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Abstract
In October 2012, the Harvard Business Review published an article calling data science the “sexiest
job of the 21st century”, and comparing data scientists with the ubiquitous Wall Street “quants” of the
’80s and ’90s. Data science has since become the "it" career. In this chapter, we discuss important
non-technical data science notions that are too often swept under the rug.
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1. Introduction

The Problem is Not New

We have learned to fly the air like birds and swim
the sea like fish, but we have not learned the simple
art of living together as brothers.

– M.L. King, Jr., Nobel Peace Prize Lecture , 1964

In October 2012, the Harvard Business Review published
an article calling data science the “sexiest job of the 21st
century”, and comparing data scientists with the ubiquitous
“quants” of the ’90s: a data scientist is a ”hybrid of data
hacker, analyst, communicator, and trusted adviser” [26].

Would-be data scientists are usually introduced to the
field via machine learning algorithms and applications.
Much could be said about those (and will be broached
in future reports), but we would like, for the time being,
to mention some important non-technical notions that are
sometimes swept under the rug.

With that in mind, we discuss some of the fundamental
ideas and concepts that underlie and drive forward the
discipline of data science, as well as the contexts in which
these concepts are typically applied. We also highlight
issues related to the ethics of practical data science. We
conclude the chapter by getting a bit more concrete and
considering the analytical workflow of a typical data science
project, the types of roles and responsibilities that generally
arise during data science projects and some basics of how
to think about data, as a prelude to more technical topics.

mailto:pboily@uottawa.ca
http://www.nobelprize.org/nobel_prizes/peace/laureates/1964/king-lecture.html
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1.1 What is Data?
It is surprisingly difficult to give a clear-cut definition of
data – we cannot even seem to agree on whether it should
be used in the singluar or the plural:

“the data is ... ” vs. “the data are ...”

From a strictly linguistic point of view, a datum (borrowed
from Latin) is “a piece of information;” data, then, should
mean “pieces of information.” We can also think of it as a
collection of “pieces of information”, and we would then
use data to represent the whole (being potentially greater
than the sum of its parts) or simply the idealized concept.1

When it comes to actual data analysis, however, is the
distinction really that important?

Is it even clear what data is, from the definition above,
and where it comes from? Is the following data?

4,529 ‘red’ 25.782 ‘Y’

To paraphrase Potter Stewart, while it may be hard to define
what data is, “we know it when we see it.” This position
can strike some of you as unsatisfying; to overcome this
objection, we will think of data simply as a collection of
facts about objects and their attributes.

For instance, consider the apple and the sandwich below:

Let us say that they have the following attributes:

Object: apple

Shape: spherical
Colour: red
Function: food
Location: fridge
Owner: Jen

Object: sandwich

Shape: rectangle
Colour: brown
Function: food
Location: office
Owner: Pat

As long as we remember that a person or an object is not sim-
ply the sum of its attributes, this rough definition should
not be too problematic.

1For what is worth, Jen prefers one, and Patrick the other.

Note, however, that there remains some ambiguity when it
comes to measuring (and recording) the attributes.

We dare say that no one has ever beheld an apple quite
like the one shown above: for starters, it is a 2-dimensional
representation of a 3-dimensional object.

Additionally, while the overall shape of the sandwich
is vaguely rectangular (as seen from above, say), it is not
an exact rectangle. While no one would seriously dispute
the shape attribute of the sandwich being recorded as “rect-
angle”, a measurement error has occurred. For most ana-
lytical purposes, this error may not be significant, but it is
impossible to dismiss it as such for all tasks.

More problematic might be the fact that the apple’s
shape attribute is given in terms of a volume, whereas the
sandwich’s is recorded as an a area; the measurement types
are incompatible.

Similar remarks can be made about all the attributes – the
function of an apple may be “food” from Jen’s perspective,
but from the point of view of an apple tree, that is emphati-
cally not the case; the sandwich is definitely not uniformly
“brown,” and so on.

Furthermore, there are a number of potential attributes
that are not even mentioned: size, weight, time, etc.

