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Abstract
In October 2012, the Harvard Business Review published an article calling data science the “sexiest job
of the 21st century”, and declaring data scientists to be a ”hybrid of data hacker, analyst, communicator,
and trusted adviser” [11]. Would-be data scientists are usually introduced to the field via machine learning
algorithms and applications, which we discuss briefly in this chapter.
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1. Introduction

From Data to Wisdom

Data is not information, information is not
knowledge, knowledge is not understanding,
understanding is not wisdom.

– attributed to Cliff Stoll, Nothing to Hide: Privacy
in the 21st Century, 2006

One of the challenges of working in the data science (DS),
machine learning (ML) and artificial intelligence (AI)
fields is that nearly all quantitative work can be described
with some combination of the terms DS/ML/AI (very often
to a ridiculous extent).

Robinson [45] suggests that their relationships follow
an inclusive hierarchical structure:

in a first stage, DS provides “insights” via visualization
and (manual) inferential analysis;
in a second stage, ML yields “predictions” (or “ad-
vice”), while reducing the operator’s analytical, in-
ferential and decisional workload (although it is still
present to some extent), and
in the final stage, AI removes the need for oversight,
allowing for automatic “actions” to be taken by a
completely unattended system.

The goals of artificial intelligence are laudable in an aca-
demic setting, but in practice, we believe that stakehold-
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ers should not seek to abdicate all of their agency in the
decision-making process; as such, we follow the lead of
various thinkers and suggest further splitting AI into “gen-
eral AI” (which we will not be pursuing) and “augmented
intelligence” (which can be seen as ML “on steroids”).

With this in mind, our definition of the DS/ML/AI approach
is that it consists of quantitative processes (what Hilary Ma-
son has called “the working intersection of statistics, en-
gineering, computer science, domain expertise, and “hack-
ing” [55]) that can help users learn actionable insights
about their situation without completely abdicating their
decision-making responsibility.

In this chapter, then we will take a brief look at:

the fundamentals of data science;
association rules mining;
supervised learning and classification, with a fo-
cus on decision trees;
unsupervised learning and clustering, with a focus
on k−means, and
some of the common issues and challenges encoun-
tered during the data science and machine learning
process.

Later chapters will discuss various other aspects of the gen-
eral data science and machine learning picture.

2. Fundamentals

From Data to Wisdom

We learn from failure, not from success!

– Bram Stoker, Dracula

As humans, we learn (at all stages) by first taking in our
environment, and then by answering questions about it,
testing hypotheses, creating concepts, making predictions,
creating categories, and classifying and grouping its various
objects and attributes.

In a way, the main concept under DS/ML/AI is to try
to teach our machines (and thus, ultimately, ourselves)
to gleam insight from data, and how to do this properly
and efficiently, free of biases and pre-conceived notions –
in other words, can we design algorithms that can learn?

In that context, the simplest DS/ML/AI method is explor-
ing the data (or a representative sample) to

provide a summary through basic statistics – mean,
mode, histograms, etc.;
make its multi-dimensional structure evident through
data data visualization; and
look for consistency, considering what is in there and
what is missing.

2.1 Learning Types
In the data science context, more sophisticated approaches
traditionally fall into a supervised or an unsupervised
learning framework.

Supervised learning is akin to “learning with a teacher.”
Typical tasks include classification, regression, rankings,
and recommendations.

In supervised learning, algorithms use labeled train-
ing data to build (or train) a predictive model (i.e. “stu-
dents give an answer to each exam question based on what
they learned from worked-out examples provided by the
teacher/textbook”); each algorithm’s performance is evalu-
ated using test data for which the label is known but not
used in the prediction (i.e. “the teacher provides the cor-
rect answers and marks the exam questions using the key”.)

Unsupervised learning, on the other hand, is akin to “self-
learning by grouping similar exercises together as a study
guide.” Typical tasks include clustering, association rules
discovery, link profiling, and anomaly detection. Unsu-
pervised algorithms use unlabeled data to find natural
patterns in the data (i.e. “the teacher is not involved in
the discovery process”); the drawback is that accuracy can-
not be evaluated with the same degree of satisfaction (i.e.
“students might end up with different groupings”).

In supervised learning, there are fixed targets against which
to train the model (such as age categories, or plant species)
– the categories (and their number) are known prior to the
analysis.

In unsupervised learning, we don’t know what the tar-
get is, or even if there is one – we are simply looking for
natural groups in the data (such as junior students who
like literature, have longish hair, and know how to cook
vs. students who are on a sports team and have siblings
vs. financial professionals with a penchant for superhero
movies, craft beer and Hello Kitty backpack vs. ... ).

Some data science techniques fit into both camps; oth-
ers can be either supervised or unsupervised, depending
on how they are applied, but there are other conceptual
approaches, especially for AI tasks:

semi-supervised learning in which some data points
have labels but most do not, which often occurs when
acquiring data is costly (“the teacher provides worked-
out examples and a list of unsolved problems to try
out; the students try to find similar groups of un-
solved problems and compare them with the solved
problems to find close matches”), and
reinforcement learning, where an agent attempts
to collect as much (short-term) reward as possible
while minimizing (long-term) regret (“embarking on
a Ph.D. with an advisor... with the highs and the lows
and maybe a diploma at the end of the process?”).
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2.2 Data Science Tasks
Outside of academia, DS/ML/AI methods are only really
interesting when they help users ask and answer useful
questions. Compare, for instance:

Analytics – “How many clicks did this link get?”
Data Science – “Based on the previous history of
clicks on links of this publisher’s site, can I predict
how many people from Manitoba will read this spe-
cific page in the next three hours?” or “Is there a
relationship between the history of clicks on links
and the number of people from Manitoba who will
read this specific page?”
Quantitative Methods – “We have no similar pages
whose history could be consulted to make a predic-
tion, but we have reasons to believe that the number
of hits will be strongly correlated with the tempera-
ture in Winnipeg. Using the weather forecast over
the next week, can we predict how many people will
access the specific page during that period? ”

Data science models are usually predictive (not explana-
tory): they show connections, and exploit correlations to
make predictions, but they don’t reveal why such connec-
tions exist.

Quantitative methods, on the other hand, usually as-
sume a certain level of causal understanding based on vari-
ous first principles. That distinction is not always under-
stood properly by clients and consultants alike.

Common data science tasks (with representative questions)
include [42]:

classification and probability estimation – which
undergraduates are likely to succeed at the graduate
level?
value estimation – how much is a given client going
to spend at a restaurant?
similarity matching – which prospective clients are
most similar to a company’s establishes best clients?
clustering – do signals from a sensor form natural
groups?
association rules discovery – what books are com-
monly purchased together at an online retailer?
profiling and behaviour description – what is the
typical cell phone usage of this customer’s segment?
link prediction – J. and K. have 20 friends in com-
mon: perhaps they’d be great friends?

A classic example is provided by the UCI Machine Learn-
ing Repository Mushroom Dataset [14]. Consider Amanita
muscaria (fly agaric), a specimen of which is shown in
Figure 1. Is it edible, or poisonous?

There is a simple way to get an answer – eat it, wait, and
see. If you do not die or get sick upon ingestion, it was
edible; otherwise it was poisonous.

Figure 1. Amanita muscaria (fly agaric), in the wild. Does
it look dangerous to you?

This test in unappealing for various reasons, however. Apart
from the obvious risk of death, we might not learn much
from the experiment; it is possible that this specific speci-
men was poisonous due to some mutation or some other
factor (or that you had a pre-existing condition which com-
bined with the fungus to cause you discomfort, etc.), and
that fly agaric is actually edible in general, or vice-versa.

A predictive model, which would use features of a vast
collection of mushroom species and specimens (including
whether they were poisonous or edible) could help shed
light on the matter: what do poisonous mushrooms have in
common? What properties do edible mushrooms share?1

For instance, let’s say that Amanita muscaria has the
following features:

habitat: woods;
gill size: narrow;
spores: white;
odor: none;
cap color: red.

We do not know a priori whether it is poisonous or edible. Is
the available information sufficient to answer the question?
Not on its own, no.2

But we could use past data, with correct edible or poi-
sonous labels and the same set of predictors, to build
various supervised classification models to attempt to an-
swer the question.

A simple such model, a decision tree, is shown on the
left in Figure 2.

1Note that this is not the same as understanding why a mushroom is
poisonous or edible – the data alone cannot provide an answer to that
question.

2A mycologist could perhaps deduce the answer from these features
alone, but she would be using her experience with fungi to make a predic-
tion, and so would not be looking at the features in a vacuum.

P.Boily, J.Schellinck (2021) 3
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Figure 2. Decision tree for the mushroom classification problem, with decision path for Amanita muscaria.

The model prediction for Amanita muscaria follows the
decision path shown on the right in Figure 2:

1. some mushroom odors (musty, spicy, etc.) are asso-
ciated with poisonous mushrooms, some (almond,
anise) with edible mushrooms, but there are mush-
rooms with no specific odor in either category – for
mushroom with ‘no odor’ (as it he case with Amanita
muscaria), odor does not provide enough informa-
tion for proper classification and we need to incorpo-
rate additional features into the decision path;

2. among mushrooms with no specific odor, some spore
colours (black, etc.) are associated with edible mush-
rooms, some (almond, anise) with poisonous mush-
rooms, but there are mushrooms with ‘white’ spores
in either category – the combination ‘no odor and
white spores’ does not provide enough information
to classify Amanita muscaria and we need to incor-
porate additional features into the decision path;

3. among mushrooms of no specific odor with white
spores, some habitats (grasses, paths, wastes) are as-
sociated with edible mushrooms, but there are mush-
rooms in either category that are found in the ‘woods’
– the combination ‘no odor, white spores, found in the
woods’ does not provide enough information to clas-
sify Amanita muscaria and we need to incorporate
additional features into the decision path;

4. among white-spored forest mushroom with no spe-
cific odor, a broad gill size is associated with edible
mushrooms, whereas a ‘narrow’ gill size is associated
with poisonous mushrooms – as Amanita muscaria
is a narrow-gilled, white-spored forest mushroom
with no specific odor, the decision path predicts that
it is poisonous.

Note that the cap color does not affect the decision path.3

3It would have had Amanita muscaria’s habitat been ‘leaves’, however.

The model does not explain why this particular combina-
tions of features is associated with poisonous mushrooms –
the decision path is not causal.

At this point, a number of questions naturally arise:

Would you have trusted an edible prediction?
How are the features measured?
What is the true cost of making a mistake?
Is the data on which the model is built representative?
What data is required to build trustworthy models?
What do we need to know about the model in order
to trust it?

3. Association Rules Mining

Tufte’s Rejoinder

Correlation isn’t causation. But it’s a big hint.

– E. Tufte

Association rules discovery is a type of unsupervised learn-
ing that finds connections among the attributes and levels
(and combinations thereof) of a dataset’s observations.

For instance, we might analyse a (hypothetical) dataset
on the physical activities and purchasing habits of North
Americans and discover that

runners who are also triathletes (the premise) tend
to drive Subarus, drink microbrews, and use smart
phones (the conclusion), or
individuals who have purchased home gym equip-
ment are unlikely to be using it 1 year later, say.

