

CANADIAN | L'INSTITUT FOREIGN | CANADIEN | SERVICE | DU SERVICE | INSTITUTE | EXTÉRIEUR

Introduction à l'analyse des données

COLLECTE ET GESTION DES DONNÉES

Patrick Boily

Data Action Lab | uOttawa | Idlewyld Analytics

pboily@uottawa.ca

OBJECTIF

Nous recherchons des données qui peuvent :

- fournir un aperçu légitime de notre système d'intérêt ;
- fournir des réponses correctes et précises aux questions pertinentes ;
- soutenir l'élaboration de conclusions valables, avec la capacité de qualifier/quantifier ces conclusions en termes de portée et de précision.

Cela ne peut se faire sans la mise en place d'un **plan d'étude** : quelles données devons-nous collecter, et comment les collecter ?

MOTIVATIONS POUR LA COLLECTE DE DONNÉES

Trois fonctions, historiquement:

- la tenue de registres (gestion des personnes/de la société)
- science nouvelles connaissances générales
- renseignement affaires, militaire ? police ? social ? domestique ? personnel ?

Chacune de ces trois fonctions utilise des sources d'information différentes.

- ils ont collecté différents types de données
- ils ont également des cultures de données et des terminologies différentes

LES DONNÉES SONT RÉELLES

Les données sont une représentation, mais les données sont **physiques**.

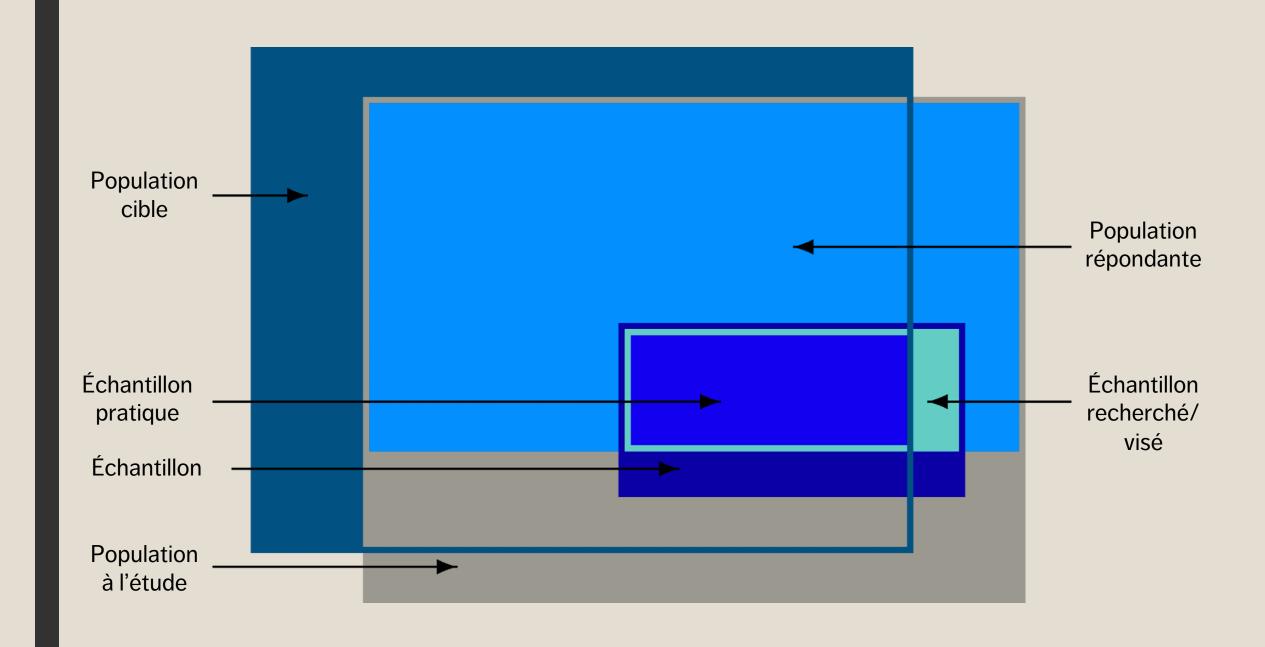
Elles ont des propriétés physiques, elles nécessitent un espace physique et de l'énergie pour être utilisées.

