectively, and let C represent the
event that the person tested has cancer. The false negative
rate for this test when the patient has the cancer is 16%;
the false positive test for this test when the patient does not
have cancer is 19%. In North America, the rate of incidence
for this cancer is roughly 8 out of 100,000 women. Based
on these numbers, is a Pap smear an effective procedure?
What factors influence your conclusion?

28. Of three different fair dice, one each is given to Elowyn,
Llewellyn, and Gwynneth. They each roll it. Let E =
{Elowyn rolls a 1 or a 2}, LL = {Llewellyn rolls a 3 or a 4},
and G = {Gwynneth rolls a 5 or a 6} be events.

a) What are the probabilities of each of E, LL, and G
occurring?

b) What are the probabilities of any two of E, LL, and
G occurring simultaneously?

c) What is the probability of all three of the events oc-
curring simultaneously?

d) What is the probability of at least one of E, LL, or G
occurring?

29. Over the course of two baseball seasons, player A obtained
126 hits in 500 at-bats in Season 1, and 90 hits in 300 at-
bats in Season 2; player B, on the other hand, obtained 75
hits in 300 at-bats in Season 1, and 145 hits in 500 at-bats
in Season 2. A player’s batting average is the number of
hits they obtain divided by the number of at-bats.

a) Which player has the best batting average in Sea-
son 1? In Season 2?

b) Which player has the best batting average over the
2-year period?

c) What is happening here?

30. A stranger comes to you and shows you what appears to be
a normal coin, with two distinct sides: Heads (H) and Tails
(T). They flip the coin 4 times and record the following
sequence of tosses: HHHH.

a) What is the probability of obtaining this specific se-
quence of tosses? What assumptions do you make
along the way in order to compute the probability?
What is the probability that the next toss will be a T .

b) The stranger offers you a bet: they will toss the coin
another time; if the toss is T , they give you 100$, but
if it is H, you give them 10$. Would you accept the
bet (if you are not morally opposed to gambling)?

c) Now the stranger tosses the coin 60 times and records
60× H in a row: H · · ·H. They offer you the same
bet. Do you accept it?

d) What if they offered 1000$ instead? 1,000, 000$?

31. An experiment consists in selecting a bowl, and then draw-
ing a ball from that bowl. Bowl B1 contains two red balls
and four white balls; bowl B2 contains one red ball and two
white balls; and bowl B3 contains five red balls and four
white balls. The probabilities for selecting the bowls are
not uniform: P(B1) = 1/3, P(B2) = 1/6, and P(B3) = 1/2,
respectively.

a) What is the probability of drawing a red ball P(R)?

b) If the experiment is conducted and a red ball is drawn,
what is the probability that the ball was drawn from
bowl B1? B2? B3?

32. Two companies A and B consider making an offer for road
construction. Company A submits a proposal. The proba-
bility that B submits a proposal is 1/3. If B does not submit
the proposal, the probability that A gets the job is 3/5. If B
submits the proposal, the probability that A gets the job is
1/3. What is the probability that A will get the job?

0.67a) 0.51b) 0.75c) 0.33d) NOTPe)

33. In a box of 50 fuses there are 8 defective ones. We choose
5 fuses randomly (without replacement). What is the prob-
ability that all 5 fuses are not defective?

0.40a) 0.84b) 0.37c) 0.43d) NOTPe)

34. The sample space of a random experiment is {a, b, c, d, e, f }
and each outcome is equally likely. A random variable is
defined as follows

outcome a b c d e f
X 0 0 1.5 1.5 2 3

Determine the probability mass function of X . Determine
the following probabilities:

P(X = 1.5)a) P(0.5< X2.7)b)

P(X > 3)c) P(0≤ X < 2)d)

P(X = 0 or 2)e)
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35. Determine the mean and the variance of the random vari-
able defined in the previous question.

36. We say that X has uniform distribution on a set of values
{X1, . . . , Xk} if

P(X = X i) =
1
k

, i = 1, . . . , k.

The thickness measurements of a coating process are uni-
formly distributed with values 0.15, 0.16, 0.17, 0.18, 0.19.
Determine the mean and variance of the thickness mea-
surements. Is this result compatible with a uniform distri-
bution?

37. Samples of rejuvenated mitochondria are mutated in 1%
of cases. Suppose 15 samples are studied and that they
can be considered to be independent (from a mutation
standpoint). Determine the following probabilities:

a) no samples are mutated;
b) at most one sample is mutated, and
c) more than half the samples are mutated.

Use the following CDF table for theB(n, p), with n= 15
and p = 0.99:

38. Samples of 20 parts from a metal punching process are
selected every hour. Typically, 1% of the parts require re-
work. Let X denote the number of parts in the sample
that require re-work. A process problem is suspected if X
exceeds its mean by more than three standard deviations.

a) What is the probability that there is a process prob-
lem?

b) If the re-work percentage increases to 4%, what is
the probability that X exceeds 1?

c) If the re-work percentage increases to 4%, what is
the probability that X exceeds 1 in at least one of the
next five sampling hours?

39. In a clinical study, volunteers are tested for a gene that has
been found to increase the risk for a particular disease. The
probability that the person carries a gene is 0.1.

a) What is the probability that 4 or more people will
have to be tested in order to detect 1 person with the
gene?

b) How many people are expected to be tested in order
to detect 1 person with the gene?

c) How many people are expected to be tested in order
to detect 2 people with the gene?

40. The number of failures of a testing instrument from con-
taminated particles on the product is a Poisson random
variable with a mean of 0.02 failure per hour.

a) What is the probability that the instrument does not
fail in an 8−hour shift?

b) What is the probability of at least 1 failure in a 24−hour
day?

41. Use R to generate a sample from a binomial distribution
and from a Poisson distribution (select parameters as you
wish). Use R to compute the sample means and sample
variances. Compare these values to population means and
population variances.