But the presence of a correlation between the premise and
the conclusion does not necessarily imply the existence of
a causal relationship between them.

4 P.Boily, J.Schellinck (2021)
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It is rather difficult to “demonstrate” causation via data anal-
ysis; in practice, decision-makers pragmatically (and often
erroneously) focus on the second half of Tufte’s rejoinder,
which asserts that “there’s no smoke without fire.”

Case in point, while being a triathlete does not cause one
to drive a Subaru, Subaru Canada thinks that the connection
is strong enough to offer to reimburse the registration fee
at an IRONMAN 70.3 competition (since at least 2018)! [6]

Market Basket Analysis Association rules discovery is also
known as market basket analysis after its original applica-
tion, in which supermarkets record the contents of shopping
carts (the baskets) at check-outs to determine which items
are frequently purchased together.

For instance, while bread and milk might often be purchased
together, that is unlikely to be of interest to supermarkets
given the frequency of market baskets containing milk or
bread (in the mathematical sense of “or”).

Knowing that a customer has purchased bread does
provide some information regarding whether they also pur-
chased milk, but the individual probability that each item
is found, separately, in the basket is so high to begin with
that this insight is unlikely to be useful.

If 70% of baskets contain milk and 90% contain bread,
say, we would expect at least

90%× 70%= 63%

of all baskets to contain milk and bread, should the presence
of one in the basket be totally independent of the presence
of the other.

If we then observe that 72% of baskets contain both
items (a 1.15-fold increase on the expected proportion, as-
suming there is no link), we would conclude that there was
at best a weak correlation between the purchase of milk
and the purchase of bread.

Sausages and hot dog buns, on the other hand, which we
might suspect are not purchased as frequently as milk and
bread, might still be purchased as a pair more often than
one would expect given the frequency of baskets containing
sausages or buns.

If 10% of baskets contain sausages, and 5% contain
buns, say, we would expect that

10%× 5%= 0.5%

of all baskets would contain sausages and buns, should the
presence of one in the basket be totally independent of
the presence of the other.

If we then observe that 4% of baskets contain both items
(an 8-fold increase on the expected proportion, assuming
there is no link), we would obviously conclude that there
is a strong correlation between the purchase of sausages
and the purchase of hot dog buns.

It is not too difficult to see how this information could poten-
tially be used to help supermarkets turn a profit: announc-
ing or advertising a sale on sausages while simultaneously
(and quietly) raising the price of buns could have the effect
of bringing in a higher number of customers into the store,
increasing the sale volume for both items while keeping the
combined price of the two items constant.4

A (possibly) apocryphal story shows the limitations of as-
sociation rules: a supermarket found an association rule
linking the purchase of beer and diapers and consequently
moved its beer display closer to its diapers display, having
confused correlation and causation.

Purchasing diapers does not cause one to purchase beer
(or vice-versa); it could simply be that parents of newborns
have little time to visit public houses and bars, and what-
ever drinking they do will be done at home. Who knows?
Whatever the case, rumour has it that the experiment was
neither popular nor successful.

Applications Typical uses include:

finding related concepts in text documents – looking
for pairs (triplets, etc) of words that represent a joint
concept: {San Jose, Sharks}, {Michelle, Obama}, etc.;
detecting plagiarism – looking for specific sentences
that appear in multiple documents, or for documents
that share specific sentences;
identifying biomarkers – searching for diseases that
are frequently associated with a set of biomarkers;
making predictions and decisions based on associa-
tion rules (there are pitfalls here);
altering circumstances or environment to take advan-
tage of these correlations (suspected causal effect);
using connections to modify the likelihood of certain
outcomes (see immediately above);
imputing missing data,
text autofill and autocorrect, etc.

Other uses and examples can be found in [5,17,48].

3.1 Causation and Correlation
Association rules can automate hypothesis discovery, but
one must remain correlation-savvy (which is less prevalent
among quantitative specialists than one might hope, in our
experience). If attributes A and B are shown to be correlated
in a dataset, there are four possibilities:

A and B are correlated entirely by chance in this par-
ticular dataset;
A is a relabeling of B (or vice-versa);
A causes B (or vice-versa), or
some combination of attributes C1, . . . , Cn (which may
not be available in the dataset) cause both A and B.

4The marketing team is banking on the fact that customers are unlikely
to shop around to get the best deal on hot dogs AND buns, which may or
may not be a valid assumption.

P.Boily, J.Schellinck (2021) 5
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Siegel [48] illustrates the confusion that can arise with a
number of real-life examples:

Walmart has found that sales of strawberry Pop-Tarts
increase about seven-fold in the days preceding the
arrival of a hurricane;
Xerox employees engaged in front-line service and
sales-based positions who use Chrome and Firefox
browsers perform better on employment assessment
metrics and tend to stay with the company longer, or
University of Cambridge researchers found that lik-
ing “Curly Fries” on Facebook is predictive of high
intelligence.

It can be tempting to try to explain these results (again
from [48]): perhaps

when faced with a coming disaster, people stock up
on comfort or nonperishable foods;
the fact that an employee takes the time to install
another browser shows that they are an informed
individual and that they care about their productivity,
or
an intelligent person liked this Facebook page first,
and her friends saw it, and liked it too, and since
intelligent people have intelligent friends (?), the
likes spread among people who are intelligent.

While these explanations might very well be the right ones
(although probably not in the last case), there is nothing
in the data that supports them. Association rules discovery
finds interesting rules, but it does not explain them.

The point cannot be over-emphasized: correlation does
not imply causation. Consultants and analysts might not
have much control over the matter, but they should do
whatever is in their power so that the following headlines
do not see the light of day:

“Pop-Tarts” get hurricane victims back on their feet;
Using Chrome of Firefox improves employee perfor-
mance, or
Eating curly fries makes you more intelligent.

3.2 Definitions
A rule X → Y is a statement of the form “if X (the premise)
then Y (the conclusion)” built from any logical combina-
tions of a dataset attributes.

In practice, a rule does not need to be true for all ob-
servations in the dataset – there could be instances where
the premise is satisfied but the conclusion is not.

In fact, some of the “best” rules are those which are
only accurate 10% of the time, as opposed to rules which
are only accurate is only 5% of the time, say. As always, it
depends on the context.

To determine a rule’s strength, we compute various rule
metrics, such as the:

support (coverage), which measures the frequency
at which a rule occurs in a dataset – low coverage
values indicate rules that rarely occur;
confidence (accuracy), which measures the reliabil-
ity of the rule: how often does the conclusion occur
in the data given that the premises have occurred –
rules with high confidence are “truer”, in some sense;
interest, which measures the difference between its
confidence and the relative frequency of its conclu-
sion – rules with high absolute interest are ... more
interesting than rules with small absolute interest;
lift, which measures the increase in the frequency
of the conclusion which can be explained by the
premises – in a rule with a high lift (> 1), the conclu-
sion occurs more frequently than it would if it was
independent of the premises;
conviction [52], all-confidence [36], leverage [40],
collective strength [3], and many others [19,49].

In a dataset with N observations, let Freq(A) ∈ {0, 1, . . . , N}
represent the count of the dataset’s observations for which
property A holds. This is all the information that is required
to compute a rule’s evaluation metrics:

Support(X → Y ) =
Freq(X ∩ Y )

N
∈ [0,1]

Confidence(X → Y ) =
Freq(X ∩ Y )

Freq(X )
∈ [0,1]

Interest(X → Y ) = Confidence(X → Y )−
Freq(Y )

N
∈ [−1, 1]

Lift(X → Y ) =
N2 · Support(X → Y )

Freq(X ) · Freq(Y )
∈ (0, N2)

Conviction(X → Y ) =
1− Freq(Y)/N

1−Confidence(X → Y )
≥ 0

Music Dataset A simple example will serve to illustrate
these concepts. Consider a (hypothetical) music dataset
containing data for N = 15, 356 Chinese music lovers and
a candidate rule RM:

“If an individual is born before 1986 (X ), then
they own a copy of Teresa Teng’s The Moon
Represents My Heart, in some format (Y )”.

Let’s assume further that

Freq(X ) = 3888 individuals were born before 1986;
Freq(Y ) = 9092 individuals own a copy of The Moon
Represents My Heart, and
Freq(X ∩ Y ) = 2720 individuals were born before
1986 and own a copy of The Moon Represents My
Heart.

6 P.Boily, J.Schellinck (2021)
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We can easily compute the 5 metrics for RM:

Support(RM) =
2720

15,536
≈ 18%

Confidence(RM) =
2720
3888

≈ 70%

Interest(RM) =
2720
3888

−
9092

15,356
≈ 0.11

Lift(RM) =
15,3562 · 0.18

3888 · 9092
≈ 1.2

Conviction(RM) =
1− 9092/15,356
1− 2720/3888

≈ 1.36

These values are easy to interpret: RM occurs in 18% of the
dataset’s instances, and it holds true in 70% of the instances
where the individual was born prior to 1986.

This would seem to make RM a meaningful rule about
the dataset – being older and owning that song are linked
properties. But if being younger and not owning that song
are not also linked properties, the statement is actually
weaker than it would appear at a first glance.

As it happens, RM’s lift is 1.2, which can be rewritten as

1.2≈
0.70
0.56

,

i.e. 56% of younger individuals also own the song.
The ownership rates between the two age categories

are different, but perhaps not as significantly as one would
deduce using the confidence and support alone, which is
reflected by the rule’s “low” interest, whose value is 0.11.

Finally, the rule’s conviction is 1.36, which means that the
rule would be incorrect 36% more often if X and Y were
completely independent.

All this seems to point to the rule RM being not entirely
devoid of meaning, but to what extent, exactly? This is a
difficult question to answer.5

It is nearly impossible to provide hard and fast thresh-
olds: it always depends on the context, and on comparing
evaluation metric values for a rule with the values obtained
for some other of the dataset’s rules. In short, evaluation
of a lone rule is meaningless.

3.3 Generating Rules
Given association rules, it is straightforward to evaluate
them using various metrics, as discussed in Section 3.2.

The real challenge of association rules discovery lies in
generating a set of candidate rules which are likely to be
retained, without wasting time generating rules which are
likely to be discarded.

5There will be times when an interest of 0.11 in a rule would be
considered a smashing success; a lift of 15 would not be considered that
significant but a support of 2% would be, and so forth.

An itemset (or instance set) for a dataset is a list of at-
tributes and values. A set of rules can be created from the
itemset by adding ‘IF ... THEN’ blocks to the instances.

As an example, from the instance set

{membership= True,
abcdage= Youth,
abcdpurchasing= Typical},

we can create the 7 following 3−item rules:

IF (membership = True AND age = Youth) THEN
purchasing= Typical;
IF (age = Youth AND purchasing = Typical) THEN
membership= True;
IF (purchasing = Typical AND membership = True)
THEN age= Youth;
IF membership = True THEN (age = Youth AND
purchasing= Typical);
IF age = Youth THEN (purchasing = Typical AND
membership= True);
IF purchasing= Typical THEN (membership= True)
AND age= Youth);
IF ∅ THEN (membership = True AND age = Youth
AND purchasing= Typical);

the 6 following 2−item rules:

IF membership= True THEN purchasing= Typical;
IF age= Youth THEN membership= True;
IF purchasing= Typical THEN age= Youth;
IF∅ THEN (age = Youth AND purchasing = Typical);
IF∅ THEN (purchasing = Typical AND membership =
True);
IF ∅ THEN (membership = True) AND age = Youth);

and the 3 following 1−item rules:

IF ∅ THEN age= Youth;
IF ∅ THEN purchasing= Typical;
IF ∅ THEN membership= True.