DÉGRADATION DES DONNÉES

Les données vieillissent; elles ont une date d'expiration.

- « Données pourries » ou « données en décomposition » :
 - littéralement le support de stockage des données peut se détériorer
 - métaphoriquement, lorsque les données ne représentent plus fidèlement les objets et les relations pertinents, voire lorsque ces objets n'existent plus de la même manière.

Les données doivent rester « fraîches » et « actuelles », et non « périmées » (selon le contexte et le modèle !).



ÉCHANTILLONNAGE NON PROBABILISTE ET « PÊCHE » AUX TENDANCES

Deux situations distinctes peuvent s'associer pour causer des **problèmes** d'analyse des données :

- la formulation de conclusions (inférences) à partir d'un échantillon de population qui ne se justifient pas par la méthode de collecte de l'échantillon (symptomatique d'un échantillonnage non probabiliste)
- la recherche d'un quelconque schéma dans les données, suivie d'une formulation d'explications a posteriori concernant ces schémas

Seules ou combinées, ces deux situations conduisent à des conclusions médiocres (et **potentiellement nuisibles**).

ÉTAPES DE L'ÉTUDE/DE L'ENQUÊTE

Les enquêtes suivent les mêmes étapes générales:

- 1. énoncé de l'objectif
- 2. sélection de la cadre d'enquête
- 3. plan d'échantillonnage
- 4. conception du questionnaire
- 5. collecte des données
- 6. saisie et codage des données
- 7. traitement des données et imputation

- 8. estimation
- 9. analyse des données
- 10. diffusion
- 11. documentation

Le processus n'est pas toujours linéaire, mais il y a un mouvement défini de **l'objectif à la diffusion.**

ÉCHANTILLONNAGE NON PROBABILISTE

Les méthodes d'échantillonnage non probabiliste (ENP) sélectionnent les unités d'échantillonnage de la population cible à l'aide d'approches subjectives et non aléatoires.

- Les ENP ont le mérite d'être rapide, relativement peu coûteux et pratique.
- Les ENP sont idéales pour l'analyse exploratoire et l'élaboration des enquêtes.

On a souvent recours aux ENP au lieu des échantillonnages probabilistes (problématique).

- Le biais de sélection associé rend les ENP peu sûres en matière d'inférences
- La collecte automatisée des données tombe souvent dans le champ des ENP il est toujours possible d'analyser les données recueillies selon ces méthodes, mais pas nécessairement de généraliser les résultats à la population cible.

ÉCHANTILLONNAGE PROBABILISTE

Les plans d'échantillonnage probabiliste sont généralement plus **difficiles** et plus **coûteux** à mettre en place (car ils requièrent une base d'enquête de qualité), et ils prennent plus de temps à réaliser.

Ils fournissent des **estimations fiables** de la caractéristique d'intérêt et de **l'erreur d'échantillonnage**, ouvrant la voie à l'utilisation de petits échantillons pour tirer des inférences sur des populations cibles plus vastes (en théorie, du moins, les composantes de l'erreur non attribuable à l'échantillonnage peuvent tout de même jouer sur les résultats et la généralisation).

PLANS D'ÉCHANTILLONNAGE

Les différents **plans d'échantillonnage** présentent des avantages et des désavantages distincts.

Ils peuvent être utilisés pour calculer des estimations

- pour divers attributs de la population : moyenne, total, proportion, rapport, différence, etc.
- pour les intervalles de confiance à 95% correspondants.

Nous pourrions également vouloir calculer les tailles d'échantillon pour une **limite d'erreur** donnée (une limite supérieure du rayon de l'intervalle de confiance à 95% souhaité), et comment déterminer la **répartition de l'échantillon** (combien d'unités à échantillonner dans les différents groupes de sous-population).