Measurement errors and incomplete lists are always part
of the picture, but most people would recognize that the
collection of attributes does provide a reasonable descrip-
tion of the objects. This is the pragmatic definition of data
that we will use throughout.

1.2 From Objects and Attributes to Datasets
Raw data may exist in any format; we will reserve the term
dataset to represent a collection fo data that could conceiv-
ably be fed into algorithms for analytical purposes.

Often, these appear in a table format, with rows and columns;2

attributes are the fields (or columns) in such a dataset; ob-
jects are instances (or rows).

Objects are then described by their feature vector – the
collection of attributes associated with value(s) of interest.
The feature vector for a given observation is also know as
the observation’s signature.

For instance, the dataset of physical objects could contain
the following items:

We will revisit this in more detail in Section 7.2.
2In practice, more complex databases are used.

2 P.Boily, J.Schellinck (2021)
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1.3 Data in the News
We end this section with a sample of headlines and article
titles showcasing the growing role of data science (DS),
machine learning (ML), and artificial/augmented intel-
ligence (AI) in different domains of society.

While these demonstrate some of the functionality/capa-
bilities of DS/ML/AI technologies, it is important to remain
aware that new technologies are always accompanied by
emerging (and not always positive) social consequences.

“Robots are better than doctors at diagnosing some
cancers, major study finds” [29]
“Deep-learning-assisted diagnosis for knee magnetic
resonance imaging: Development and retrospective
validation of MRNet” [10]
“Google AI claims 99% accuracy in metastatic breast
cancer detection” [8]
“Data scientists find connections between birth month
and health” [22]
“Scientists using GPS tracking on endangered Dhole
wild dogs” [50]
“These AI-invented paint color names are so bad
they’re good” [63]
“We tried teaching an AI to write Christmas movie
plots. Hilarity ensued. Eventually.” [34]
“Math model determines who wrote Beatles’ "In My
Life": Lennon or McCartney?” [9]
“Scientists use Instagram data to forecast top models
at New York Fashion Week” [41]
“How big data will solve your email problem ” [38]
“Artificial intelligence better than physicists at design-
ing quantum science experiments” [69]
“This researcher studied 400,000 knitters and discov-
ered what turns a hobby into a business” [74]
“Wait, have we really wiped out 60% of animals?”
[79]
“Amazon scraps secret AI recruiting tool that showed
bias against women” [25]
“Facebook documents seized by MPs investigating
privacy breach” [7]
“Firm led by Google veterans uses A.I. to ‘nudge’ work-
ers toward happiness” [75]
“At Netflix, who wins when it’s Hollywood vs. the
algorithm?” [62]
“AlphaGo vanquishes world’s top Go player, marking
A.I.’s superiority over human mind” [43]
“An AI-written novella almost won a literary prize”
[49]
“Elon Musk: Artificial intelligence may spark World
War III” [51]
“A.I. hype has peaked so what’s next?” [65]

Opinions on the topic are varied – to some, DS/ML/AI pro-
vide examples of brilliant successes, while to others it is the
dangerous failures that are at the forefront.

What do you think?

2. Analogue vs Digital

Humans have been collecting data for a long time. In the
award-winning Against the Grain: A Deep History of the
Earliest States, J.C. Scott argues that data collection was a
major enabler of the modern nation-state (he also argues
that this was not necessarily beneficial to humanity at large,
but this is another matter altogether) [68].

For most of the history of data collection, humans were
living in what might best be called the analogue world –
a world where our understanding was grounded in a con-
tinuous experience of physical reality.

Nonetheless, even in the absence of computers, our data
collection activities were, arguably, the first steps taken to-
wards a different strategy for understanding and interacting
with the world. Data, by its very nature, leads us to con-
ceptualize the world in a way that is, in some sense, more
discrete than continuous.

By translating our experiences and observations into
numbers and categories, we re-conceptualize the world into
one with sharper and more definable boundaries than our
raw experience might otherwise suggest.