In practice, we usually only consider rules with the same
number of items as there are members in the itemset: in
the example above, for instance, the 2−item rules could be
interpreted as emerging from the 3 separate itemsets

{membership= True, age= Youth}
{age= Youth, purchasing= Typical}
{purchasing= Typical,membership= True},

and the 1−item rules as arising from the 3 separate itemsets

{membership= True}
{age= Youth}
{purchasing= Typical}.

Note that rules of the form ∅→ X (or IF ∅ THEN X ) are
typically denoted simply by X .

P.Boily, J.Schellinck (2021) 7
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Now, consider an itemset Cn with n members (that is to
say, n attribute/level pairs).

In an n−item rule derived from C , each of the n mem-
bers appears either in the premise or in the conclusion;
there are thus 2n such rules, in principle.

The rule where each member is part of the premise (i.e., the
rule without a conclusion) is nonsensical and is not allowed;
we can derive exactly 2n − 1 n−item rules from Cn.

Thus, the number of rules increases exponentially
when the number of features increases linearly.

This combinatorial explosion is a problem – it instantly
disqualifies the brute force approach (simply listing all
possible itemsets in the data and generating all rules from
those itemsets) for any dataset with a realistic number of
attributes.

How can we then generate a small number of promising
candidate rules, in general?

The apriori algorithm is an early attempt to overcome that
difficulty. Initially, it was developed to work for transac-
tion data (i.e. goods as columns, customer purchases as
rows), but every reasonable dataset can be transformed
into a transaction dataset using dummy variables.

The algorithm attempts to find frequent itemsets from
which to build candidate rules, instead of building rules
from all possible itemsets.

It starts by identifying frequent individual items in the
database and extends those that are retained into larger
and larger item supersets, who are themselves retained
only if they occur frequently enough in the data.

The main idea is that “all non-empty subsets of a fre-
quent itemset must also be frequent” [9], or equivalently,
that all supersets of an infrequent itemset must also be in-
frequent (see Figure 3).

In the technical jargon of machine learning, we say that
apriori uses a bottom-up approach and the downward
closure property of support.

The memory savings arise from the fact that the algo-
rithm prunes candidates with infrequent sub-patterns and
removes them from consideration for any future itemset: if
a 1−itemset is not considered to be frequent enough, any
2−itemset containing it is also infrequent (see Table 1 for
another illustration).

Of course, this requires a support threshold input, for which
there there is no guaranteed way to pick a “good” value; it
has to be set sufficiently high to minimize the number of
frequent itemsets that are being considered, but not so high
that it removes too many candidates from the output list;
as ever, optimal threshold values are dataset-specific.

The algorithm terminates when no further itemsets exten-
sions are retained, which always occurs given the finite
number of levels in categorical datasets (see below).

Strengths: easy to implement and to parallelize [32];
Limitations: slow, requires frequent data set scans,
not ideal for finding rules for infrequent and rare
itemsets.

More efficient algorithms have since displaced it in practice,
although it retains historical value:

Max-Miner tries to identify frequent itemsets with-
out enumerating them – it performs jumps in space
instead of using bottom-up approach;
Eclat is faster and uses depth-first search, but requires
extensive memory storage (apriori and eclat are both
implemented in the R package arules).

Notes How reliable are association rules? What is the
likelihood that they occur entirely by chance? How rele-
vant are they? Can they be generalised outside the dataset,
or to new data streaming in?

These questions are notoriously difficult to solve for
association rules discovery, but statistically sound associ-
ation discovery can help reduce the risk of finding spurious
associations to a user-specified significance level [19,49].

We end this section with a few comments:

Since frequent rules correspond to instances that oc-
cur repeatedly in the dataset, algorithms that gener-
ate itemsets often try to maximise coverage. When
rare events are more meaningful (such as detection
of a rare disease or a threat), we need algorithms
that can generate rare itemsets. This is not a trivial
problem.
Continuous data has to be binned into categorical
data to generate rules. As there are many ways to
accomplish that task, the same dataset can give rise
to completely different rules. This could create some
credibility issues with the client.
Other popular algorithms include: AIS, SETM, aprior-
iTid, aprioriHybrid, PCY, Multistage, Multihash, etc.
Additional evaluation metrics can be found in the
arules documentation [36].

3.4 Toy Example: Titanic Dataset
Compiled by Robert Dawson in 1995, the Titanic dataset
consists of 4 categorical attributes for each of the 2201
people aboard the Titanic when it sank in 1912 (some
issues with the dataset have been documented, but we will
ignore them for now):

class (1st class, 2nd class, 3rd class, crewmember)
age (adult, child)
sex (male, female)
survival (yes, no)

8 P.Boily, J.Schellinck (2021)
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Figure 3. Pruned supersets of an infrequent itemset in the apriori network of a dataset with 5 items [9]; no rule would be
generated from the grey itemsets.

Table 1. Association rules for NHL playoff teams (1942-1967). A list of the 4 teams making the playoffs each year is
shown on the left (N = 20). Frequent itemsets are generated using the apriori algorithms, with a support threshold of 10.
We see that there are 5 frequent 1−itemsets, top row, in yellow (New York made the playoffs 6< 10 times – no larger
frequent itemset can contain New York). 6 frequent 2−itemsets are found in the subsequent list of ten 2−itemsets, top
row, in green (note the absence of New York). Only 2 frequent 3−itemsets are found, top row, in orange. Candidate rules
are generated from the shaded itemsets; the rules retained by the thresholds Support≥ 0.5, Confidence≥ 0.7, and
Lift> 1 (barely) are shown in the table on the bottom row – the main result is that when Boston made the playoffs, it was
not surprising to see Detroit also make the playoffs (the presence or absence of Montreal in a rule is a red herring, as
Montreal made the playoffs every year in the data. Are these rules meaningful?

P.Boily, J.Schellinck (2021) 9
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Figure 4. Visualisations of the 8 Titanic association rules with parallel coordinates.

The natural question of interest for this dataset is

“how does survival relate to the other attributes?”

This is not, strictly speaking, an unsupervised task (as the
interesting rules’ structure is fixed to conclusions of the
form survival= Yes or survival= No).

For the purpose of this example, we elect not to treat
the problem as a predictive task, since the situation on
the Titanic has little bearing on survival for new data – as
such, we use fixed-structure association rules to describe
and explore survival conditions on the Titanic (compare
with [44]).

We use the arules implementation of the apriori algo-
rithm inR to generate and prune candidate rules, eventually
leading to 8 rules (the results can be visualised in Figure 4).
Who survived?6

3.5 Case Study: Danish Medical Data
In temporal disease trajectories condensed from population
wide registry data covering 6.2 million patients [26], A.B.
Jensen et al. study diagnoses in the Danish population, with
the help of association rules mining and clustering methods
(see Section 5).

Objectives Estimating disease progression (trajectories)
from current patient state is a crucial notion in medical stud-
ies. Such trajectories had (at the time of publication) only
been analyzed for a small number of diseases, or using large-
scale approaches without consideration for time exceeding
a few years.

6For the last time, correlation does not imply causation.

Using data from the Danish National Patient Registry (an
extensive, long-term data collection effort by Denmark), the
authors sought connections between different diagnoses:
how does the presence of a diagnosis at some point in time
allow for the prediction of another diagnosis at a later point
in time?

Methodology The authors took the following methodolog-
ical steps:

1. compute the strength of correlation for pairs of di-
agnoses over a 5 year interval (on a representative
subset of the data);

2. test diagnoses pairs for directionality (one diagnosis
repeatedly occurring before the other);

3. determine reasonable diagnosis trajectories (thor-
oughfares) by combining smaller (but frequent) tra-
jectories with overlapping diagnoses;

4. validate the trajectories by comparison with non-
Danish data;

5. cluster the thoroughfares to identify a small num-
ber of central medical conditions (key diagnoses)
around which disease progression is organized.

Data The Danish National Patient Registry is an electronic
health registry containing administrative information and
diagnoses, covering the whole population of Denmark, in-
cluding private and public hospital visits of all types: inpa-
tient (overnight stay), outpatient (no overnight stay) and
emergency. The data set covers 15 years, from January ’96
to November ’10 and consists of 68 million records for 6.2
million patients.

10 P.Boily, J.Schellinck (2021)
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Figure 5. The COPD cluster showing five preceding diagnoses leading to COPD and some of the possible outcomes [26].

Challenges and Pitfalls

Access to the Patient Registry is protected and could
only be granted after approval by the Danish Data
Registration Agency the National Board of Health.
Gender-specific differences in diagnostic trends are
clearly identifiable (pregnancy and testicular cancer
do not have much cross-appeal), but many diagnoses
were found to be made exclusively (or at least, pre-
dominantly) in different sites (inpatient, outpatient,
emergency ward), which suggests the importance of
stratifying by site as well as by gender.
In the process of forming small diagnoses chains, it
became necessary to compute the correlations using
large groups for each pair of diagnoses. For close to
1 million diagnosis pairs, more than 80 million sam-
ples would have been required to obtain significant
p−values while compensating for multiple testing,
which would have translated to a few thousand years’
worth of computer running time. A pre-filtering step
was included to avoid this pitfall.7

Project Summaries and Results The dataset was reduced
to 1,171 significant trajectories. These thoroughfares
were clustered into patterns centred on 5 key diagnoses
central to disease progression: diabetes, chronic obstruc-
tive pulmonary disease (COPD), cancer, arthritis, and
cerebrovascular disease.

7The final trajectories were validated using the full sampling procedure.

Early diagnoses for these central factors can help reduce the
risk of adverse outcome linked to future diagnoses of other
conditions. Two author quotes illustrate the importance of
these results:

“The sooner a health risk pattern is identified,
the better we can prevent and treat critical dis-
eases.”
− S. Brunak

“Instead of looking at each disease in isolation,
you can talk about a complex system with many
different interacting factors. By looking at the
order in which different diseases appear, you
can start to draw patterns and see complex
correlations outlining the direction for each
individual person.”
− L.J. Jensen

Among the specific results, the following “surprising” in-
sights were found:

a diagnosis of anemia is typically followed months
later by the discovery of colon cancer;
gout was identified as a step on the path toward
cardiovascular disease, and
COPD is under-diagnosed and under-treated.

The disease trajectories cluster for COPD is shown in Fig-
ure 5.

P.Boily, J.Schellinck (2021) 11
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4. Supervised Learning and Classification

Embarrassment of Riches

“The diversity of problems that can be addressed by
classification algorithms is significant, and covers
many domains. It is difficult to comprehensively
discuss all the methods in a single book.”

– C.C. Aggarwal [1]

The principles underlying classification, regression and class
probability estimation are well-known and straightforward.