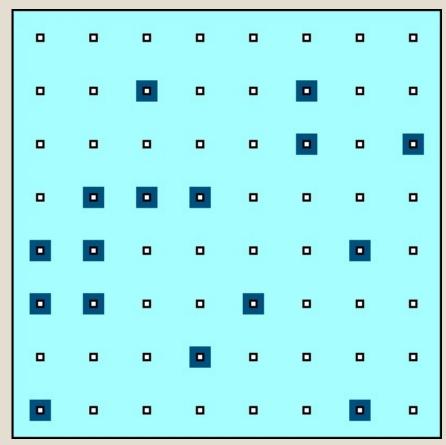
PLANS D'ÉCHANTILLONNAGE PROBABILISTES

Échantillonnage aléatoire simple (EAS)

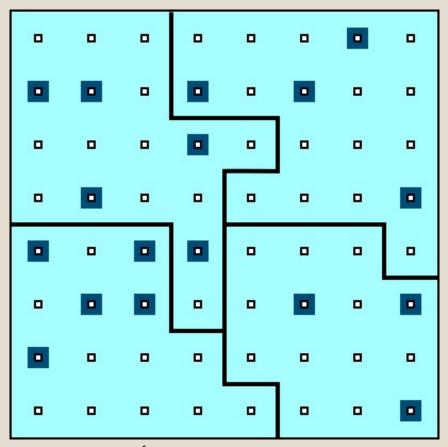
Échantillonnage aléatoire stratifié (STR)

Échantillonnage systématique (SYS)

Échantillonnage en grappes (EPG)

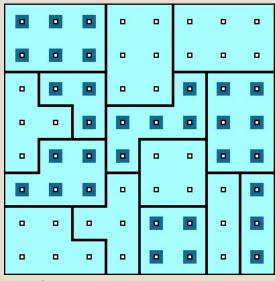

Échantillonnage avec probabilité proportionnelle à la taille (PPT)

Échantillonnage répété (REP)

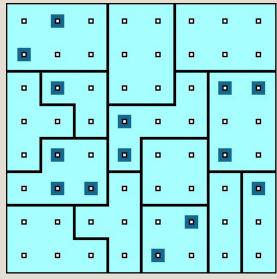

Échantillonnage à plusieurs degrés (EPD)

Échantillonnage à plusieurs phases (EPP)

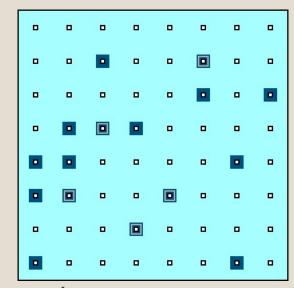
PLANS D'ÉCHANTILLONNAGE

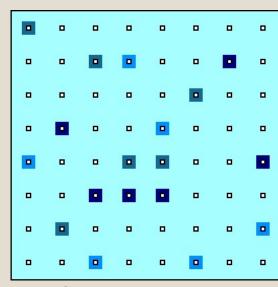


Échantillonnage aléatoire simple



Échantillonnage aléatoire stratifié


AUTRES PLANS D'ÉCHANTILLONNAGE


Échantillonnage en grappes

Échantillonnage à plusieurs degrés

Échantillonnage à plusieurs phases

Échantillonnage répété

LISTE DE VÉRIFICATION APPLICABLE À LA COLLECTE AUTOMATISÉE

Le moissonnage du Web ou est-il absolument nécessaire?

