

CANADIAN FOREIGN SERVICE INSTITUTE

L'INSTITUT CANADIEN DU SERVICE EXTÉRIEUR

Introduction to Data Analysis

STATISTICAL LEARNING

Patrick Boily Data Action Lab | uOttawa | Idlewyld Analytics

[with files from Jen Schellinck | Sysabee]

LEARNING CONTEXT

STATISTICAL LEARNING

"We learn from failure, not from success!" (Bram Stoker, Dracula)

TYPES OF LEARNING

The central Data Science/Machine Learning problem is: can (should) we design algorithms that can learn?

Supervised Learning (learning with a teacher)

- classification, regression, rankings, recommendations
- uses labeled training data (student gives an answer to each test question based on what they learned from worked-out examples)
- performance is evaluated using testing data (teacher provides the correct answers)
- a **target** exists against which to train the model

TYPES OF LEARNING

Unsupervised Learning (grouping similar exercises together as a study aid)

- clustering, association rules discovery, link profiling, anomaly detection
- uses unlabeled observations (teacher is not involved)
- accuracy cannot be evaluated (students might not end up with the same groupings)
- the concept of a target is not applicable

Others:

- semi-supervised learning (teacher providing worked-out examples and a list of unsolved problems)
- reinforcement learning (embarking on a Ph.D. with an advisor?)

ASSOCIATION RULES

STATISTICAL LEARNING

MR. SNIFF: What are you looking for?
MR. SNOOP: A five-dollar bill.
MR. SNIFF: Are you sure you lost it on this street?
MR. SNOOP: Oh no! I lost it in the next

block, but I'm lookin' up here because the light is better.

(Boys' Life Magazine, 1932)

ASSOCIATION RULES BASICS

Association Rule Discovery is a type of unsupervised learning that finds connections among attributes (and combinations of attributes).

Examples:

- bread and milk are often purchased together... is that interesting?
- hot dogs and mustard are also often purchased as a pair, but more rarely purchased individually... is that interesting?

A supermarket could then have a sale on hot dogs to drive in customers, while raising the price on condiments, to maintain profit margins.

APPLICATIONS

Related Concepts

- looking for pairs (triplets, etc) of words that represent a joint concept
- {Ottawa, Senators}, {Michelle, Obama}, {veni, vidi, vici}, etc.

Plagiarism

- looking for sentences that appear in various documents
- Iooking for documents that share sentences

Bio-markers

diseases that are frequently associated with a set of bio-markers

CAUSATION AND CORRELATION

Association rules can automate hypothesis discovery, but one must remain **correlation-savvy** (which is less prevalent among data scientists than one would hope...).

If attributes A and B are shown to be correlated, then the possibilities are:

- *A* and *B* are correlated **entirely by chance** in this particular dataset
- *A* is a relabeling of *B*
- A causes B and/or B causes A
- combinations of other attributes C_1, \dots, C_n (known or not) cause A & B

CAUSATION AND CORRELATION

Insight	Organization
Pop-Tarts before a hurricane	Walmart
Higher crime, more Uber rides	Uber
Typing with proper capitalization indicates creditworthiness	A financial services startup company
Usors of the Chrome and Eirofey browsers make better employees	A human resources professional services firm,
Users of the Chrome and Filefox browsers make better employees	over employee data from Xerox and other firms
Men who skip breakfast get more coronary heart disease	Harvard University medical researchers
More engaged employees have fewer accidents	Shell
Smart naanla lika aurly frigs	Researchers at the University of Cambridge and
Small people like curry mes	Microsoft Research
Female-named hurricanes are more deadly	University researchers
Higher status, less polite	Researchers examining Wikipedia behavior

DEFINITIONS

A rule $X \rightarrow Y$ is a statement of the form "if X then Y" built from any logical combinations of a dataset attributes.

premise

conclusion

A rule **need not be true for all observations** in the dataset (i.e. rules are not necessarily 100% accurate).

Sometimes the "best" rules are those which are only accurate 10% of the time (as opposed to rules for which the accuracy is only 5% of the time).

As always, it depends on the context.

Technical challenge: coming up with a small set of reasonable rules.

DEFINITIONS

To determine a rule's strength, we compute rule metrics:

- Support (coverage) measures the frequency at which a rule occurs in a dataset. A low coverage value indicates that the rule rarely occurs (whether it is true or not).
- Confidence (accuracy) measures the reliability of the rule: how often does the conclusion occur in the data given that the premises have occurred. Rules with high confidence are "truer".
- Interest measures the difference between a rule's confidence and the relative frequency of its conclusion. Rules with high absolute interest are... well, more interesting.
- Lift measures the increase in the frequency of the conclusion due to the premises.
 In a rule with a high lift (> 1), the conclusion occurs more frequently than it would if it was independent of the premises.