Classification is a supervised learning endeavour in which
a sample set of data (the training set) is used to determine
rules and patterns that divide the data into predetermined
groups, or classes. The training data usually consists of a
randomly selected subset of the labeled data.8

In the testing phase, the model is used to assign a class
to observations in the testing set, in which the label is
hidden, in spite of being actually known.

The performance of the predictive model is then eval-
uated by comparing the predicted and the values for the
testing set observations (but never using the training set
observations).

A number of technical issues need to be addressed in order
to achieve optimal performance, among them: determin-
ing which features to select for inclusion in the model and,
perhaps more importantly, which algorithm to choose.

The mushroom (classification) model from Section 2
provides a clean example of a classification model, albeit
one for which no detail regarding the training data and
choice of algorithm were made available.

Applications Classification and value estimation models
are among the most frequently used of the data science
models, and form the backbone of what is also known as
predictive analytics. There are applications and uses in
just about every field of human endeavour, such as:

medicine and health science – predicting which pa-
tient is at risk of suffering a second, and this time
fatal, heart attack within 30 days based on health
factors (blood pressure, age, sinus problems, etc.);
social policies – predicting the likelihood of required
assisting housing in old age based on demographic
information/survey answers;
marketing/business – predicting which customers
are likely to cancel their membership to a gym based
on demographics and usage;
in general, predicting that an object belongs to a
particular class, or organizing and grouping instances
into categories, or

8Value estimation (regression) is similar to classification, except that
the target variable is numerical.

enhancing the detection of relevant objects:
– avoidance – “this object is an incoming vehi-

cle”;
– pursuit – “this borrower is unlikely to default

on her mortgage”;
– degree – “this dog is 90% likely to live until it’s

7 years old”;
economics – predicting the inflation rate for the com-
ing two years based on a number of economic indica-
tors.

Other examples may be found in [15,27–29].

Some concrete examples may provide a clearer picture of
the types of supervised learning problems that quantitative
consultants may be called upon to solve.

A motor insurance company has a fraud investiga-
tion department that studies up to 20% of all claims
made, yet money is still getting lost on fraudulent
claims. To help better direct the investigators, man-
agement would like to determine, using past data, if
it is possible to predict

– whether a claim is likely to be fraudulent?
– whether a customer is likely to commit fraud in

the near future?
– whether an application for a policy is likely to

result in a fraudulent claim?
– the amount by which a claim will be reduced if

it is fraudulent?
Customers who make a large number of calls to a
mobile phone company’s customer service number
have been identified as churn risks. The company is
interested in reducing said churn. Can they predict

– the overall lifetime value of a customer?
– which customers are more likely to churn in the

near future?
– what retention offer a particular customer will

best respond to?

In every classification scenario, the following questions
must be answered before embarking on analysis:

What kind of data is required?
How much of it?
What would constitute a predictive success?
What are the risks associated with a predictive mod-
eling approach?

These have no one-size-fits-all answers.

In the absence of testing data, classification models can-
not be used for predictive tasks, but may still be useful for
descriptive tasks. When testing data exists, the process is
often quite similar, independently of the choice of the al-
gorithm (see the classification pipeline shown in Figure 6).
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Figure 6. A classification pipeline, including training set, testing set, performance evaluation, and (eventual) deployment.

4.1 Classification Algorithms
The number of classification algorithms is truly staggering –
it often seems as though new algorithms and variants are
put forward on a monthly basis, depending on the task and
on the type of data [1].

While some of them tend to be rather esoteric, there is
a fairly small number of commonly-used workhorse al-
gorithms/approaches that data scientists and consultants
should at least have at their command (full descriptions are
available in [21,42,50]):

logistic regression and linear regression are classi-
cal models which are often used by statisticians but
rarely in a classification setting (the estimated co-
efficients are often used to determine the features’
importance); one of their strengths is that the machin-
ery of standard statistical theory (hypothesis testing,
confidence intervals, etc.) is still available to the ana-
lyst, but they are easily affected by variance inflation
in the presence of predictor multi-colinearity, and the
stepwise variable selection process that is typically
used is problematic – regularization methods would
be better suited [22] (see Figure 7, top left);
neural networks have become popular recently due
to the advent of deep learning; they might provide
the prototypical example of a black box algorithm as
they are hard to interpret; another issue is that they
require a fair amount of data to train properly – we
will have more to say on the topic in a later chapter;

decision trees are perhaps the most commons of all
data science algorithms, but they tend to overfit the
data when they are not pruned correctly, a process
which often has to be done manually (see Figure 7) –
we shall discuss the pros an cons of decision trees in
general in Section 4.2;
naïve Bayes classifiers have known quite a lot of
success in text mining applications (more specifically
as the basis of powerful spam filters), but, embar-
rassingly, no one is quite sure why they should work
as well as they do given that one of their required
assumptions (independence of priors) is rarely met
in practice (see Figure 7, top right);
support vector machines attempt to separate the
dataset by “fitting” as wide of a “tube” as possible
through the classes (subjected to a number of penalty
constraints); they have also known successes, most
notably in the field of digital handwriting recognition,
but their decision boundaries (the tubes in question)
tend to be non-linear and quite difficult to interpret;
nevertheless, they may help mitigate some of the
difficulties associated with big data (see Figure 8);
nearest neighbours classifiers basically implement
a voting procedure and require very little assump-
tions about the data, but they are not very stable as
adding training points may substantially modify the
boundary (see Figure 7 and Figure 8, middle row).

Boosting methods [31] and Bayesian methods (see later
chapter) are also becoming more popular.
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Figure 7. Illustrations of various classifiers (linear regression, top left; optimal Bayes, top right; 1NN and 15NN, middle
left and right, respectively, on an artificial dataset (from [21]); decision tree depicting the chances of survival for various
disasters (fictional, based on [35]). Note that linear regression is more stable, simpler to describe, but less accurate than
kNN and optimal Bayes.
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Figure 8. Illustration of a k nearest neighbour (left) and a support vector machines classifier (right, based on [42]).
What is the 6NN prediction for the location marked by a question mark? What about the 19NN prediction?

4.2 Decision Trees
In order to highlight the relative simplicity of most classifi-
cation algorithms, we will discuss the workings of ID3, a
historically significant decision tree algorithm.9

Classification trees are perhaps the most intuitive of all
supervised methods: classification is achieved by following
a path up the tree, from its root, through its branches, and
ending at its leaves (alghough typically the tree is depicted
with its root at the top and its leaves at the bottom).

To make a prediction for a new instance, it suffices to
follow the path down the tree, reading the prediction di-
rectly once a leaf is reached. It sounds simple enough in
theory, but in practice, creating the tree and traversing it
might be time-consuming if there are too many variables
in the dataset (due to the criterion that is used to determine
how the branches split).

Prediction accuracy can be a concern in trees whose
growth is unchecked. In practice, the criterion of purity at
the leaf-level (that is to say, all instances in a leaf belong to
the same leaf) is linked to bad prediction rates for new in-
stances. Other criteria are often used to prune trees, which
may lead to impure leaves.

How do we grow such trees? For predictive purposes, we
need a training set and a testing set upon which to eval-
uate the tree’s performance. Ross Quinlan’s Iterative Di-
chotomizer 3 (a precursor to the widely-used C4.5 and
C5.0) follows a simple procedure:

1. split the training data (parent) set into (children)
subsets, using the different levels of a particular at-
tribute;

2. compute the information gain for each subset;
3. select the most advantageous split, and
4. repeat for each node until some leaf criterion is met.

9ID3 would never be used in a deployment setting, but it will serve to
illustrate a number of classification concepts.

Entropy is a measure of disorder in a set S. Let pi be the
proportion of observations in S belonging to category i, for
i = 1, . . . , n. The entropy of S is given by

E(S) = −
n
∑

i=1

pi log pi .

If the parent set S consisting of m records is split into k
children sets C1, . . . , Ck containing q1, . . . , qk records, re-
spectively, then the information gained from the split is

I(S : C1, . . . , Ck) = E(S)−
1
m

k
∑

j=1

q j E(C j).

The sum term in the information gain equation is a weighted
average of the entropy of the children sets. If the split leads
to little disorder in the children, then IG(S; C1, . . . , Ck) is
high; if the split leads to similar disorder in both children
and parent, then IG(S; C1, . . . , Ck) is low.

Consider, as in Figure 9, two splits shown for a parent
set with 30 observations separated into 2 classes: ◦ and ?.

Visually, it appears as though the binary split does a bet-
ter job of separating the classes. Numerically, the entropy
of the parent set S is

E(S) = −p◦ log p◦ − p? log p?

= −
16
30

log
16
30
−

14
30

log
14
30
≈ 0.99.

For the binary split (on the left), leading to the children set
L (left) and R (right), the respective entropies are

E(L) = −
12
13

log
12
13
−

1
13

log
1

13
≈ 0.39

and

E(R) = −
4

17
log

4
17
−

13
17

log
13
17
≈ 0.79,

so that the information gained by that split is

IG(S; CL , CR)≈ 0.99−
1

30
[13 · 0.39+ 17 · 0.79] = 0.37.
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Figure 9. Picking the optimal information gain split (from [42]).

On its own, this value is not substantially meaningful – it is
in comparison to the information gained from other splits
that it becomes useful.

A similar computation for the ternary split leads to
IG(S; C1, C2, C3) ≈ 0.13, which is indeed smaller than the
information gained by the binary split – of these two options,
ID3 would select the first as being most advantageous.

Decision trees have numerous strengths: they

are easy to interpret, providing, as they do, a white
box model – predictions can always be explained by
following the appropriate paths;
can handle numerical and categorical data simulta-
neously, without first having to “binarise” the data;
can be used with incomplete datasets, if needed (al-
though there is still some value in imputing missing
observations);
allow for built-in feature selection as less relevant
features do not tend to be used as splitting features;
make no assumption about independence of obser-
vations, underlying distributions, multi-colinearity,
etc., and can thus be used without the need to verify
assumptions;
lend themselves to statistical validation (in the form
of cross-validation), and
are in line with human decision-making approaches,
especially when such decisions are taken deliberately.

On the other hand, they are

not usually as accurate as other more complex algo-
rithms, nor as robust, as small changes in the training
data can lead to a completely different tree, with a
completely different set of predictions;10

particularly vulnerable to overfitting in the absence
of pruning – and pruning procedures are typically
fairly convoluted (some algorithms automate this pro-
cess, using statistical tests to determine when a tree’s
“full” growth has been achieved), and

10This can become problematic when presenting the results to a client
whose understanding of these matters is slight.

biased towards categorical features with high num-
ber of levels, which may give such variables undue
importance in the classification process.

Information gain tends to grow small trees in its puruit of
pure leaves, but it is not the only splitting metric in use
(Gini impurity, variance reduction, etc.).

Notes ID3 is a precursor of C4.5, perhaps the most popu-
lar decision tree algorithm on the market. There are other
tree algorithms, such as C5.0, CHAID, MARS, conditional
inference trees, CART, etc., each grown using algorithms
with their own strengths and weaknesses.

Regression trees are grown in a similar fashion, but with a
numerical response variable (predicted inflation rate, say),
which introduces some complications [21,24].

Decision trees can also be combined together using boost-
ing algorithms (such as AdaBoost) or random forests,
providing a type of voting procedure also known as en-
semble learning – an individual tree might make middling
predictions, but a large number of judiciously selected trees
are likely to make good predictions, on average [21,24,31].