42. A container of 100 light bulbs contains 5 bad bulbs. We
draw 10 bulbs without replacement. Find the probability
of drawing at least 1 defective bulb.

0.42a) 0.58b) 0.1c) 0.9d) NOTPe)

43. Let X be a discrete random variable with range {0,1,2}
and probability mass function (p.m.f.) given by f (0) = 0.5,
f (1) = 0.3, and f (2) = 0.2. The expected value and
variance of X are, respectively,

.7;.6a) .7;1.1b) .5;.6c) .5;1.1d) NOTPe)

44. A factory employs several thousand workers, of whom 30%
are not from an English-speaking background. If 15 mem-
bers of the union executive committee were chosen from
the workers at random, evaluate the probability that ex-
actly 3 members of the committee are not from an English-
speaking background.

0.17a) 0.83b) 0.98c) 0.51d) NOTPe)

Use the following CDF table for theB(n, p), with n= 15
and p = 0.30 if needed:

45. Assuming the context of the previous questions, what is the
probability that a majority of the committee members do
not come from an English-speaking background?

46. In a video game, a player is confronted with a series of
opponents and has an 80% probability of defeating each
one. Success with any opponent (that is, defeating the
opponent) is independent of previous encounters. The
player continues until defeated. What is the probability
that the player encounters at least three opponents?

0.8a) 0.64b) 0.5c) 0.36d) NOTPe)

47. Assuming the context of the previous question, how many
encounters is the player expected to have?

5a) 4b) 8c) 10d) NOTPe)

48. From past experience it is known that 3% of accounts in
a large accounting company are in error. The probability
that exactly 5 accounts are audited before an account in
error is found, is:

0.242a) 0.011b) 0.030c) 0.026d) NOTPe)

49. A receptionist receives on average 2 phone calls per minute.
Assume that the number of calls can be modeled using a
Poisson random variable. What is the probability that he
does not receive a call within a 3−minute interval?

e−2a) e−1/2b) e−6c) e−1d) NOTPe)
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50. Roll a 4−sided die twice, and let X equal the larger of the
two outcomes if they are different and the common value
if they are the same. Find the p.m.f. and the c.d.f. of X .

51. Compute the mean and the variance of X as defined in the
previous question, as well as E[X (5− X )].

52. A basketball player is successful in 80% of her (indepen-
dent) free throw attempts. Let X be the minimum number
of attempts in order to succeed 10 times. Find the p.m.f.
of X and the probability that X = 12.

53. Let X be the minimum number of independent trials (each
with probability of success p) that are needed to observe r
successes. The p.m.f. of X is

f (x) = P(X = x) =
�

x − 1
r − 1

�

pr(1− p)x−1, x = r, r+1, . . .

The mean and variance of X are

E[X ] =
r
p

and Var[X ] =
r(1− p)

p2
.

Compute the mean minimum number of independent free
throw attempts required to observe 10 successful free throws
if the probability of success at the free thrown line is 80%.
What about the standard deviation of X?

54. If n≥ 20 and p ≤ 0.05, it can be shown that the binomial
distribution with n trials and an independent probability
of success p can be approximated by a Poisson distribution
with parameter λ= np:

(np)x e−np

x!
≈
�

n
x

�

px (1− p)n−x .

A manufacturer of light bulbs knows that 2% of its bulbs
are defective. What is the probability that a box of 100
bulbs contains exactly at most 3 defective bulbs? Use the
Poisson approximation to estimate the probability.

55. Consider a discrete random variable X which has a uniform
distribution over the first positive m integers, i.e.

f (x) = P(X = x) =
1
m

, x = 1, . . . , m,

and f (x) = 0 otherwise. Compute the mean and the vari-
ance of X . For what values of m is E[X ]> Var[X ]?

56. Assume that arrivals of small aircrafts at an airport can be
modeled by a Poisson random variable with an average of
1 aircraft per hour.

a) What is the probability that more than 3 aircrafts
arrive within an hour?

b) Consider 15 consecutive and disjoint 1−hour inter-
vals. What is the probability that in none of these
intervals we have more than 3 aircraft arrivals?

c) What is the probability that exactly 3 aircrafts arrive
within 2 hours?

57. In a group of ten students, each student has a probability
of 0.7 of passing the exam. What is the probability that
exactly 7 of them will pass an exam?

0.98a) 0.27b) 0.05c) 0.95d) NOTPe)

58. A company’s warranty states that the probability that a new
swimming pool requires some repairs within the 1st year is
20%. What is the probability, that the sixth sold pool is the
first one which requires some repairs within the 1st year?

0.61a) 0.39b) 0.93c) 0.07d) NOTPe)

59. Consider the following R output:

> pbinom(16,100,0.25)
[1] 0.02111062
> pbinom(30,100,0.25)
[1] 0.8962128
> pbinom(32,100,0.25)
[1] 0.9554037
> pbinom(15,100,0.25)
[1] 0.01108327
> pbinom(17,100,0.25)
[1] 0.03762626
> pbinom(31,100,0.25)
[1] 0.9306511

Let X ∼B(n, p) with n = 100 and p = 0.25. Using the R
output above, calculate P(16≤ X ≤ 31).

0.92a) 0.91b) 0.93c) 0.94d) NOTPe)

60. Consider a random variable X with probability density func-
tion (p.d.f.) given by

f (x) =











0 if x ≤ −1

0.75(1− x2) if −1≤ x < 1

0 if x ≥ 1

What is the expected value and the standard deviation of X ?

0;3a) 0;0.44b) 1;0.2c) 1;3d) NOTPe)

61. A random variable X has a cumulative distribution function
(c.d.f.)

F(x) =











0 if x ≤ 0

x/2 if 0< x < 2

1 if x ≥ 2

What is the mean value of X?

1a) 2b) 0c) 0.5d) NOTPe)

62. Let X be a random variable with p.d.f. f (x) = 3
2 x2 for

−1≤ x ≤ 1, and f (x) = 0 otherwise. Find P(X 2 ≤ 0.25).