FORMULAS

If N is the number of observations in the dataset:

- Support $(X \to Y) = \frac{\operatorname{Freq}(X \cap Y)}{N} \in [0,1]$ Here $X \to Y$ and the conclusion occur together
- Confidence $(X \to Y) = P(Y|X) = \frac{\operatorname{Freq}(X \cap Y)}{\operatorname{Freq}(X)} \in [0,1] \leftarrow \operatorname{Proportion of instances where the conclusion occurs when the premise occurs$

• Interest $(X \to Y)$ = Confidence $(X \to Y) - \frac{\operatorname{Freq}(Y)}{N} \in [-1,1]$

•
$$\operatorname{Lift}(X \to Y) = \frac{N^2 \cdot \operatorname{Support}(X \to Y)}{\operatorname{Freq}(X) \cdot \operatorname{Freq}(Y)} \in (0, N^2]$$

EXAMPLE

Music dataset containing data for N = 15,356 music lovers.

Candidate Rule (*RM*): "If an individual is born before 1976 (*X*), then they own a copy of at least one Beatles album, in some format (*Y*)".

Let's assume that

- Freq(X) = 3888 individuals were born before 1976
- Freq(Y) = 9092 individuals have a copy of at least one Beatles album
- Freq(X ∩ Y) = 2720 individuals were born before 1976 and have a copy of at least one Beatles album

EXAMPLE

The 4 metrics are:

- Support(RM) = $\frac{2720}{15,356} \approx 18\%$ (RM occurs in 18% of the observations)
- Confidence $(RM) = \frac{2720}{3888} \approx 70\%$ (*RM* is true in 70% when born prior to 1976)
- Interest(*RM*) = $\frac{2720}{3888} \frac{9092}{15356} \approx 0.11$ (*RM* is not very interesting)
- Lift(RM) = $\frac{15,356^2 \cdot 0.18}{3888 \cdot 9092} \approx 1.2$ (weak correlation between being born prior to 1976 and owning a copy of a Beatles' album)

Interpretation of the Lift: 70% of those born before 1976 own a copy, whereas 56% of those born after 1976 own a copy.

CLASSIFICATION

STATISTICAL LEARNING

"Data science does not replace statistical modeling and data analysis; it augments them." (P. Boily)

CLASSIFICATION OVERVIEW

In **classification**, a sample set of data (the **training** set) is used to determine rules and patterns that divide the data into pre-determined groups, or classes (supervised learning; predictive analytics).

The training data usually consists of a **randomly** selected subset of the **labeled** (target) data.

Value estimation (regression) is akin to classification when the target variable is numerical.

CLASSIFICATION OVERVIEW

In the **testing** phase, the model is used to assign a class to observations for which the label is hidden, but ultimately known (the **testing** set).

The performance of a classification model is evaluated on the testing set, **never** on the training set.

Technical issues include:

- selecting the features to include in the model
- selecting the algorithm
- etc.

APPLICATIONS

Medicine and Health Science

 predicting which patient is at risk of suffering a second, fatal heart attack within 30 days based on health factors (blood pressure, age, sinus problems, etc.)

Social Policies

 predicting the likelihood of requiring assisting housing in old age based on demographic information/survey answers

Marketing and Business

 predicting which customers are likely to switch to another cell phone company based on demographics and usage

CLASSIFICATION METHODS

Logistic Regression **Neural Networks Decision Trees Naïve Bayes Classifiers Support Vector Machines Nearest Neighbours Classifiers** etc.

[adapted from A. Ng, K. Soo, *Numsense!*, Surviving a Disaster]

DECISION TREES

Decision trees are perhaps the most **intuitive** of these methods.

Classification is achieved by following a path up the tree, from its **root**, through its **branches**, and ending at its **leaves**.

OTHER POINTS TO PONDER

Classification is linked to probability estimation

approaches based on regression models could prove fruitful

Rare occurrences (often more interesting/important) continue to plague classification attempts

 historical data at Fukushima's nuclear reactor prior to the meltdown could not have been used to learn about meltdowns

No Free-Lunch Theorem: no classifier works best for all data.

With big datasets, algorithms must also consider efficiency.