Fast-forward to the modern world and the culmination
of this conceptual discretization strategy is clear to see in
our adoption of the digital computer, which represents
everything as a series of 1s and 0s.3

Somewhat surprisingly, this very minimalist representa-
tional strategy has been wildly successful at representing
our physical world, arguably beyond our most ambitious
dreams, and we find ourselves now at a point where what
we might call the digital world is taking on a reality as
pervasive and important as the physical one.

Clearly, this digital world is built on top of the physical
world, but very importantly, the two do not operate under
the same set of rules:

in the physical world, the default is to forget; in the
digital world, the default is to remember;
in the physical world, the default is private; in the
digital world, the default is public;
in the physical world, copying is hard; in the digital
world, copying is easy.

As a result of these different rules of operation, the digi-
tal is making things that were once hidden, visible; once
veiled, transparent.

Considering data science in light of this new digital world,
we might suggest that data scientists are, in essence, sci-
entists of the digital, in much the same way that regular
scientists are scientists of the physical: data scientists seek

3Or ‘On’ and ‘Off’, ‘TRUE’ and ‘FALSE’.

P.Boily, J.Schellinck (2021) 3
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to discover the fundamental principles of data and un-
derstand the ways in which these fundamental principles
manifest themselves in different digital phenomena.

Ultimately, however, data and the digital world are tied
to the physical world. Consequently, what is done with
data has repercussions in the physical world; and it is crucial
for analysts and consultants to have a solid grasp of the
fundamentals and context of data work before leaping into
the tools and techniques that drive it forward.

3. Conceptual Frameworks for Data Work

In simple terms, we use data to represent the world. But
this is not the only strategy at our disposal: we might also
(and in combination) describe the world using language,
or represent it by building physical models.

The common thread is the more basic concept of repre-
sentation – the idea that one object can stand in for another,
and be used in its stead in order to indirectly engage with
the object being represented.

Humans are representational animals par excellence; our
use of representations becomes almost transparent to us,
at times.

On some level, we do understand that “the map is not
the territory”, but we do not have to make much of an ef-
fort to use the map to navigate the territory. The transition
from the representation to the represented is typically
quite seamless.

This is arguably one of humanity’s major strengths, but
in the world of data science it can also act as an Achilles’
heel, preventing analysts from working successfully with
clients and project partners, and from appropriately trans-
ferring analytical results to the real world contexts that
could benefit from them.

The best protection against these potential threats is the
existence of a well thought out and explicitly described
conceptual framework, by which we mean, in its broadest
sense:

a specification of which parts of the world are being
represented;
how they are represented;
the nature of the relationship between the repre-
sented and the representing, and, coming out of this,
appropriate and rigorous strategies for applying
the results of the analysis that is carried out in this
representational framework.

It would be possible to construct such a specification from
scratch, in a piecemeal fashion, for each new project, but it
is worth noting that there are some overarching modeling
frameworks that are broadly applicable to many different
phenomena, which can then be moulded to fit these more
specific instances.

3.1 Three Modeling Strategies
We suggest that there are three main not mutually exclu-
sive modeling strategies that can be used to guide the
specification of a phenomenon or domain:

mathematical modeling;
computer modeling, and
systems modeling.

We start with a description of the latter as it requires, in its
simplest form, no special knowledge of techniques/concepts
from mathematics or computer science.

Systems Modeling General Systems Theory was initially
put forward by L. von Bertalanffy, a biologist, who felt that it
should be possible to describe many disparate natural phe-
nomena using a common conceptual framework – one
which would be capable of describing many disparate phe-
nomena, all as systems of interacting objects.

Although Bertalanffy himself presented abstracted, math-
ematical, descriptions of his general systems concepts, his
broad strategy is relatively easily translated into a purely
conceptual framework.

Within this framework, when presented with a novel do-
main or situation, we ask ourselves the following questions:

which objects seem most relevant or involved in the
system behaviours in which we are most interested?
what are the properties of these objects?
what are the behaviours (or actions) of these objects?
what are the relationships between these objects?
how do the relationships between objects influence
their properties and behaviours?