Additionally:

since classification is linked to probability estima-
tion, approaches that extend the basic ideas of re-
gression models could prove fruitful;
rare occurrences are often more interesting and more
difficult to predict and identify than regular instances
– historical data at Fukushima’s nuclear reactor prior
to the 2011 meltdown could not have been used to
learn about meltdowns, for obvious reasons;11

with big datasets, algorithms must also consider ef-
ficiency – thankfully, decision trees are easily paral-
lelizable.

11Classical performance evaluation metrics can easily be fooled; if out
of two classes one of the instances is only represented in 0.01% of the in-
stances, predicting the non-rare class will yield correct predictions roughly
99.99% of the time, missing the point of the exercise altogether.
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4.3 Performance Evaluation
As a consequence of the (so-called) No-Free-Lunch Theo-
rem, no single classifier can be the best performer for every
problem. Model selection must take into account:

the nature of the available data;
the relative frequencies of the classification sub-
groups;
the stated classification goals;
how easily the model lends itself to interpretation
and statistical analysis;
how much data preparation is required;
whether it can accommodate various data types and
missing observations;
whether it performs well with large datasets, and
whether it is robust against small data departures
from theoretical assumptions.

Past success is not a guarantee of future success – it is the
analyst’s responsibility to try a variety of models. But how
can the “best” model be selected?

When a classifier attempts to determine what kind of
music a new customer would prefer, there is next to no cost
in making a mistake; if, on the other hand, the classifier
attempts to determine the presence or absence of cancerous
cells in lung tissue, mistakes are more consequential.

Several metrics can be used to assess a classifier’s perfor-
mance, depending on the context.

Binary classifiers (such as the abstract example shown
in Table 3) are simpler and have been studied far longer
than multi-level classifiers; consequently, a larger body of
evaluation metrics is available for these classifiers.

In the medical literature, TP, TN, FP and FN stand for
True Positives, True Negatives, False Positives, and False
Negatives, respectively. A perfect classifier would be one
for which both FP, FN = 0. In practice, that rarely ever
happens (if at all).

Traditional performance metrics include:

sensitivity: TP/AP
specificity: TN/AN
precision: TP/PP
negative predictive value: TN/PN
false positive rate: FP/AN
false discovery rate: 1− TP/PP
false negative rate: FN/AP
accuracy: (TP+ TN)/T
F1−score: 2TP/(2TP+ FP+ FN)
MCC:

TP · TN− FP · FN
p

AP ·AN · PP · PN
informedness/ROC: TP/AP+ TN/AN− 1
markedness: TP/PP+ TN/PN− 1

The confusion matrices of two artificial binary classifers
for a testing set are shown in Table 2. Both classifiers have

an accuracy of 80%, but while the second classifier some-
times makes a wrong prediction for A, it never does so for
B, whereas the first classifier makes erroneous predictions
for both A and B.

On the other hand, the second classifier mistakenly pre-
dicts occurrence A as B 16 times while the first one only
does so 6 times.

So which one is best? The performance metrics alone do
not suffice to answer the question: the cost associated with
making a mistake must also be factored in. Furthermore, it
could be preferable to select performance evaluation met-
rics that generalize more readily to multi-level classifiers
(see Table 4 for examples of associated confusion matrices).

Accuracy is the proportion of correct predictions amid all
the observations; its value ranges from 0% to 100%. The
higher the accuracy, the better the match, and yet, a predic-
tive model with high accuracy may nevertheless be useless
thanks to the Accuracy Paradox (see footnote, p. 16).

The Matthews Correlation Coefficient (MCC), on the other
hand, is a statistic which is of use even when the classes are
of very different sizes. As a correlation coefficient between
the actual and predicted classifications, its range varies
from −1 to 1.

If MCC = 1, the predicted and actual responses are iden-
tical, while if MCC = 0, the classifier performs no better
than a random prediction (“flip of a coin”).

It is also possible to introduce two non-traditional perfor-
mance metrics (which are nevertheless well-known sta-
tistical quantities) to describe how accurately a classifier
preserves the classification distribution (rather than how it
behaves on an observation-by-observation basis):

Pearson’s χ2: 1
T

�

(PP−AP)2/PP+ (PN−AN)2/PN
�

Hist: 1
T (|PP−AP|+ |PN−AN|)

Note, however, that these are non-standard performance
metrics. For a given number of levels, the smaller these
quantities, the more similar the actual and predicted distri-
butions.

For numerical targets y with predictions ŷ , the confusion
matrix is not defined, but a number of classical performance
evaluation metrics can be used on the testing set: the

mean squared and mean absolute errors

MSE=mean
�

(yi − ŷi)
2
	

, MAE=mean{|yi− ŷi |};

normalized mean squared/mean absolute errors

NMSE=
mean

�

(yi − ŷi)2
	

mean {(yi − y)2}
,

NMAE=
mean {|yi − ŷi |}
mean {|yi − y|}

;
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Table 2. Performance metrics for two (artificial) binary classifiers.

Table 3. A general binary classifier.

mean average percentage error

MAPE=mean
§ |yi − ŷi |

yi

ª

;

correlation ρy, ŷ , which is based on the notion that
for good models, the predicted values and the actual
values should congregate around the lines y = ŷ (see
Figure 10 for an illustration).

As is the case for classification, an isolated value estimation
performance metric does not provide enough of a rationale
for model validation/selection. One possible exception:
normalized evaluation metrics do provide some information
about the relative quality of performance (see [21,24]).

Figure 10. Predicted and actual responses (personal file).

4.4 Toy Example: Kyphosis Dataset
As a basic illustration of these concepts, consider the fol-
lowing example. Kyphosis is a medical condition related
to an excessive convex curvature of the spine. Corrective
spinal surgery is at times performed on children. A dataset
of 81 observations and 4 attributes has been collected (we
have no information on how the data was collected and
how representative it is likely to be, but those details can
be gathered from [7]). The attributes are:

kyphosis (absent or present after presentation)
age (at time of operation, in months)
number (of vertebrae involved)
start (topmost vertebra operated on)
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Table 4. Performance metrics for (artificial) multi-level classifiers: ternary - left; senary - right (personal files).

The natural question of interest for this dataset is

“how do the three explanatory attributes impact
the operation’s success?”

We use the rpart implementation of Classification and
Regression Tree (CART) in R to generate a decision tree.
Strictly speaking, this is not a predictive supervised task
as we treat the entire dataset as a training set for the time
being – there are no hold-out testing observations. The
results are shown in Figure 11.

Interestingly, it would appear that the number variable
does not play a role in determining the success of the oper-
ation (for the observations in the dataset).

Furthermore, the decision tree visualization certainly
indicates that its leaves are not pure (see Figure 12).

Some additional (off-page) work suggests that the tree
is somewhat overgrown and that it could benefit from be-
ing pruned after the first branching point (see Figure 12,
again).

At any rate, it remains meangingless to discuss the per-
formance of the tree for predictive purposes if we are not
using a holdout testing sample (not to say anything about
the hope of generalizing to a larger population).

To that end, we trained a model on 50 randomly selected
observations and evaluated the performance on the remain-
ing 31 observations (the structure of the tree is not really
important at this stage). The results are shown in Table 5.

Is the model “good”? It is difficult to answer this ques-
tion in the machine learning sense without being able to
compare its performance metrics with those of other models
(or families of models).12

In Section 6, we will briefly discuss how estimate a
model’s true predictive error rate through cross-validation.
We will also discuss a number of other issues that can arise
when ML/AI methods are not used correctly.

12The relative small size of the dataset should give consultants and data
analysts pause for thought, at the very least.

4.5 Case Study: Minnesota Tax Audits
Large gaps between revenue owed (in theory) and revenue
collected (in practice) are problematic for governments.
Revenue agencies implement various fraud detection strate-
gies (such as audit reviews) to bridge that gap.

Since business audits are rather costly, there is a definite
need for algorithms that can predict whether an audit is
likely to be successful or a waste of resources.

In Data Mining Based Tax Audit Selection: A Case Study of a
Pilot Project at the Minnesota Department of Revenue [23],
Hsu et al. study the Minnesota Department of Revenue’s
(DOR) tax audit selection process with the help of classifi-
cation algorithms.

Objective The U.S. Internal Revenue Service (IRS) esti-
mated that there were large gaps between revenue owed
and revenue collected for 2001 and for 2006. Using DOR
data, the authors sought to increase efficiency in the audit
selection process and to reduce the gap between revenue
owed and revenue collected.

Methodology The authors took the following steps:

1. data selection and separation: experts selected sev-
eral hundred cases to audit and divided them into
training, testing and validating sets;

2. classification modeling using MultiBoosting, Naïve
Bayes, C4.5 decision trees, multilayer perceptrons,
support vector machines, etc;

3. evaluation of all models was achieved by testing
the model on the testing set – models originally per-
formed poorly on the testing set until the size of the
business being audited was recognized to have an
effect, leading to two separate tasks (large and small
businesses);

4. model selection and validation was done by com-
paring the estimated accuracy between different clas-
sification model predictions and the actual field au-
dits. Ultimately, MultiBoosting with Naïve Bayes was
selected as the final model; the combination also
suggested some improvements to increase audit effi-
ciency.
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Figure 11. Kyphosis decision tree visualization. Only two features are used to construct the tree. We also note that the
leaves are not pure – there are blue and red instances in 3 of the 5 classification regions.

Figure 12. Pruning a decision tree – the original tree (left) is more accurate/more complex than the pruned tree (right).

Table 5. Kyphosis decision tree – performance evaluation. The accuracy and F1 score are good, but the false discovery
rate and false negative rate are not so great. This tree is good at predicting successful surgeries, but not fantastic at
predicting failed surgeries. Is it still useful?
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Figure 13. Data sources for APGEN mining [23]. Note the
6 final sets which feed the Data Analysis component.

Data The data consisted of selected tax audit cases from
2004 to 2007, collected by the audit experts, which were
split into training, testing and validation sets:

the training data set consisted of Audit Plan General
(APGEN) Use Tax audits and their results for the years
2004-2006;
the testing data consisted of APGEN Use Tax audits
conducted in 2007 and was used to test or evaluate
models (for Large and Smaller businesses) built on
the training dataset,
while validation was assessed by actually conducting
field audits on predictions made by models built on
2007 Use Tax return data processed in 2008.

None of the sets had records in common (see Figure 13).

Strengths and Limitations of Algorithms

The Naïve Bayes classification scheme assumes in-
dependence of the features, which rarely occurs in
real-world situations. This approach is also known to
potentially introduce bias to classification schemes.
In spite of this, classification models built using Naïve
Bayes have a successfully track record.
MultiBoosting is an ensemble technique that uses
committee (i.e. groups of classification models) and
“group wisdom” to make predictions; unlike other en-
semble techniques, it is different from other ensemble
techniques in the sense that it forms a committee of
sub-committees (i.e., a group of groups of classifica-
tion models), which has a tendency to reduce both
bias and variance of predictions (see [1,31] for more
information on these topics).

Figure 14. The feature selection process [23]. Note the
involvement of domain experts.