0.250a) 0.125b) 0.500c) 0.061d) NOTPe)

63. In the inspection of tin plate produced by a continuous elec-
trolytic process, 0.2 imperfections are spotted per minute,
on average. Find the probability of spotting at least 2 im-
perfections in 5 minutes. Assume that we can model the
occurrences of imperfections as a Poisson process.

0.736a) 0.264b) 0.632c) 0.368d) NOTPe)

64. If X ∼ N (0,4), the value of P(|X | ≥ 2.2) is (using the
normal table):

0.23a) 0.84b) 0.25c) 0.27d) 0.73e) NOTPf)
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65. If X ∼ N (10,1), the value of k such that P(X ≤ k) =
0.701944 is closest to

0.59a) 0.30b) 0.53c) 10.53d) 10.30e) 10.59f)

66. The time it takes a supercomputer to perform a task is nor-
mally distributed with mean 10 milliseconds and standard
deviation 4 milliseconds. What is the probability that it
takes more than 18.2 milliseconds to perform the task?
(use the normal table or R).

0.98a) 0.85b) 0.02c) 0.22d) 0.55e) NOTPf)

67. Let X be a random variable. What is the value of b (where
b is not a function of X ) which minimizes E[(X − b)2]?

68. The time to reaction to a visual signal follows a normal
distribution with mean 0.5 seconds and standard deviation
0.035 seconds.

a) What is the probability that time to react exceeds 1
second?

b) What is the probability that time to react is between
0.4 and 0.5 seconds?

c) What is the time to reaction that is exceeded with
probability of 0.9?

69. Refer to the situation described in question 56.

d) What is the length of the interval such that the prob-
ability of having no arrival within this interval is 0.1?

e) What is the probability that one has to wait at least 3
hours for the arrival of 3 aircrafts?

f) What is the mean and variance of the waiting time
for 3 aircrafts?

70. Assume that X is normally distributed with mean 10 and
standard deviation 3. In each case, find the value x such
that:

a) P(X > x) = 0.5

b) P(X > x) = 0.95

c) P(x < X < 10) = 0.2

d) P(−x < X − 10< x) = 0.95

e) P(−x < X − 10< x) = 0.99

71. Let X ∼ Exp(λ) with mean 10. Find P(X > 30 | X > 10).

1− exp(−2)a) exp(−2)b) exp(−3)c)

1/10d) exp(−200)e) NOTPf)

72. Consider a random variable X with the following probabil-
ity density function:

f (x) =







0 if x ≤ −1
3
4 (1− x2) if −1< x < 1
0 if x ≥ 1

The value of P(X ≤ 0.5) is

11/32a) 27/32b) 16/32c) 1d)

NOTPe)

73. A receptionist receives on average 2 phone calls per minute.
If the number of calls follows a Poisson process, what is
the probability that the waiting time for call will be greater
than 1 minute?

e−1/15a) e−1/30b) e−2c) e−1d) NOTPe)

74. A company manufactures hockey pucks. It is known that
their weight is normally distributed with mean 1 and stan-
dard deviation 0.05. The pucks used by the NHL must
weigh between 0.9 and 1.1. What is the probability that a
randomly chosen puck can be used by NHL?

1a) 0.95b) 0.46c) 0.99d) NOTPe)

75. Find Var[X ], Var[Y ], and Cov(X , Y ) for the dice example
on page 25. Are X and Y independent?

76. Find Var[X1], Var[X2], and Cov(X1, X2) for the chip exam-
ple on page 26. Are X1 and X2 independent?

77. Find Var[X ], Var[Y ], and Cov(X , Y ) if X and Y have joint
p.m.f.

f (x , y) =
x + y

21
, x = 1,2, 3, y = 1, 2.

78. Find Var[X ], Var[Y ], and Cov(X , Y ) if X and Y have joint
p.m.f.

f (x , y) =
x y2

30
, x = 1,2, 3, y = 1, 2.

Are X and Y independent?

79. Find Var[X ], Var[Y ], and Cov(X , Y ) if X and Y have joint
p.m.f.

f (x , y) =
x y2

13
, (x , y) = (1,1), (1,2), (2,2)

Are X and Y independent?

80. Find Var[X ], Var[Y ], and Cov(X , Y ) if X and Y have joint
p.d.f.

f (x , y) =
3
2

x2(1− |y|), −1< x < 1, −1< y < 1.

Are X and Y independent?

81. Find Var[X ], Var[Y ], and Cov(X , Y ) if X and Y follow

f (x , y) =
1

2π
e−

1
2 (x

2+y2), −∞< x <∞, −∞< y <∞.

82. Consider a sample of n = 10 observations displayed in
ascending order.

15, 16,18,18, 20,20, 21,22, 23,75.

(a) Compute the sample mean and sample variance.

(b) Find the 5-point summary of the data. Is the distri-
bution skewed?

(c) Are there any likely outliers in the sample? If so,
indicate their values.

(d) Build and display the sample’s boxplot chart.

(e) Build and display a sample histogram.
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83. The daily number of accidents in Sydney over a 40-day
period are provided below:

6, 3,2,24, 12,3, 7,14, 21,9, 14,22, 15,2, 17,10

7, 7,31,7, 18,6, 8,2, 3,2, 17,7, 7,21, 13,23, 1,11

3, 9,4,9, 9,25

(a) Compute the sample mean and sample variance.

(b) Find the 5-point summary of the data. Is the distri-
bution skewed?

(c) Are there any likely outliers in the sample? If so,
indicate their values.

(d) Build and display the sample’s boxplot chart.

(e) Build and display a sample histogram.