As we find the answers to these questions about the system
of interest, we start to develop a sense that we understand
the system and its relevant behaviours.

By making this knowledge explicit, e.g. via diagrams
and descriptions, and by sharing it amongst those with
whom we are working, we can further develop a consis-
tent, shared understanding of the system with which we
are engaged.

If this activity is carried out prior to data collection, it can
ensure that the right data is collected. If this activity is
carried out after data collection, it can ensure that the pro-
cess of interpreting what the data represents and how
the latter should be used going forward is on solid footing.

Mathematical and Computer Modeling The other mod-
eling approaches arguably come with their own general
frameworks for interpreting and representing real-world
phenomena and situations, separate from, but still compat-
ible with, this systems perspective.

These disciplines have developed their own mathemati-
cal/digital (logical) worlds that are distinct from the tan-
gible, physical world studied by chemists, biologists, and

4 P.Boily, J.Schellinck (2021)
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so on; these frameworks can then be used to describe real-
world phenomena by drawing parallels between the prop-
erties of objects in these different worlds and reasoning via
these parallels.

Why these constructed worlds and the conceptual frame-
works they provide are so effective at representing and
describing the actual world, and thus allowing us to under-
stand and manipulate it, is more of a philosophical question
than a pragmatic one.

We will only note that they are highly effective at doing
so, which provides the impetus and motivation to learn
more about how these worlds operate, and how, in turn,
they can provide data scientists with a means to engage
with domains and systems through a powerful, rigorous
and shared conceptual framework.

3.2 Information Gathering
The importance of achieving contextual understanding of
a dataset cannot be over-emphasized. In the abstract we
have suggested that this context can be gained by using
conceptual frameworks. But more concretely, how does this
understanding come about?

It can be reached through:

field trips;
interviews with subject matter experts (SMEs);
readings/viewings;
data exploration (even just trying to obtain or gain
access to the data can prove a major pain),
etc.

In general, clients or stakeholders are not a uniform entity
– it is even conceivable that client data specialists and SMEs
will resent the involvement of analysts (external and/or
internal).

Thankfully, this stage of the process provides analysts
and consultants the opportunity to show that every one is
pulling in the same direction, by

asking meaningful questions;
taking an interest in the SMEs’/clients’ experiences,
and
acknowledging everyone’s ability to contribute.

A little tact goes a long way when it comes to information
gathering.

Thinking in Systems Terms We have already noted that
a system is made up of objects with properties that po-
tentially change over time. Within the system we perceive
actions and evolving properties, leading us to think in
terms of processes.

To put it another way, in order to understand how var-
ious aspects of the world interact with one another, we
need to carve out chunks corresponding to the aspects
and define their boundaries.

Working with other intelligences requires this type of shared
understanding of what is being studied.

Objects themselves have various properties. Natural pro-
cesses generate (or destroy) objects, and may change the
properties of these objects over time. We observe, quan-
tify, and record particular values of these properties at
particular points in time.

This process generates data points in our attempt to
capture the underlying reality to some acceptable degree
of accuracy and error, but it remains crucial for data an-
alysts and data scientists to remember that even the best
system model only ever provides an approximation of
the situation under analysis; with some luck, experience,
and foresight, these approximations might turn out to be
valid.

Identifying Gaps in Knowledge A gap in knowledge is
identified when we realize that what we thought we knew
about a system proves incomplete (or blatantly false).

This can arise as the result of a certain naïveté vis-à-vis
the situation being modeled, but it can also be emblematic
of the nature of the project under consideration: with too
many moving parts and grandiose objectives, there cannot
help but be knowledge gaps.4

Knowledge gaps might occur repeatedly, at any moment
in the process:

data cleaning;
data consolidation;
data analysis;
even during communication of the results (!).

When faced with such a gap, the best approach is to be
flexible: go back, ask questions, and modify the system
representation as often as is necessary. For obvious rea-
sons, it is preferable to catch these gaps early on in the
process.