Procedures Classification schemes need a response vari-
able for prediction: audits which yielded more than $500
per year in revenues during the audit period were classified
as Good; the others were Bad. The various models were
tested and evaluated by comparing the performances of the
manual audits (which yield the actual revenue) and the
classification models (the predicted classification).

The procedure for manual audit selection in the early stages
of the study required:

1. DOR experts selecting several thousand potential
cases through a query;

2. DOR experts further selecting several hundreds of
these cases to audit;

3. DOR auditors actually auditing the cases, and
4. calculating audit accuracy and return on investment

(ROI) using the audits results.

Once the ROIs were available, data mining started in earnest.
The steps involved were:

1. Splitting the data into training, testing, and validat-
ing sets.

2. Cleaning the training data by removing “bad” cases.
3. Building (and revising) classification models on the

training dataset. The first iteration of this step intro-
duced a separation of models for larger businesses
and relatively smaller businesses according to their
average annual withholding amounts (the thresh-
old value that was used is not revealed in [23]).

4. Selecting separate modeling features for the AP-
GEN Large and Small training sets. The feature selec-
tion process is shown in Figure 14.

5. Building classification models on the training dataset
for the two separate class of business (using C4.5,
Naïve Bayes, multilayer perceptron, support vector
machines, etc.), and assessing the classifiers using
precision and recall with improved estimated ROI:

Efficiency= ROI=
Total revenue generated

Total collection cost
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Figure 15. Audit resource deployment efficiency [23].
Top: APGEN Large (2007). Bottom: APGEN Small (2007).
In both cases, the Data Mining approach was more efficient
(the slope of the Data Mining vector is “closer“ to the
Theoretical Best vector than is the Manual Audit vector).

Results, Evaluation and Validation The models that were
eventually selected were combinations of MultiBoosting
and Naïve Bayes (C4.5 produced interpretable results, but
its performance was shaky).

For APGEN Large (2007), experts had put forward 878
cases for audit (495 of which proved successful), while the
classification model suggested 534 audits (386 of which
proved successful). The theoretical best process would find
495 successful audits in 495 audits performed, while the
manual audit selection process needed 878 audits in order
to reach the same number of successful audits.

For APGEN Small (2007), 473 cases were recommended
for audit by experts (only 99 of which proved successful);
in contrast, 47 out of the 140 cases selected by the classifi-
cation model were successful. The theoretical best process
would find 99 successful audits in 99 audits performed,
while the manual audit selection process needed 473 audits
in order to reach the same number of successful audits.

In both cases, the classification model improves on the
manual audit process: roughly 685 data mining audits to
reach 495 successful audits of APGEN Large (2007), and
295 would be required to reach 99 successful audits for
APGEN Small (2007), as can be seen in Figure 15.

Table 6 presents the confusion matrices for the classification
model on both the APGEN Large and Small 2007 datasets.

The revenue R and collection cost C entries can be read
as follows: the 47 successful audits which were correctly

Table 6. Confusion matrices for audit evaluation [23].
Top: APGEN Large (2007). Bottom: APGEN Small (2007).
R stands for revenues, C for collection costs.

identified by the model for APGEN Small (2007) correspond
to cases consuming 9.9% of collection costs but generating
42.5% of the revenues. Similarly, the 281 bad audits cor-
rectly predicted by the model represent notable collection
cost savings. These are associated with 59.4% of collection
costs but they generate only 11.1% of the revenues.

Once the testing phase of the study was conpleted, the
DOR validated the data mining-based approach by using
the models to select cases for actual field audits in a real
audit project. The prior success rate of audits for APGEN
Use tax data was 39% while the model was predicting a
success rate of 56%; the actual field success rate was 51%.

Take-Aways A substantial number of models were churned
out before the team made a final selection. Past perfor-
mance of a model family in a previous project can be used
as a guide, but it provides no guarantee regarding its perfor-
mance on the current data – remember the No Free Lunch
(NFL) Theorem [54]: nothing works best all the time!

There is a definite iterative feel to this project: the
feature selection process could very well require a number
of visits to domain experts before the feature set yields
promising results. This is a valuable reminder that the
data analysis team should seek out individuals with a good
understand of both data and context. Another consequence
of the NFL is that domain-specific knowledge has to be
integrated in the model in order to beat random classifiers,
on average [53].

Finally, this project provides an excellent illustration
that even slight improvements over the current approach
can find a useful place in an organization – data science is
not solely about Big Data and disruption!
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Figure 16. Clusters and outliers in an artificial dataset.

5. Unsupervised Learning and Clustering

A Never-Ending Story

Clustering is in the eye of the beholder, and as
such, researchers have proposed many induction
principles and models whose corresponding
optimisation problem can only be approximately
solved by an even larger number of algorithms.

– V. Estivill-Castro
Why So Many Clustering Algorithms?

We can make a variety of quantitative statements about
a dataset, at the univariate level. For instance, we can

compute frequency counts for the variables, and
identify measures of centrality (mean, mode, me-
dian), and
dispersal (range, standard deviation), among others.

At the multivariate level, the various options include n−way
tabulations, correlation analysis, and data visualization,
among others.

While these might provide insights in simple situations,
datasets with a large number of variables or with mixed
types (categorical and numerical) might not yield to such
an approach. Instead, insights might come in the form
of aggregation or clustering of similar observations (see
Figure 16).

A successful clustering scheme is one that tightly joins
together any number of similarity profiles (“tight” in this
context refers to small variability within the cluster).

A typical application is one found in search engines, where
the listed search results are the nearest similar objects
(relevant webpages) clustered around the search item.

Dissimilar objects (irrelevant webpages) should not
appear in the list, being “far” from the search item.

Figure 17. Distance metrics between observations:
Euclidean (as the crow flies, top left); cosine (direction
from a vantage point, top right); Manhattan (taxi-cab,
bottom left). Observations should be transformed (scaled,
translated) before distance computations (bottom right).

Left undefined in this example is the crucial notion of close-
ness: what does it mean for one observation to be near
another one? Various metrics can be used (see Figure 17),
and not all of them lead to the same results.

Clustering is a form of unsupervised learning since the
cluster labels (and possibly their number) are not deter-
mined ahead of the analysis.

The algorithms can be complex and non-intuitive, based
on varying notions of similarities between observations, and
yet, the temptation to provide a simple a posteriori expla-
nation for the groupings remains strong – we really, really
want to reason with the data.13

The algorithms are also (typically) non-deterministic
– the same routine, applied twice (or more) to the same
dataset, can discover completely different clusters.14

This (potential) non-replicability is not just problematic
for validation – it can also leads to client dissatisfaction.
If the consultant is tasked with finding customer clusters
for marketing purposes and the clusters change every time
the client asks for a report, they will be very confused (and
doubtful) unless the stochastic nature of the process has
already been explained.

Another interesting aspect of clustering algorithms is that
they often find clusters when there are no natural ways to
break down a dataset into constituent parts.

Indeed, on the one hand, if there is no natural way to
break up the data into clusters, the results may be arbitrary
and fail to represent any underlying reality of the dataset.

On the other, it could be that while there was no recog-
nized way of naturally breaking up the data into clusters,
the algorithm discovered such a grouping – clustering is
sometimes called automated classification as a result.

13Were you able to look at Figure 16 without assigning labels or trying
to understand what type of customers were likely to be young and have
medium income? Older and wealthier?

14The order in which the data is presented can play a role, as can starting
configurations.
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Figure 18. Distance to points in own clusters (left, smaller
is better) and to points in other clusters (right, larger is
better).

The aim of clustering, then, is to divide into naturally oc-
curring groups. Within each group, observations are simi-
lar; between groups, they are dissimilar (see Figure 18).

As a learning process, clustering is fairly intuitive for hu-
man beings – our brains unconsciously search for patterns
and they can generally handle messy data with the same
relative ease as clean data.

Computers have a harder time of it, however; part of
the challenge is that there is no agreed-upon definition of
what constitutes a cluster, and so we cannot easily code
their recognition into algorithms – to paraphrase Justice
Potter Stewart,

“I may not be able to define what a cluster is,
but I know one when I see one.”

All clustering algorithms rely on the notion of similarity w
between observations; in many instances, similarity is ob-
tained via a distance (or metric) d, with w→ 1 as d → 0,
and w→ 0 as d →∞.

However, there exist similarity measures which are not
derived from a distance metric.

One additional clustering challenge is that there is no such
thing as the distance or the similarity measure between ob-
servations – observations which are similar using a specific
measure may not be similar at all using another.

Commonly-used metrics include:

euclidean,
Manhattan,
cosine,
Canberra,
Haming,
Jaccard,
Pearson,
and so forth.

Note, however, that no matter which similarity measure
is selected, the data must first be transformed: scaled,
centered, etc. (see Figure 17). This introduces another
layer of arbitrary choices, as there are multiple available
options and no canonical way to perform this.

Applications Frequently, we use clustering and other un-
supervised learning tasks as preliminary steps in super-
vised learning problems, but there exist stand-alone appli-
cations as well:

text analysis – grouping similar documents accord-
ing to their topics, based on the patterns of common
and unusual terms;
product recommendations – grouping online pur-
chasers based on the products they have viewed, pur-
chased, liked, or disliked, or grouping products based
on customer reviews;
marketing – grouping client profiles based on their
demographics and preferences;
social network analysis – recognising communities
within large groups of people;
medical imaging – differentiating between different
tissue types in a 3D voxel;
genetics – inferring structures in populations;
dividing a larger group (or area, or category) into
smaller groups, with members of the smaller groups
having similarities of some kind, as analytical tasks
may then be solved separately for each of the smaller
groups, which may lead to increased accuracy once
the separate results are aggregated, or
creating (new) taxonomies on the fly, as new items
are added to a group of items, which could allow for
easier product navigation on a website like Netflix,
for instance.

Other examples may be found in [2,4,10,13,18,25,30,37–
39,41,46,47].

When all is said and done, the clustering process is quite
standard, notwithstanding the choice of scaling strategy,
similarity measure, and algorithm and parameters (see the
pipeline shown in Figure 19).

5.1 Clustering Algorithms
As is the case with classification, the number of cluster-
ing algorithms is quite high; the Wikipedia page lists 40+
such algorithms as of August 2018 [51]. The choice of
algorithms (and associated parameters) is as much an art
as it is a science, although domain expertise can come in
handy [2].

There is a smaller list of common algorithms that data
scientists and consultants should have in their toolbox (full
descriptions available in [2,42,50]):

k−means, close on the heels of decision trees for
the title of “most-used data science algorithm”, is
a partition clustering method which tends to pro-
duce equal-sized clusters; when clients ask for their
data to be clustered, they are typically envisioning
k−means with the Euclidean metric; variants include
k−mode (for categorical data), k−medians (for data
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Figure 19. A clustering pipeline, including validation and (eventual) deployment.

with outliers), and k−means|| and k−means++ for
large data sets; the number of clusters k (and the sim-
ilarity measure/distance metric) must be provided by
the user; works fairly well for “blob”-like data;
hierarchical clustering is one of the few determinis-
tic algorithms on the market, with divisive (DIANA)
and agglomerative (AGNES) versions; no parame-
ters need to be inputted, but the users must select
a linkage strategy (roughly speaking, a metric that
computes the distance between clusters) and a level
at which to read off the clusters (see Figure 20);
density-based spatial clustering (DBSCAN) is a graph-
based approach which attempts to identify densely-
packed regions in the dataset; its most obvious ad-
vantages (and of its variants OPTICS and DENCLUE)
are robustness to outliers and not needing to input
a number of clusters to search for in the data; the
main disadvantage is that the optimal input param-
eters (neighbourhood radius and minimum num-
ber of points to be considered dense) are not easy
to derive;
affinity propagation is another algorithm which se-
lects the optimal number of clusters directly from the
data, but it does so by trying and evaluating various
scenarios, which may end up being time-consuming;
spectral clustering can be used to recognise non-
globular clusters; these are found by computing eigen-
values of an associated Laplacian matrix – conse-
quently, spectral clustering is fast.