84. Repeat the previous question when the “31” is replaced by
a “130”.

85. The grades in a class are shown below.

80, 73,83,60, 49,96, 87,87, 60,53, 66,83, 32,80, 66

90, 72,55,76, 46,48, 69,45, 48,77, 52,59, 97,76, 89

73, 73,48,59, 55,76, 87,55, 80,90, 83,66, 80,97, 80

55, 94,73,49, 32,76, 57,42, 94,80, 90,90, 62,85, 87

97, 50,73,77, 66,35, 66,76, 90,73, 80,70, 73,94, 59

52, 81,90,55, 73,76, 90,46, 66,76, 69,76, 80,42, 66

83, 80,46,55, 80,76, 94,69, 57,55, 66,46, 87,83, 49

82, 93,47,59, 68,65, 66,69, 76,38, 99,61, 46,73, 90,

66, 100,83,48, 97,69, 62,80, 66,55, 28,83, 59,48, 61

87, 72,46,94, 48,59, 69,97, 83,80, 66,76, 25,55, 69

76, 38,21,87, 52,90, 62,73, 73,89, 25,94, 27,66, 66

76, 90,83,52, 52,83, 66,48, 62,80, 35,59, 72,97, 69

62, 90,48,83, 55,58, 66,100, 82,78, 62,73, 55,84, 83

66, 49,76,73, 54,55, 87,50, 73,54, 52,62, 36,87, 80,80

(a) Compute the sample mean and sample variance.

(b) Find the 5-point summary of the data. Is the distri-
bution skewed?

(c) Are there any likely outliers in the sample? If so,
indicate their values.

(d) Build and display the sample’s boxplot chart.

(e) Build and display a sample histogram.

(f) Based on your analysis, how well did the class do?

86. Consider the following dataset:

2.6 3.7 0.8 9.6 5.8 -0.8 0.7 0.6
4.8 1.2 3.3 5.0 3.7 0.1 -3.1 0.3

The median and the interquartile range of the sample are,
respectively:

2.4;3.3a) 1.9;3.8b) 1.9;1.8c) 2.9; 12.2d)

NOTPe)

87. The following charts show a histogram and a boxplot for
two samples, A and B. Based on these charts, we may
conclude that

only A arises from a normal populationa)

only B arises from a normal populationb)

both A and B arise from a normal populationc)

88. Consider the following dataset:

12 14 6 10 1 20 4 8

The median and the first quartile of the dataset are, respec-
tively:

9; 5a) 5.5;6b) 10;5c) 5; 10d) NOTPe)

89. A manufacturer of fluoride toothpaste regularly measures
the concentration of of fluoride in the toothpaste to make
sure that it is within the specifications of 0.85−1.10 mg/g.

(a) Build a relative frequency histogram of the data (a
histogram with area = 1).

(b) Compute the data’s mean x and its standard devia-
tion sx .

(c) The mean and the variance can also be approximated
as follows. Let ui be the class mark for each of the
histogram’s classes (the midpoint along the rectan-
gles’ widths), n be the total number of observations,
and k be the number of classes. Then

u=
1
n

k
∑

i=1

fiui and s2
u =

1
n− 1

fi(ui − u)2.

Compute u and su. How do they compare with x and sx ?

(d) Provide a the 5−point summary of the data, as well
as the interquartile range IQR.

(e) Display this information as a boxplot chart.

(f) Compute the midrange 1
2 (Q0 + Q4), the trimean

1
4 (Q1 + 2Q2 + Q3), and the range Q4 − Q0 for the
fluoride data.

P.Boily, J.Schellinck (2021) 63



AN OVERVIEW OF PROBABILITY AND STATISTICS DATA SCIENCE REPORT SERIES

90. Suppose that samples of size n = 25 are selected at random
from a normal population with mean 100 and standard
deviation 10. What is the probability that sample mean
falls in the interval

(µX − 1.8σX ,µX + 1.0σX )?

91. The amount of time that a customer spends waiting at an
airport check-in counter is a random variable with mean
µ = 8.2 minutes and standard deviation σ = 1.5 min-
utes. Suppose that a random sample of n= 49 customers
is taken. Compute the approximate probability that the
average waiting time for these customers is:

Less than 10 min.a)

Between 5 and 10 min.b)

Less than 6 min.c)

92. A random sample of size n1 = 16 is selected from a normal
population with a mean of 75 and standard deviation of 8.
A second random sample of size n2 = 9 is taken indepen-
dently from another normal population with mean 70 and
standard deviation of 12. Let X 1 and X 2 be the two sample
means. Find

a) The probability that X 1 − X 2 exceeds 4.

b) The probability that 3.5< X 1 − X 2 < 5.5.

93. Using R, illustrate the central limit theorem by generating
M = 300 samples of size n= 30 from:

a normal random variable with mean 10 and variance
0.75;

a binomial random variable with 3 trials and proba-
bility of success 0.3.

Repeat the same procedure for samples of size n = 200.
What do you observe?

94. Suppose that the weight in pounds of a North American
adult can be represented by a normal random variable with
mean 150 lbs and variance 900 lbs2. An elevator containing
a sign “Maximum 12 people” can safely carry 2000 lbs. The
probability that 12 North American adults will not overload
the elevator is closest to

0.97a) 0.45b) 0.03c) 0.00d) 1.3e) NOTPf)

95. Let X1, · · · , X50 be an independent random sample from a
Poisson distribution with mean 1. Set Y = X1 + · · ·+ X50.
The approximate probability P(48≤ Y ≤ 52) is closest to:

0.64a) 0.45b) 0.22c) 1.00d) 0.50e) NOTPf)

A new type of electronic flash for cameras will last an aver-
age of 5000 hours with a standard deviation of 500 hours. A
quality control engineer intends to select a random sample
of 100 of these flashes and use them until they fail. What
is the probability that the mean life time of the sample of
100 flashes will be less than 4928 hours?