PERFORMANCE EVALUATION

							Classification Rates		Performance Metrics	
							Sensitivity:	0.84	Accuracy:	0.80
		Predi	cted	tal			Specificity:	0.65	F1-Score:	0.87
		Α	В		Tot		Precision:	0.90	Informedness (ROC):	0.49
Actuals	Α	54	10	64	79.0%		Negative Predictive Value:	0.52	Markedness:	0.42
	В	6	11	17	21.0%		False Positive Rate:	0.35	M.C.C.:	0.46
	Tatal	60	21	81			False Discovery Rate:	0.10	Pearson's chi2:	0.01
	Iotai	74.1%	25.9%		-		False Negative Rate:	0.16	Hist. Stat:	0.10
							Classification Rates		Performance Metrie	cs
							Classification Rates Sensitivity:	1.00	Performance Metric Accuracy:	cs 0.80
		Predi	cted		tal		Classification Rates Sensitivity: Specificity:	1.00 0.41	Performance Metric Accuracy: F1-Score:	cs 0.80 0.87
		Predi A	cted B		Total		Classification Rates Sensitivity: Specificity: Precision:	1.00 0.41 0.77	Performance Metric Accuracy: F1-Score: Informedness (ROC):	cs 0.80 0.87 0.41
Actuals	Α	Predi A 54	cted B O	54	Total 66.7%		Classification Rates Sensitivity: Specificity: Precision: Negative Predictive Value:	1.00 0.41 0.77 1.00	Performance Metric Accuracy: F1-Score: Informedness (ROC): Markedness:	0.80 0.87 0.41 0.77
Actuals	A B	Predi A 54 16	cted B 0 11	54 27	Jotal 66.7% 33.3%		Classification Rates Sensitivity: Specificity: Precision: Negative Predictive Value: False Positive Rate:	1.00 0.41 0.77 1.00 0.59	Performance Metric Accuracy: F1-Score: Informedness (ROC): Markedness: M.C.C.:	Cs 0.80 0.87 0.41 0.77 0.56
Actuals	A B Total	Predi A 54 16 70	cted B 0 11 11	54 27 81	Jotal 66.7% 33.3%		Classification Rates Sensitivity: Specificity: Precision: Negative Predictive Value: False Positive Rate: False Discovery Rate:	1.00 0.41 0.77 1.00 0.59 0.23	Performance Metric Accuracy: F1-Score: Informedness (ROC): Markedness: M.C.C.: Pearson's chi2:	cs 0.80 0.87 0.41 0.77 0.56 0.33

CLUSTERING

STATISTICAL LEARNING

"Data is not information, information is not knowledge, knowledge is not understanding, understanding is not wisdom." (C. Stoll)

CLUSTERING OVERVIEW

In **clustering**, the data is divided into **naturally occurring groups**. Within each group, the data points are **similar**; from group to group, they are **dissimilar**.

The grouping labels are not determined ahead of time, so clustering is an example of **unsupervised** learning. average distance to points in own cluster (**low is good**)

average distance to points in neighbouring cluster (**high is good**)

APPLICATIONS

Text Documents

 grouping similar documents according to their topics, based on the patterns of common and unusual words

Product Recommendations

- grouping online purchasers based on the products they have viewed, purchased, liked, or disliked
- grouping products based on customer reviews

Marketing and Business

grouping client profiles based on their demographics and preferences

CLUSTERING METHODS

k-Means

Hierarchical Clustering

Latent Dirichlet Allocation

Expectation-Maximization

Balanced Iterative Reducing and Clustering using Hierarchies

Density-Based Spatial Clustering of Applications with Noise

Affinity Propagation

Spectral Clustering, etc.

[https://notebook.community/alanhdu/AccessibleML/4. K-means clustering and unsupervised learning]

CLUSTERING CHALLENGES

Automation Lack of a clear-cut definition Lack of repeatability Number of clusters **Cluster description** Validation **Ghost clustering** A posteriori rationalization

ISSUES & CHALLENGES

STATISTICAL LEARNING

"We all *say* we like data, but we don't. We like getting insight out of data. That's not quite the same as liking data itself. In fact, I dare say that I don't quite care for data, and it sounds like I'm not alone." (Q.E. McCallum, *Bad Data Handbook*)

BAD DATA

Does the dataset pass the **smell test**? (invalid entries, etc.)

Detecting **lies** and **mistakes** (reporting errors, use of polarizing language)

Is close enough, good enough?

Sources of bias and errors

Seeking perfection (academic, professional, government, service data)

Data science **pitfalls:** analysis without understanding, using only one tool (by choice/fiat), analysis for the sake of analysis, unrealistic expectations of data science, it's on a need-to-know basis and you don't need to know.

OVERFITTING

BIG DATA VS. SMALL DATA

What is the main difference?

- datasets are LARGE
- issues: collection, capture, access, storage, analysis, visualization

Where does the data come from?

- technology advances are lifting the limits on data processing speeds
- information-sensing, mobile devices, cameras and wireless networks

What are the challenges?

- most techniques were built for very small dataset
- direct approach will leave the best analyst waiting years for results

APPROPRIATENESS & TRANSFERABILITY

Data Science methods are **not** appropriate if:

- if one absolutely must use an existing (legacy) datasets instead of an ideal dataset ("it's the best data we have!")
- the dataset has attributes that usefully predict a value of interest, but which are not available when a prediction is required
- if one will attempt to predict class membership using an unsupervised learning algorithm

If data/model is used in other contexts, or to make predictions depending on attributes without data, validating the results is impossible.

Example: can we use a model that predicts mortgage defaulters to also predict car loan defaulters?

BIASES, FALLACIES & INTERPRETATION

Correlation is not causation

Extreme patterns can mislead

Stay within a study's range

Keep the base rate in mind

Odd stuff happens (Simpson's Paradox)

Randomness plays a role

Human component to any analytical activity

Small effects can be (statistically) significant

Beware of sacrosanct statistics (p-value, etc.).

Does bias necessarily invalidate the results?