Critères:

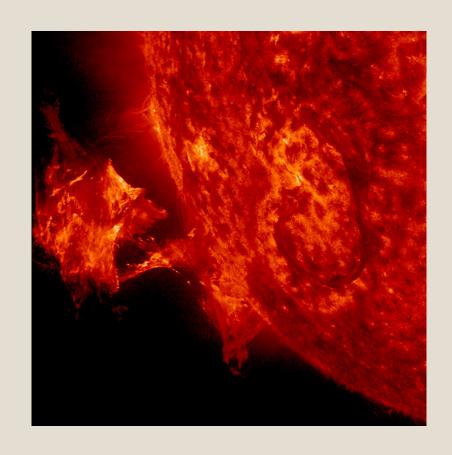
- Prévoyez-vous répéter l'opération de temps à autre, p. ex. pour mettre à jour votre base de données?
- Désirez-vous que d'autres puissent reproduire votre processus de collecte des données?
- Traitez-vous fréquemment avec des sources de données en ligne?
- La tâche est-elle non négligeable en termes de portée et de complexité?
- Si la tâche peut être effectuée manuellement, manquez-vous de ressources pour laisser les autres faire le travail ?
- Êtes-vous prêt à automatiser le processus par le biais de la programmation ?

Si la plupart des réponses sont "Oui", alors le recouvrement automatisé peut être le bon choix.

MOISSONNAGE DU WEB – QUALITÉ DES DONNÉES

Informations de première main : par exemple, un tweet ou un article de presse.

Données de seconde main : données qui ont été copiées à partir d'une source hors ligne ou récupérées ailleurs.

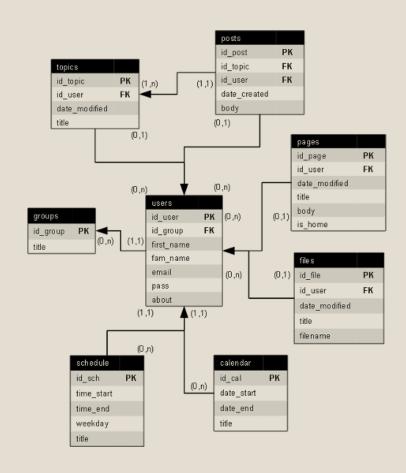

- Parfois, il est impossible de se rappeler ou de retracer la source de ces données.
- Est-il encore utile de les utiliser? Cela dépend.

Toute utilisation de données secondaires nécessite un recoupement et une validation.

DONNÉES STRUCTURÉES PAR RAPPORT AUX DONNÉES NON STRUCTURÉES

La disponibilité croissante de données non structurées et de grands objets binaires « **blob** » est l'une des principales motivations de certains des nouveaux développements dans les types de bases de données et autres stratégies de stockage de données.

- Données structurées : étiquetées, organisées, discrètes, selon une structure limitée et prédéfinie
- Données non structurées : non organisées, pas de modèle de données structuré prédéfini précis – p. ex. texte dans un document
- Données « blob » : grand objet binaire images, audio, multimédia


BASES DE DONNÉES RELATIONNELLES

Données stockées dans une série de tableaux.

En gros, chaque tableau représente un objet et des propriétés liées à cet objet.

Des colonnes spéciales dans les tables **relient** les instances d'objets entre les tables (ce qui permet les fusions).

L'approche traditionnelle du stockage des données.

FICHIERS NON HIÉRARCHIQUES ET LES
FEUILLES DE CALCUL

Qu'en est-il de la conservation de vos données dans un seul tableau géant (feuille de calcul)?

Ou plusieurs feuilles de calcul?

Ça ne peut pas être si terrible que ça!

Wayne Eckerson a inventé le terme « spreadmart » pour décrire une situation où de nombreuses feuilles de calcul (ad hoc) constituent une stratégie de données.