Conceptual Models Consider the following situation: you
are away on business and you forgot to hand in a very
important (and urgently required) architectural drawing
to your supervisor before leaving. Your office will send a
gopher to pick it up in your living space. How would you
explain to them, by phone, how to find the document?

If the gopher has previously been in your living space, if
their living space is comparable to yours, or if your spouse is
at home, the process may be able to be sped up considerably,
but with somebody for whom the space is new (or someone
with a visual impairment, say), it is easy to see how things
could get complicated.

But time is of the essence – you and the gopher need to
get the job done correctly as quickly as possible. What is
your strategy?

4Note that it also happens with small, well-organized, and easily con-
tained projects. It happens all the time, basically.

P.Boily, J.Schellinck (2021) 5
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Figure 1. A schematic diagram of systems thinking as it applies to a general problem.

Conceptual models are built using methodical investiga-
tion tools:

diagrams;
structured interviews;
structured descriptions,
etc.

Data analysts and data scientists should beware implicit
conceptual models – they go hand-in-hand with knowl-
edge gaps.

In our opinion, it is preferable to err on the side of “too
much conceptual modeling” than the alternative (although,
at some point we have to remember that every modeling
excercise is wrong5 and that there is nothing wrong with
building better models iteratively, over the bones of previ-
ously discarded simplistic models).

Roughly speaking, a conceptual model is a model that
is not implemented as a scale-model or computer code, but
one which exists only conceptually, often in the form of
a diagram or verbal description of a system – boxes and
arrows, mind maps, lists, definitions (see Figures 1 and 2).

Conceptual models do not necessarily attempt to cap-
ture specific behaviours, but they emphasize the possible
states of the system: the focus is on object types, not on spe-
cific instances, with abstraction as the ultimate objective.

5“Every model is wrong; some models are useful.” George Box.

Conceptual modeling is not an exact science – it is more
about making internal conceptual models explicit and tan-
gible, and providing data analysis teams with the opportu-
nity to examine and explore their ideas and assumptions.
Attempts to formalize the concept include (see Figure 3):

Universal Modeling Language (UML);
Entity Relationship Models (ER), generally connected
to relational databases.

In practice, we must first select a system for the task at
hand, then generate a conceptual model that encompasses:

relevant and key objects (abstract or concrete);
properties of these objects, and their values;
relationships between objects (part-whole, is-a, object-
specific, one-to-many), and
relationships between properties across instances
of an object type.

A simplistic example describing a supposed relationship
between a presumed cause (hours of study) and a pre-
sumed effect (test score) is shown below:

6 P.Boily, J.Schellinck (2021)
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Figure 2. A conceptual model of the “free software” system (in French) [53].

Figure 3. Examples of UML diagram (Wikibase Data Model, on the left [37]) and ER (on the right [78]) conceptual maps.

P.Boily, J.Schellinck (2021) 7
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Relating the Data to the System From a pragmatic per-
spective, stakeholders and analysts alike need to know if
the data which has been collected and analyzed will be
useful to understand the system.

This question can best be answered if we understand:

how the data is collected;
the approximate nature of both data and system, and
what the data represents (observations and features).

Is the combination of system and data sufficient to un-
derstand the aspects of the world under consideration?
Again, this is difficult to answer in practice.

Contextual knowledge can help, but if the data, the sys-
tem, and the world are out of alignment, any data insight
drawn from mathematical, ontological, programmatical, or
data models of the situation might ultimately prove useless.

3.3 Cognitive Biases
Adding to the challenge of building good conceptual models
and using these to interpret the data is the fact that we are
all vulnerable to a vast array of cognitive biases, which
influence both how we construct our models and how we
look for patterns in the data.

These biases are difficult to detect in the spur of the mo-
ment, but being aware of them, making a conscious effort
to identify them, and setting up a clear and pre-defined set
of thresholds and strategies for analysis will help reduce
their negative impact.

Here is a sample of such biases (taken from [28,48]).

Anchoring bias causes us to rely too heavily on the first
piece of information we are given about a topic; in a
salary negotiation, for instance, whoever makes the
first offer establishes a range of reasonable possibili-
ties in both parties’ minds.