0.07a) 0.93b) 0.00c) 0.45d) NOTPe)

96. Assume that random variables {X1, . . . , X8} follow a normal
distribution with mean 2 and variance 24. Independently,
assume that random variables {Y1, . . . , X16} follow a normal
distribution with mean 1 and variance 16. Let X and Y be
the corresponding sample means. Then P(X + Y > 4) is:

0.77a) 0.31b) 0.69c) 0.99d) NOTPe)

97. The compressive strength of concrete is normally distributed
with mean µ = 2500 and standard deviation σ = 50. A
random sample of size 5 is taken. What is the standard
error of the sample mean?

98. Suppose that X1 ∼N (3, 4) and X2 ∼N (3, 45). Given that
X1 and X2 are independent random variables, what is a
good approximation to P(X1 + X2 > 9.5)?

0.31a) 0.69b) 0.53c) 0.43d) NOTPe)

99. A new cure has been developed for a certain type of ce-
ment that should change its mean compressive strength. It
is known that the standard deviation of the compressive
strength is 130 kg/cm2 and that we may assume that it fol-
lows a normal distribution. 9 chunks of cement have been
tested and the observed sample mean is X = 4970. Find the
95% confidence interval for the mean of the compressive
strength.

[4858.37,5081.63]a) [4885.07, 5054.93]b)

[4858.37,5054.93]c) [4944.52, 4995.48]d)

NOTPe)

100. Consider the same set-up as in the previous question, but
now 100 chunks of cement have been tested and the ob-
served sample mean is X = 4970. Find the 95% confidence
interval for the mean of the compressive strength.

[4858.37,5081.63]a) [4885.07, 5054.93]b)

[4858.37,5054.93]c) [4944.52, 4995.48]d)

NOTPe)

101. Consider the same set-up as in two questions ago, but now
we do not know the standard deviation of the normal dis-
tribution. 9 chunks of cement have been tested, and the
measurements are

5001,4945, 5008,5018, 4991,4990, 4968,5020, 5003.

Find the 95% confidence interval for the mean of the com-
pressive strength.

[4858.37,5081.63]a) [4885.07, 5054.93]b)

[4858.37,5054.93]c) [4944.52, 4995.48]d)

NOTPe)

102. A steel bar is measured with a device which a known preci-
sion ofσ = 0.5mm. Suppose we want to estimate the mean
measurement with an error of at most 0.2mm at a level
of significance α = 0.05. What sample size is required?
Assume normality.

25a) 24b) 6c) 7d) NOTPe)
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103. In a random sample of 1000 houses in the city, it is found
that 228 are heated by oil. Find a 99% C.I. for the propor-
tion of homes in the city that are heated by oil.

[0.202, 0.254]a) [0.197, 0.259]b) [0.194, 0.262]c)

[0.185, 0.247]d) NOTPe)

104. Past experience indicates that the breaking strength of yarn
used in manufacturing drapery material is normally dis-
tributed and that σ = 2 psi. A random sample of 15 speci-
mens is tested and the average breaking strength is found
to be x = 97.5 psi.

a) Find a 95% confidence interval on the true mean
breaking strength.

b) Find a 99% confidence interval on the true mean
breaking strength.

105. The diameter holes for a cable harness follow a normal
distribution with σ = 0.01 inch. For a sample of size 10,
the average diameter is 1.5045 inches.

a) Find a 99% confidence interval on the mean hole
diameter.

b) Repeat this for n= 100.

106. A journal article describes the effect of delamination on the
natural frequency of beams made from composite laminates.
The observations are as follows:

230.66,233.05, 232.58,229.48, 232.58,235.22.

Assuming that the population is normal, find a 95% confi-
dence interval on the mean natural frequency.

107. A textile fibre manufacturer is investigating a new drap-
ery yarn, which the company claims has a mean thread
elongation of µ = 12 kilograms with standard deviation of
σ = 0.5 kilograms.

a) What should be the sample size so that with probabil-
ity 0.95 we will estimate the mean thread elongation
with error at most 0.15 kg?

b) What should be the sample size so that with probabil-
ity 0.95 we will estimate the mean thread elongation
with error at most 0.05 kg?

108. An article in Computers and Electrical Engineering consid-
ered the speed-up of cellular neural networks (CNN) for a
parallel general-purpose computing architecture. Various
speed-ups are observed:

3.77 3.35 4.21 4.03 4.03 4.63
4.63 4.13 4.39 4.84 4.26 4.60

Assume that the population is normally distributed. The
99% C.I. for the mean speed-up is:

[4.155, 4.323]a) [3.863, 4.615]b) [4.040, 4.438]c)

[3.77, 4.60]d) NOTPe)

109. An engineer measures the weight of n= 25 pieces of steel,
which follows a normal distribution with variance 16. The
average observed weight for the sample is x = 6. What is
the two-sided 95% C.I. for the mean µ?

110. The brightness of television picture tube can be evaluated
by measuring the amount of current required to achieve a
particular brightness level. An engineer thinks that one has
to use 300 microamps of current to achieve the required
brightness level. A sample of size n = 20 has been taken to
verify the engineer’s hypotheses.

a) Formulate the null and the alternative hypotheses
(use a two-sided test alternative).

b) For the sample of size n = 20 we obtain x = 319.2
and s = 18.6. Test the hypotheses from part a) with
α = 5% by computing a critical region. Calculate the
p-value.

c) Use the data from part b) to construct a 95% confi-
dence interval for the mean required current.

111. We say that a particular production process is stable if it
produces at most 2% defective items. Let p be the true
proportion of defective items.

a) We sample n = 200 items at random and consider
hypotheses testing about p. Formulate null and alter-
native hypotheses.

b) What is your conclusion of the above test, if one
observes 3 defective items out of 200? Note: you
have to choose an appropriate confidence level α.