Other methods include latent Dirichlet allocation (used in
topics modeling), expectation-maximisation (particularly
useful to find gaussian clusters), BIRCH (a local method
which does not require the entire dataset to be scanned)
and fuzzy clustering (a soft clustering scheme in which the
observations have a degree of belonging to each cluster).

5.2 k−Means
As mentioned previously, k−means is a very natural way to
group observations together (formally, k−means is linked
to Voronoi tilings).

k−means clustering is achieved by:

1. selecting a distance metric d (based on the data type
and domain expertise);

2. selecting a number of clusters k;
3. randomly choosing k data instances as initial cluster

centres;
4. calculating the distance from each observation to

each centre;
5. placing each instance in the cluster whose centre it is

nearest to;
6. computing/updating the centroid for each cluster

(see Figure 21);
7. repeating steps 4-6 until the clusters are stable.

For k−means, cluster centroids are obtained by averaging
all points in the cluster. For k−medians and k−mode, the
centrality measure is replaced by the obvious candidate.
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Figure 20. Illustration of hierarchical clustering (left), DBSCAN (middle, based on [20]), and spectral clustering (right).

Figure 21. k−means cluster allocation (left) and updated
centres (right).

This simple algorithm has numerous strengths:

it is elegant and easy to implement (without actu-
ally having to compute pairwise distances), and so is
extremely common as a result;
in many contexts, it is a natural way to look at group-
ing observations, and
it helps provide a first-pass basic understanding of
the data structure.

On the other hand,

it can only assign an instance to one cluster, which
can lead to overfitting – a more robust solution would
be to compute the probability of belonging to each
cluster, perhaps based on the distance to the centroid;
it requires the “true” underlying clusters to be gaussian-
or blob-shaped, and it will fail to to produce useful
clusters if that assumption is not met in practice,
it does not allow for overlapping or hierarchical
groupings.

Notes Let us now return to some issues relating to clus-
tering in general (and not just to k−means):

No matter the choice of algorithm, clustering rests on the
assumption that nearness of observations (in whatever
metric) is linked with object similarity similarity, and that
large distances are linked with dissimilarity.

While there are plenty of situations where this is an ap-
propriate assumption to make (temperature readings on a
map, for instance), there are others where it is unlikely to
be the case (chocolate bars and sensationalist tabloids at a
grocery’s checkout, say).

The lack of a clear-cut definition of what a cluster actually
is (see Figure 22) makes it difficult to validate clustering
results. Much more can be said on the topic [2].

The fact that various algorithms are non-deterministic is
also problematic – clustering schemes should never be ob-
tained using only one algorithmic pass, as the outcome
could be different depending on the location of random
starting positions and the distance/similarity metric in use.

But this apparent fickleness is not necessarily a problem:
essential patterns may emerge if the algorithms are im-
plemented multiple times, with different starting positions
and re-ordered data (see cluster ensembles [2]).

Figure 22. Artificial data; suggested (blue), rejected (red).
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For those algorithms that require the number of clusters
as an input, it is difficult to determine what the optimal
number should be (see Figure 23).

This number obviously depends on the choice of algo-
rithm/metric, the underlying data, and the use that will
be made of the resulting clusters – a dataset could have 3
natural groups when seen through the lens of k−means,
but only 2 clusters for a specific choice of parameter values
in DBSCAN, and so on.

This problem could be overcome by producing cluster-
ing schemes (from the same family of algorithms) with
an increasing number of clusters and to plot the average
distance of a cluster member to its cluster representative
(centroid) against the number of clusters. Any kink in the
plot represents a number of clusters at which an increase
does not provide an in-step increase in clustering “resolu-
tion”, so to speak (see Figure 26 for an example).

Even when a cluster scheme has been accepted as valid, a
cluster description might be difficult to come by – should
clusters be described using representative instances or av-
erage values or some combination of its’ members most
salient features?

Although there are exceptions, the ease with which clus-
ters can be described often provides an indication about
how natural the groups really are.

One of the most frustrating aspects of the process is that
most methods will find clusters in the data even if there
are none – although DBSCAN is exempt from this ghost
clustering (see Figure 24).

Finally, consultants and analysts should beware the temp-
tation of a posteriori rationalisation – once clusters have
been found, it is tempting to try to “explain” them. Why
are the groups as they have been found?

But that is a job for domain experts, at best, and a waste
of time and resources, at worst. Thread carefully.

5.3 Clustering Validation
What does it mean for a clustering scheme to be better than
another? What does it mean for a clustering scheme to be
valid? What does it mean for a single cluster to be good?
How many clusters are there in the data, really?

These are not easy questions to answer. In general, asking if
a clustering scheme is the right one or a good one is mean-
ingless – much better to ask if it is optimal or sub-optimal,
potentially in comparison to other schemes.

An optimal clustering scheme is one which

maximizes separation between clusters;
maximizes similarity within groups;
agrees with the human eye test, and
is useful at achieving its goals.

Figure 23. The number of clusters in a dataset is
ambiguous: are there 2, 3, 4+ clusters?

Figure 24. An illustration of ghost clustering with
k−means, for k = 5.

There are 3 families of clustering validation approaches:

external, which use additional information (but the
labels in question might have very little to do with
the similarity of the observations);
internal, which use only the clustering results (shape
and size of clusters, etc), and
relative, which compare across a number of cluster-
ing attempts.

In order to illustrate some of the possibilities, consider a
dataset with clustering scheme C = {C1, . . . ,CN}, where
Cm’s centroid is denoted by cm, and the average distance
of Cm’s members to cm is denoted by sm.
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The Davies-Bouldin Index is defined as

DBC =
1
N
=

N
∑

i=1

max
j 6=i

�

si + s j

d(ci , c j)

�

,

where d is the selected distance metric. Since DBC is only
defined using the clustering results, it is an internal vali-
dation method.

Heuristically, if the cluster separation is small, we
might expect d(ci , c j) to be (relatively) small, and so DBC
should be (relatively) large.

In the same vein, if the clusters are heterogeneous, we
might expect si + s j to be (relatively) large, and so DBC
should be (relatively) large.

In short, when the clustering scheme is sub-optimal,
DBC is “large”. This suggests another way to determine the
optimal number of clusters – pick the scheme with minimal
DBC (see Figure 26, using a modified version of the index).

Other cluster quality metrics exist, including SSE, Dunn’s
Index, Silhouette Metric, etc. [2,12].

5.4 Toy Example: Iris Dataset
Iris is a genus of plants with showy flowers. The iris dataset
contains 150 observations of 5 attributes for specimens
collected by Anderson, mostly from a Gaspé peninsula’s
pasture in the 1930s [16]. The attributes are

petal width
petal length
sepal width
sepal length
species (virginica, versicolor, setosa)

A “description” of these features is provided by the picture
in Figure 25 (left).

This dataset has become synonymous with data analysis,15

being used to showcase just about every algorithm under
the sun. This is, sadly, also what we are going to do.16

A principal component projection of the dataset, with
species indicated by colours, is shown in Figure 25.

From an unsupervised learning point of view, one
question of interest is whether the observations form natural
groupings, and, if so, whether these groupings correspond
to the (known) species.

We use the k−means algorithm with Euclidean distance
to resolve the problem. Since we do not know how many
clusters there should be in the data (the fact that there are
3 species does not mean that there should be 3 clusters),
we run 40 replicates for k = 2, . . . , 15.

15To the point that the standard joke is that “it’s not necessary to be a
gardener to become a data analyst, but it helps”.

16Note that the iris dataset has started being phased out in favour of
the penguin dataset [43].

Figure 25. Illustration of iris measurements (top) and
classification with 3 species, projected on the first 2
principal components (bottom).

The resulting clustering scheme for k = 2,3, 4,15 (for one
of the replicates in each case) are shown in Figure 27.

For each replicate, we compute a (modified) Davies-Bouldin
Index and the Sum of Squared Errors of the associated
clustering schemes (see Figure 26) – the validation curves
seem to indicate that there could be either 3 of 5 natural
k−means clusters in the data. Is this a surprising outcome?

A single replicate with k = 5 is shown in Figure 28. Would
you consider this representative final clustering scheme to
be meaningful?
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Figure 26. Optimal clustering results for the iris dataset:
5 clusters using (modified) Davies-Bouldin index and Sum
of Squared Errors.

5.5 Case Study: The Livehoods Project
When we think of similarity at the urban level, we typically
think in terms of neighbourhoods. Is there some other way
to identify similar parts of a city?

In The Livehoods Project: Utilizing Social Media to Under-
stand the Dynamics of a City [10], Cranshaw et al. study
the social dynamics of urban living spaces with the help of
clustering algorithms.

Objective The researchers aims to draw the boundaries
of livehoods, areas of similar character within a city, by
using clustering models. Unlike static administrative neigh-
borhoods, the livehoods are defined based on the habits of
people who live there.

Methodology The case study introduces spectral cluster-
ing to discover the distinct geographic areas of the city
based on its inhabitants’ collective movement patterns.
Semi-structured interviews are also used to explore, label,
and validate the resulting clusters, as well as the urban
dynamics that shape them.

Livehood clusters are built and defined using the following
methodology:

1. a geographic distance is computed based on pairs
of check-in venues’ coordinates;

2. social similarity between each pair of venues is com-
puted using cosine measurements;

3. spectral clustering produces candidate livehoods
clusters;

4. interviews are conducted with residents in order to
validate the clusters discovered by the algorithm.

Data The data comes from two sources, combining ap-
proximately 11 million Foursquare (a recommendation
site for venues based on users’ experiences) check-ins from
the dataset of Chen et al. [8] and a new dataset of 7 million
Twitter check-ins downloaded between June and December
of 2011.

For each check-in, the data consists of the user ID, the
time, the latitude and longitude, the name of the venue,
and its category.

In this case study, it is livehood clusters from the city
of Pittsburgh, Pennsylvania, that are examined via 42,787
check-ins of 3840 users at 5349 venues.

Strengths and Limitations of the Approach

The technique used in this study is agnostic towards
the particular source of the data: it is not dependent
on meta-knowledge about the data.
The algorithm may be prone to “majority” bias, conse-
quently misrepresenting/hiding minority behaviours.
The dataset is built from a limited sample of check-ins
shared on Twitter and are therefore biased towards
the types of visits/locations that people typically want
to share publicly.
Tuning the clusters is non-trivial: experimenter bias
may combine with “confirmation bias” of the inter-
viewees in the validation stage – if the researchers
are themselves residents of Pittsburgh, will they see
clusters when there are none?