Date	Con	Lab	LDs	SNP	UKIP	Gree	ens		Con	av L	ab av	LD av	SNP	UK av	IP.	Gree	n av					
15 September 2017	41	41	5	4		5	3		4	0.7	41.4	6.8	3.3		4		2.7					
15 September 2017	39	38	8	3	(6	4		4	0.7	41.7	7	3.2		3.8		2.6					
13 September 2017	41	42	7	4	;	3	2		4	0.9	42.2	6.8	3.3		3.5		2.4					
10 September 2017	42	42	7	3	4	4	3		4	0.9	42.2	7	3.2		3.5		2.4					
1 September 2017	38	43	7	3		1	4		4	0.9	42.3	7	3.2		3.4		2.3					
31 August 2017	Date			Con	Lab	LDs	SNP	UKIP	Gre	ens		Con	av Lab	av	LD a		NP	UKIP	Gre	en av		
22 August 2017				41													IV	av				
22 August 2017		15 September 2017				5	4		5	3		40		11.4	· ·	6.8	3.3	4		2.7		
18 August 2017			er 2017	39		8	3		6	4		40		11.7		7	3.2	3.8	-	2.6		
11 August 2017			er 2017	41		7	4		3	2		40		12.2		6.8	3.3	3.5	-	2.4		
1 August 2017			er 2017			7	3		4	3		40		12.2		7	3.2	3.5	_	2.4		
19 July 2017		1 September 2017		12200000	43	7	3	Norman I	1	4				12.3		7	3.2	3.4		2.3		_
18 July 2017		000	ıst 2017				Con	Lab	LDs	SNP	UKIP	Gree	ns		C	on av	Lab	av LD	av	SNP	UKIP	Green av
16 July 2017			ıst 2017	15 S	eptembe	er 2017	41	41	5	4		5	3			40.7	41	1.4	6.8	3.3	4	2.7
15 July 2017		_	ıst 2017	15 S	eptembe	er 2017	39	38	8	3		6	4			40.7	41	1.7	7	3.2	3.8	2.6
14 July 2017		18 August 2017		13 S	13 September 2017			42	7	4		3	2			40.9	42	2.2	6.8	3.3	3.5	2.4
11 July 2017			ıst 2017	10 S	eptembe	er 2017	42	42	7	3		4	3			40.9	42	2.2	7	3.2	3.5	2.4
6 July 2017	-		ıst 2017	1 S	eptembe	er 2017	38	43	7	3		1	4			40.9	42	2.3	7	3.2	3.4	2.3
3 July 2017	-		ıly 2017	- 3	31 Augus	st 2017	41	42	6	4		4	2			41	42	2.1	7.1	3.2	3.9	2
30 June 2017	-		ıly 2017	- 2	22 Augus	st 2017	42	42	7	2		3	3			41	42	2.2	7	3.1	4	2
29 June 2017			ıly 2017	- 2	22 Augus	st 2017	41	42	8	4		4	1			40.8	42	2.5	7	3.3	3.9	1.8
	-		ıly 2017	- 1	8 Augu		40	43	6	4		4	2			40.5	42	2.9	6.8	3.3	3.9	1.8
		2000000	ıly 2017	1 1	I1 Augus	st 2017	42	39	7	2		6	3			40.6	42	2.9	6.9	3.2	3.8	1.8
	11 July 2017			-	1 August 2017		41	44	7	3		3	2			40.5	1	43	6.9	3.2	3.4	1.7
	6 July 2017			-	19 July 2017		41	43	6	4		3	2			40.3	43	3.1	6.7	3.2	3.6	1.7
	3 July 2017				18 July 2017		41	42	9	3		3	2			40.3	43	3.4	6.7	3.1	3.5	1.6
			ne 2017	-		ly 2017	42	43	7	3		3	2			40.3	43	3.6	6.4	3.1	3.4	1.5
		29 Jui	ne 2017	-	15 Ju	ly 2017	39	41	8	3		6	1			40.0	43	3.8	6.4	3.1	3.4	1.6
						y 2017	41	43	5	3		5	2			40.5	43	3.8	6.4	3.1	3.0	1.7
					12.0001634	y 2017	40	45	7	4		2	1			40.4	43	3.9	6.5	3.1	2.8	1.6
					75-65	ly 2017	38	46	6	4	_	4	1			40.4	-	3.8	6.5	3.0	2.9	1.7
						y 2017	41	43	7	3	-	3	2			40.8	43	3.4	6.5	2.9	2.7	1.8
						e 2017	41	40	7	2	_	2	2			40.8		3.5	6.4	2.9	2.7	1.8
						e 2017	39	45	5	3	_	5	2			40.7		12	6.3	3.0	2.8	1.7