112. Ten engineers’ knowledge of basic statistical concepts was
measured on a scale of 0− 100, before and after a short
course in statistical quality control. The results are:

Engineer 1 2 3 4 5
Before X1i 43 82 77 39 51
After X2i 51 84 74 48 53
Engineer 6 7 8 9 10
Before X1i 66 55 61 79 43
After X2i 61 59 75 82 53

Let µ1 and µ2 be the mean mean score before and after the
course. Perform the test H0 : µ1 = µ2 against HA : µ1 < µ2.
Use α= 0.05.

113. It is claimed that 15% of a certain population is left-handed,
but a researcher doubts this claim. They decide to randomly
sample 200 people and use the anticipated small number to
provide evidence against the claim of 15%. Suppose 22 of
the 200 are left-handed. Compute the p−value associated
with the hypothesis (assuming a binomial distribution), and
provide an interpretation.

114. A child psychologist believes that nursery school attendance
improves children’s social perceptiveness (SP). They use 8
pairs of twins, randomly choosing one to attend nursery
school and the other to stay at home, and then obtains
scores for all 16. In 6 of the 8 pairs, the twin attending
nursery school scored better on the SP test. Compute the
p−value associated with the hypothesis (assuming a bino-
mial distribution), and provide an interpretation.

115. A certain power supply is stated to provide a constant volt-
age output of 10kV. Ten measurements are taken and yield
the sample mean of 11kV. Formulate a test for this situation.
Should it be 1−sided or 2−sided? What value of α should
you use? What conclusion does the test and the sample
yield?
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116. A company is currently using titanium alloy rods it pur-
chases from supplier A. A new supplier (supplier B) ap-
proaches the company and offers the same quality (at least
according to supplier B’s claim) rods at a lower price.

The company’s decision makers are interested in the offer.
At the same time, they want to make sure that the safety of
their product is not compromised.

They randomly selects ten rods from each of the lots shipped
by suppliers A and B and measures the yield strengths of
the selected rods. The observed sample mean and sample
standard deviation are 651 MPa and 2 MPa for supplier’s A
rods, respectively, and the same parameters are 657 MPa
and 3 MPa for supplier B’s rods.

Perform the test H0 : µA = µB against µA 6= µB. Use α =
0.05. Assume that the variances are equal but unknown.

117. The deflection temperature under load for two different
types of plastic pipe is being investigated. Two random
samples of 15 pipe specimens are tested, and the deflection
temperatures observed are as follows:

Type 1: 206, 188, 205, 187, 194, 193, 207, 185, 189, 213,
192, 210, 194, 178, 205.

Type 2: 177, 197, 206, 201, 180, 176, 185, 200, 197, 192,
198, 188, 189, 203, 192.

Does the data support the claim that the deflection tem-
perature under load for type 1 pipes exceeds that of type
2? Calculate the p-value, using α = 0.05, and state your
conclusion.

118. It is claimed that the breaking strength of yarn used in
manufacturing drapery material is normally distributed
with mean 97 and σ = 2 psi. A random sample of nine
specimens is tested and the average breaking strength is
found to be X = 98 psi. Formulate a test for this situation.
Should it be 1−sided or 2−sided? What value of α should
you use? What conclusion does the test and the sample
yield?

119. A civil engineer is analyzing the compressive strength of
concrete. It is claimed that its mean is 80 and variance
is known to be 2. A random sample of size 60 yields the
sample mean 59. Formulate a test for this situation. Should
it be 1−sided or 2−sided? What value of α should you use?
What conclusion does the test and the sample yield?

120. The sugar content of the syrup in canned peaches is claimed
to be normally distributed with mean 10 and variance 2. A
random sample of n = 10 cans yields a sample mean 11.
Another random sample of n = 10 cans yields a sample
mean 9. Formulate a test for this situation. Should it be
1−sided or 2−sided? What value of α should you use?
What conclusion does the test and the sample yield?

121. The mean water temperature downstream from a power
water plant cooling tower discharge pipe should be no more
than 100F. Past experience has indicated that that the stan-
dard deviation is 2F. The water temperature is measured on
nine randomly chosen days, and the average temperature is
found to be 98F. Formulate a test for this situation. Should
it be 1−sided or 2−sided? What value of α should you use?
What conclusion does the test and the sample yield?

122. We are interested in the mean burning rate of a solid pro-
pellant used to power aircrew escape systems. We want
to determine whether or not the mean burning rate is 50
cm/second. A sample of 10 specimens is tested and we
observe X = 48.5. Assume normality with σ = 2.5.

123. Ten individuals have participated in a diet modification
program to stimulate weight loss. Their weight both before
and after participation in the program is shown below:

Before 195, 213,247, 201,187, 210,215, 246, 294, 310
After 187, 195,221, 190,175, 197,199, 221,278, 285

Is there evidence to support the claim that this particular
diet-modification program is effective in producing mean
weight reduction? Use α= 0.05. Compute the associated
p−value.

124. We want to test the hypothesis that the average content of
containers of a particular lubricant equals 10L against the
two-sided alternative. The contents of a random sample of
10 containers are

10.2 9.7 10.1 10.3 10.1
9.8 9.9 10.4 10.3 9.5

Find the p−value of this two-sided test. Assume that the
distribution of contents is normal. Note that if x i represent
the measurements,

∑10
i=1 x2

i = 1006.79.

0.05< p < 0.10a) 0.10< p < 0.20b) 0.25< p < 0.40c)

0.50< p < 0.80d) NOTPe)

125. An engineer measures the weight of n= 25 pieces of steel,
which follows a normal distribution with variance 16. The
average weight for the sample is X = 6. They want to test
for H0 : µ= 5 against H1 : µ > 5. What is the p−value for
the test?