Procedures The Livehoods project uses a spectral clus-
tering model to provide structure for local urban areas
(UAs), grouping close Foursquare venues into clusters based
on both the spatial proximity between venues and the so-
cial proximity which is derived from the distribution of
people that check-in to them.

The guiding principle of the model is that the “char-
acter” of an UA is defined both by the types of venues it
contains and by the people frequent them as part of their
daily activities. These clusters are referred to as Livehoods,
by analogy with more traditional neighbourhoods.

Let V be a list of Foursquare venues, A the associated affin-
ity matrix representing a measure of similarity between
each venue, and Gm(A) be the graph obtained from the A
by linking each venue to its nearest m neighbours.
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Figure 27. Clustering results on the iris dataset with k−means, for k = 2, 3, 4, 15 (from top left to bottom right, by row).

Figure 28. Optimal clustering results for the iris dataset (one replicate, k = 5).
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Figure 29. Some livehoods in metropolitan Pittsburgh, PA: Shadyside/East Liberty, Lawrenceville/Polish Hill, and South
Side. Municipal borders are shown in black.

Spectral clustering is implemented as follows:

1. Compute the diagonal degree matrix Dii =
∑

j Ai j;
2. Set the Laplacian matrix L = D− A and

Lnorm = D−1/2 LD−1/2;

3. Find the k smallest eigenvalues of Lnorm, where k is
the index which provides the biggest jump in succes-
sive eigenvalues of eigenvalues of Lnorm, in increasing
order;

4. Find the eigenvectors e1, ...ek of L corresponding to
the k smallest eigenvalues;

5. Construct the matrix E with the eigenvectors e1, ...ek
as columns;

6. Denote the rows of E by y1, ..., yn, and cluster them
into k clusters C1, ..., Ck using k-means. This induces
a clustering {A1, ..., Ak} defined by

Ai = { j | y j ∈ Ci}.

7. For each Ai , let G(Ai) be the subgraph of Gm(A) in-
duced by vertex Ai . Split G(Ai) into connected com-
ponents. Add each component as a new cluster to
the list of clusters, and remove the subgraph G(Ai)
from the list.

8. Let b be the area of bounding box containing coordi-
nates in the set of venues V , and bi be the area of the
box containing Ai . If bi

b > τ, delete cluster Ai , and
redistribute each of its venues v ∈ Ai to the closest A j
under the distance measurement.

Results, Evaluation and Validation The parameters used
for the clustering were m= 10, kmin = 30, kmax = 45, and
τ= 0.4. The results for three areas of the city are shown
in Figure 29. In total, 9 livehoods have been identified and
validated by 27 Pittsburgh residents (see Figure 29; the
original report has more information on this process).

Municipal Neighborhoods Borders: livehoods are
dynamic, and evolve as people’s behaviours change,
unlike the fixed neighbourhood borders set by the
city government.
Demographics: the interviews displayed strong ev-
idence that the demographics of the residents and
visitors of an area often play a strong role in explain-
ing the divisions between livehoods.
Development and Resources: economic develop-
ment can affect the character of an area. Similarly,
the resources (or lack there of) provided by a region
has a strong influence on the people that visit it, and
hence its resulting character. This is assumed to be
reflected in the livehoods.
Geography and Architecture: the movements of
people through a certain area is presumably shaped
by its geography and architecture; livehoods can re-
veal this influence and the effects it has over visiting
patterns.

Take-Away k−means is not the sole clustering algorithm
in applications!
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6. Issues and Challenges

The Stench of Bad Data

We all say we like data, but we don’t. We like
getting insight out of data. That’s not quite the
same as liking data itself. In fact, I dare say that I
don’t quite care for data, and it sounds like I’m not
alone.

– Q.E. McCallum, Bad Data Handbook

The data science landscape is littered with issues and chal-
lenges. We shall briefly discuss some of these in this section.

6.1 Bad Data
The main difficulties with data is that it is not always repre-
sentative of the situation that we would like to model and
that it might not be consistent (the collection and collation
methods may have changed over time, say).

There are other potential data issues [34]:

the data might be formatted for human consumption,
not machine readability;
the data might contain lies and mistakes;
the data might not reflect reality, and
there might be additional sources of bias and errors
(not only imputation bias, but replacing extreme val-
ues with average values, proxy reporting, etc.).

Seeking perfection in the data beyond a “reasonable” thresh-
old17 can hamper the efforts of analysts: different quality
requirements exist for academic data, professional data,
economic data, government data, military data, service
data, commercial data, etc.

It can be helpful to remember the engineering dictum:
“close enough is good enough” (in terms of completeness,
coherence, correctness, and accountability). The challenge
lies in defining what is “close enough” for the application
under consideration.

Even when all (most?) data issues have been mitigated,
there remains a number of common data analysis pitfalls:

analyzing data without understanding the context;
using one and only one tool (by choice or by fiat) –
neither the cloud, nor Big Data, nor Deep Learning,
nor Artificial Intelligence will solve all of an organi-
zation’s problems;
analyzing data just for the sake of analysis;
having unrealistic expectations of data analysis/D-
S/ML/AI – in order to optimize the production of
actionable insights from data, we must first recog-
nize the methods’ domains of application and their
limitations.

17This threshold is difficult to establish exactly, however.

6.2 Overfitting
In a traditional statistical model, p−values and goodness-
of-fit statistics are used to validate the model. But such
statistics cannot always be computed for predictive data
science models. We recognise a “good” model based on
how well it performs on unseen data.

In practice, training sets and ML methods are used to
search for rules and models that are generalizable to new
data (or validation/testing sets).

Problems arise when knowledge that is gained from
supervised learning does not generalize properly to the
data. Ironically, this may occur if the rules or models fit the
training set too well – in other words, the results are too
specific to the training set (see Figure 30 for an illustration
of overfitting and underfitting).

A simple example may elucidate further. Consider the fol-
lowing set of rules regarding hair colour among humans:

vague rule – some people have black hair, some have
brown hair, some blond, and some red (this is obvi-
ously “true”, but too general to be useful for predic-
tions);
reasonable rule – in populations of European de-
scent, approximately 45% have black hair, 45% brown
hair, 7% blond and 3% red;
overly specific rule – in every 10,000 individuals of
European descent, we predict there are 46.32% with
black hair, 47.27% with brown hair, 6.51% with blond
hair, and 0.00% with red hair (this rule presumably
emerges from redhead-free training data).

With the overly specific rule, we would predict that there
are no redheads in populations of European descent, which
is blatantly false. This rule is too specific to the particular
training subset that was used to produce it.18

More formally, underfitting and overfitting can be viewed
as resulting from the level of model complexity (see Fig-
ure 31).

Underfitting can be overcome by using more complex mod-
els (or models that use more of a dataset’s variables). Over-
fitting, on the other hand, can be overcome in several ways:

using multiple training sets (ensemble learning ap-
proaches), with overlap being allowed – this has the
effect of reducing the odds of finding spurious pat-
terns based on quirks of the training data;
using larger training sets may also remove signal
which is too specific to a small training set – a 70% -
30% split is often suggested, and
using simpler models (or models that use a dataset
with a reduced number of variables as input).

18We could argue that the data was simply not representative – using a
training set with redheads would yield a rule that would make better pre-
dictions. But “over-reporting/overconfidence” (which manifest themselves
with the use of significant digits) are also part of the problem.
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Figure 30. An illustration of underfitting (left) – the rule is not very accurate but easily generalizable to new instances –
and overfitting (right) – very accurate but not easily generalizable to new instances. The middle fit is more reasonable.

Figure 31. Underfitting and overfitting as a function of model complexity; error prediction on training sample (blue) and
testing sample (red). High error prediction rates for simple models are a manifestation of underfitting; large difference
between error prediction rates on training and testing samples for complex models are a manifestation of overfitting.
Ideally, model complexity would be chosen to reach the situation’s “sweet spot”, but fishing for the ideal scenario might
diminish explanatory power (based on [21]).

When using multiple training sets, the size of the dataset
may also affect the suggested strategy: when faced with

small datasets (less than a few hundred observa-
tions, say, but that depends on numerous factors such
as computer power and number of tasks), use 100-
200 repetitions of a bootstrap procedure [24];
average-sized datasets (less than a few thousand
observations), use a few repetitions of 10-fold cross-
validation [24,50] (see Figure 32);
large datasets, use a few repetitions of a holdout
split (70%-30%, say).

No matter which strategy is eventually selected, the ma-
chine learning approach requires ALL models to be evalu-
ated on unseen data.

6.3 Appropriateness and Transferability
Data science models will continue to be used heavily in the
near future; while there are pros and cons to their use on
ethical and other non-technical grounds, their applicability
is also driven by technical considerations.

DS/ML/AI methods are not appropriate if:

existing (legacy) datasets absolutely must be used
instead of ideal/appropriate datasets;19

the dataset has attributes that usefully predict a value
of interest, but these attributes are not available
when a prediction is required (e.g. the total time
spent on a website may be predictive of a visitor’s
future purchases, but the prediction must be made
before the total time spent on the website is known);

19“It’s the best data we have!” does not mean it’s the right one.
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Figure 32. Schematic illustration of cross-fold validation, for 8 replicates and 4 folds; 8× 4= 32 models from a given
family are built on various training sets (consisting of 3/4 of the available data – the training folds). Model family
performance is evaluated on the respective holdout folds; the distribution of the performance metrics (in practice, some
combination of the mean/median and standard deviation) can be used to compare various model families (based
on [42,50]).

class membership or numerical outcome is going to be
predicted using an unsupervised learning algorithm
(e.g. clustering loan default data might lead to a
cluster contains many defaulters – if new instances
get added to this cluster, should they automatically
be viewed as loan defaulters?).

Every model makes certain assumptions about what is and
is not relevant to its workings, but there is a tendency
to only gather data which is assumed to be relevant to a
particular situation.

If the data is used in other contexts, or to make predic-
tions depending on attributes for which no data is available,
then there might be no way to validate the results.20

This is not as esoteric a consideration as it might seem: over-
generalizations and inaccurate predictions can lead to
harmful results.

20For instance, can we use a model that predicts whether a borrower
will default on a mortgage or not to also predict whether a borrower will
default on a car loan or not? The problem is compounded by the fact that
there might be some link between mortgage defaults and car loan defaults,
but the original model does not necessarily takes this into account.

6.4 Pitfalls and Mistakes
We end this chapter with lists (based on [33]) of DS myths:

1. DS is about algorithms
2. DS is about predictive accuracy
3. DS requires a data warehouse
4. DS requires a large quantity of data
5. DS requires only technical experts

and mistakes:

1. selecting the wrong problem
2. getting by without metadata understanding.
3. not planning the data analysis process
4. insufficient business/domain knowledge
5. using incompatible data analysis tools
6. using tools that are too specific
7. favouring aggregates over individual results
8. running out of time
9. measuring results differently than the client

10. naïvely believing what one is told about the data

It remains the consultant’s responsibility to address these is-
sues with the client, the earlier, the better. Do not assume
that you are all on the same page – prod and ask.
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