0.05a) 0.11b) 0.89c) 1.00d) NOTPe)

126. The thickness of a plastic film (in mm) on a substrate ma-
terial is thought to be influenced by the temperature at
which the coating is applied. A completely randomized
experiment is carried out. 11 substrates are coated at 125F,
resulting in a sample mean coating thickness of x1 = 103.5
and a sample standard deviation of s1 = 10.2. Another
11 substrates are coated at 150F, for which x2 = 99.7 and
s2 = 11.7 are observed. We want to test equality of means
against the two-sided alternative. Assume that population
variances are unknown but equal. The value of the appro-
priate test statistics and the decision are (for α= 0.05):

0.81; Reject H0.a) 0.81; Do not reject H0.b)

1.81; Reject H0.c) 1.81; Do not reject H0.d)

NOTPe)

127. The following output was produced with t.test com-
mand in R.

One Sample t-test
data: x
t = 2.0128, df = 99, p-value = 0.02342
alternative hypothesis: true mean is greater than 0
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Based on this output, which statement is correct?

a) If the type I error is 0.05, then we reject H0 : µ = 0
in favour of H1 : µ > 0;

b) If the type I error is 0.05, then we reject H0 : µ = 0
in favour of H1 : µ 6= 0;

c) If the type I error is 0.01, then we reject H0 : µ = 0
in favour of H1 : µ > 0;

d) If the type I error is 0.01, then we reject H0 : µ = 0
in favour of H1 : µ < 0;

e) Type I error is 0.02342.

128. A pharmaceutical company claims that a drug decreases a
blood pressure. A physician doubts this claim. They test
10 patients and records results before and after the drug
treatment:

> Before=c(140,135,122,150,126,
138,141,155,128,130)

> After=c(135,136,120,148,122,
136,140,153,120,128)

At the R command prompt, they type:

> test.t(Before,After,alternative=
"greater")
data: Before and After
t = 0.5499, p-value = 0.2946
alternative hypothesis: true

difference in means is
greater than 0

sample estimates: mean of x mean of y
136.5 133.8

Their assistant claims that the command should instead be:

> test.t(Before,After,paired=TRUE,
alternative="greater")

data: Before and After t = 3.4825,
df = 9, p-value = 0.003456

alternative hypothesis: true
difference in means is
greater than 0

sample estimates: mean of the
differences
2.7

Which answer is best?

a) The assistant uses the correct command. There is
not enough evidence to justify that the new drug de-
creases blood pressure;

b) The assistant uses the correct command. There is
enough evidence to justify that the new drug de-
creases blood pressure for any reasonable choice of α;

c) The physician uses the correct command. There is
not enough evidence to justify that the new drug de-
creases blood pressure;

d) The physician uses the correct command. There is
enough evidence to justify that the new drug de-
creases blood pressure for any reasonable choice of α;

e) Nobody is correct, t−tests should not be used here.

129. A company claims that the mean deflection of a piece of
steel which is 10ft long is equal to 0.012ft. A buyer suspects
that it is bigger than 0.012ft. The following data x i has
been collected:

0.0132,0.0138, 0.0108,0.0126, 0.0136,

0.0112,0.0124, 0.0116,0.0127, 0.0131.

Assuming normality and that
∑10

i=1 x2
i = 0.0016, what are

the p−value for the appropriate one-sided test and the
corresponding decision?

p ∈ (0.05, 0.1) and reject H0 at α= 0.05.a)

p ∈ (0.05, 0.1) and do not reject H0 at α= 0.05.b)

p ∈ (0.1, 0.25) and reject H0 at α= 0.05.c)

p ∈ (0.1, 0.25) and do not reject H0 at α= 0.05.d)

130. In an effort to compare the durability of two different types
of sandpaper, 10 pieces of type A sandpaper were subjected
to treatment by a machine which measures abrasive wear;
11 pieces of type B sandpaper were subjected to the same
treatment. We have the following observations:

xA 27 26 24 29 30 26 27 23 28 27
xB 24 23 22 27 24 21 24 25 24 23 20

Note that
∑

xA,i = 267,
∑

xB,i = 257,
∑

x2
A,i = 7169,

∑

x2
B,i = 6041. Assuming normality and equality of vari-

ances in abrasive wear for A and B, we want to test for
equality of mean abrasive wear for A and B. The appropri-
ate p−value is

p < 0.01a) p > 0.2b) p ∈ (0.01, 0.05)c)

p ∈ (0.1, 0.2)d) p ∈ (0.05, 0.1)e) NOTPf)

131. The following output was produced with t.test com-
mand in R.

One Sample t-test
data: x
t = 32.9198, df = 999, p-value < 2.2e-16
alternative hypothesis: true mean is not

equal to 0

Based on this output, which statement is correct?

a) If the type I error is 0.05, then we reject H0 : µ = 0
in favour of H1 : µ > 0;

b) If the type I error is 0.05, then we reject H0 : µ = 0
in favour of H1 : µ 6= 0;

c) If the type I error is 0.01, then we reject H0 : µ = 0
in favour of H1 : µ > 0;

d) If the type I error is 0.01, then we reject H0 : µ = 0
in favour of H1 : µ < 0;

e) NOTP

132. Consider a sample {X1, . . . , X10} from a normal population
X i ∼ N (4,9). Denote by X and S2 the sample mean and
the sample variance, respectively. Find c such that

P

�

X − 4

S/
p

10
≤ c

�

= 0.99

1.833a) 2.326b) 1.645c) 2.821d) NOTPe)
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133. A medical team wants to test whether a particular drug
decreases diastolic blood pressure. Nine people have been
tested. The team measured blood pressure before (X ) and
after (Y ) applying the drug. The corresponding means were
X = 91, Y = 87. The sample variance of the differences
was S2

D = 25. The p−value for the appropriate one-sided
test is between:

0 and 0.025a) 0.025 and 0.05b) 0.05 and 0.1c)

0.1 and 0.25d) 0.25 and 1e) NOTPf)

134. A researcher studies a difference between two program-
ming languages. Twelve experts familiar with both lan-
guages were asked to write a code for a particular function
using both languages and the time for writing those codes
was registered. The observations are as follows.

Expert 01 02 03 04 05 06 07 08 09 10 11 12
Lang 1 17 16 21 14 18 24 16 14 21 23 13 18
Lang 2 18 14 19 11 23 21 10 13 19 24 15 29

Construct a 95% C.I. for the mean difference between the
first and the second language. Do we have any evidence
that one of the languages is preferable to the other (i.e. the
average time to write a function is shorter)?

[−1.217, 2.550], indication that language 2 is bettera)

[−1.217,2.550], no evidence that any of them is
better

b)

[−1.217, 2.550], indication that language 1 is betterc)

[−2.86, 4.19], no evidence that any of them is betterd)

135. Consider a proportion of recaptured moths in the light-
coloured (p1) and the dark-coloured (p2) populations.
Among the n1 = 137 light-coloured moths, y1 = 18 were
recaptured; among the n2 = 493 dark-coloured moths,
y2 = 131 were recaptured. Is there a significant differ-
ence between the proportion of recaptured moths in both
populations?

136. For a set of 12 pairs of observations on (x i , yi) from an
experiment, the following summary for x and y is obtained:

12
∑

i=1

x i = 25,
12
∑

i=1

yi = 432,

12
∑

i=1

x2
i = 59,

12
∑

i=1

x i yi = 880.5,
12
∑

i=1

y2
i = 15648.

The estimated value of y at x = 5 from the least squares
regression line is:

27.78a) 47.77b) 41.87c) 55.97d) NOTPe)

137. Assuming that the simple linear regression model y =
β0 + β1 x + ε is appropriate for n = 14 observations, the
estimated regression line is computed to be

ŷ = 0.66490+ 0.83075x .

Given that Sy y = 4.1289 and Sx y = 4.49094, compute the
estimated standard error for the slope.

0.32a) 0.08b) 0.09c) 0.01d) NOTPe)

138. We have a dataset with n = 25 pairs of observations (x i , yi),
and

n
∑

i=1

x i = 325.000,
n
∑

i=1

yi = 658.972,

n
∑

i=1

x2
i = 5525.000,

n
∑

i=1

x i yi = 11153.588,

n
∑

i=1

y2
i = 22631.377.

Note that t0.05/2(23) = 2.069. The point estimate for the
slope of the regression line is

1.99a) −1.99b) 0.49c) 0.59d) NOTPe)

139. Use the same data as in the previous question. What is the
point estimate for the intercept of the regression line?

1.99a) −1.99b) 0.49c) 0.59d) NOTPe)

140. Use the same data as in the previous question. What is the
prediction of y for x = 30?

60.19a) 16.67b) 30c) 30.54d) NOTPe)

141. Use the same data as in the previous question. Note that
t0.05/2(23) = 2.069. Is the linear regression significant?

142. A company employs 10 part-time drivers for its fleet of
trucks. Its manager wants to find a relationship between
number of km driven (X ) and number of working days (Y )
in a typical week. The drivers are hired to drive half-day
shifts, so that 3.5 stands for 7 half-day shifts.

The manager wants to use the linear regression model
Y = β0 + β1 x + ε on the following data:

1 2 3 4 5
x 825 215 1070 550 480
y 3.5 1.0 4.0 2.0 1.0

6 7 8 9 10
x 920 1350 325 670 1215
y 3.0 4.5 1.5 3.0 5.0

Note that
∑

x2
i = 7104300,

∑

y2
i = 99.75, and

∑

x i yi =
26370. What is the fitted regression line?

143. Using the data from the previous question, what value is
the correlation coefficient of x and y closest to?

0.44a) 0.95b) 0.11c) 1.12d) NOTPe)

144. We want to test significance of regression, i.e. H0 : β1 = 0
against H1 : β1 6= 0. The value of the appropriate statistic
and the decision for α= 0.05 is:

8.55; do not reject H0a) 2.31; reject H0b)

8.55; reject H0c) 2.31; do not reject H0d)

NOTPe)
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145. Regression methods were used to analyze the data from
a study investigating the relationship between roadway
surface temperature in F (x) and pavement defection (y).
Summary quantities were n= 20,

∑

yi = 12.75,
∑

y2
i = 8.86,

∑

x i = 1478
∑

x2
i = 143, 215.8

∑

x i yi = 1083.67.

Calculate the least squares estimates of the slope and
intercept. Estimate σ2.

a)

Use the equation of the fitted line to predict what
pavement deflection would be observed when the
surface temperature is 90F.

b)

Give a point estimate of the mean pavement deflec-
tion when the surface is 85F.

c)

What change in mean pavement deflection would be
expected for a 1F change in surface temperature?

d)

146. Consider the data from the previous question.

a) Test for significance of regression using α = 0.05.
Find the p-value for this test. What conclusion can
you draw?

b) Estimate the standard errors of the slope and inter-
cept.

147. Solve this question using R.

a) Generate a sample x of size n= 100 from a normal
distribution;

b) Define y=1+2*x+rnorm(100);

c) Plot scatter plot;

d) Find the estimators of the regression parameters and
add the line to the scatter plot;

f) Compute the correlation coefficient

g) Plot the residuals;

h) Comment on your results.

148. We have a dataset with n = 10 pairs of observations (x i , yi),
and

n
∑

i=1

x i = 683,
n
∑

i=1

yi = 813,

n
∑

i=1

x2
i = 47,405,

n
∑

i=1

x i yi = 56,089,
n
∑

i=1

y2
i = 66, 731.

a) What is the line of best fit for this data?

b) What is an approximate 95% confidence interval for
the intercept and the slope of the line of best fit?

c) What is an approximate 95% confidence interval for
the mean response at x0 = 60? At x0 = 90?

d) What is an approximate 95% prediction interval for
the response y0 at x0 = 60? At x0 = 90?

e) What is the mean squared error estimate for the vari-
ance of the residuals?

149. Repeat parts b), c), and d) from the previous questions by
using 99% instead of 95%.
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