Availability heuristic describes our tendency to use infor-
mation that comes to mind quickly and easily when
making decisions about the future; someone might ar-
gue that climate change is a hoax because the weather
in their neck of the woods has not (yet!) changed.

Choice-supporting bias causes us to view our actions in
a positive light, even if they are flawed; we are more
likely to sweep anomalous or odd results under the
carpet when they arise from our own analyses.

Clustering illusion refers to our tendency to see patterns
in random events; if a die has rolled five 3’s in a row,
we might conclude that the next throw is more (or
less) likely to come up a 3 (gambling fallacy).

Confirmation bias describes our tendency to notice, focus
on, and give greater credence to evidence that fits
with our existing beliefs; gaffes made by politicians
you oppose reinforces your dislike.

Conservation bias occurs when we favour prior evidence
over new information; it might be difficult to accept
that there is an association between factors X and Y
if none had been found in the past.

Ostrich effect describes how people often avoid negative
information, including feedback that could help them
monitor their goal progress; a professor might chose
to not consult their teaching evaluations, for whatever
reason.

Outcome bias refers to our tendency to judge a decision
on the outcome, rather than on why it was made;
the fact that analysts gave Clinton an 80% chance of
winning the 2016 U.S. Presidential Election does not
mean that the forecasts were wrong.

Overconfidence causes us to take greater risks in our daily
lives; experts are particularly prone to this, as they
are more convinced that they are right.

Pro-innovation bias occurs when proponents of a tech-
nology overvalue its usefulness and undervalue its
limitations; in the end, Big Data is not going to solve
all of our problems.

Recency bias occurs when we favour new information
over prior evidence; investors tend to view today’s
market as the “forever’ market and make poor deci-
sions as a result.

Salience Bias describes our tendency to focus on items or
information that are more noteworthy while ignor-
ing those that do not grab our attention; you might
be more worried about dying in a plane crash than
in a car crash, even though the latter occurs more
frequently than the former.

Survivorship Bias is a cognitive shortcut that occurs when
a visible successful subgroup is mistaken as an entire
group, due to the failure subgroup not being visible;
when trying to get the full data picture, it helps to
know what observations did not make it into the
dataset.

Zero-Risk Bias relates to our preference for absolute cer-
tainty; we tend to opt for situations where we can
completely eliminate risk, seeking solace in the fig-
ure of 0%, over alternatives that may actually offer
greater risk reduction.

Other biases impact our ability to make informed decisions:

bandwagon effect, base rate fallacy, bounded
rationality, category size bias, commitment bias,
Dunning-Kruger effect, framing effect, hot-hand
fallacy, IKEA effect, illusion of explanatory depth,
illusion of validity, illusory correlations, look
elsewhere effect, optimism effect, planning fal-
lacy, representative heuristic, response bias, se-
lective perception, stereotyping, etc. [28,48].

8 P.Boily, J.Schellinck (2021)
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4. Ethics in the Data Science Context

Straight Talk From The Front Lines

A lapse in ethics can be a conscious choice... but it
can also be negligence.

– R. Schutt, C. O’Neill [67]

In most empirical disciplines, ethics are brought up fairly
early in the educational process and may end up playing a
crucial role in researchers’ activities.

At Memorial University of Newfoundland, for instance, “pro-
posals for research in the social sciences, humanities, sci-
ences, and engineering, including some health-related re-
search in these areas,” must receive approval from specific
Ethics Research Boards .

This could, among other cases, apply to research and
analysis involving [64]:

living human subjects;
human remains, cadavers, tissues, biological fluids,
embryos or foetuses;
a living individual in the public arena if s/he is to be
interviewed and/or private papers accessed;
secondary use of data – health records, employee
records, student records, computer listings, banked
tissue – if any form of identifier is involved and/or
if private information pertaining to individuals is in-
volved, and
quality assurance studies and program evaluations
which address a research question.

In our experience, data scientists and data analysts who
come to the field by way of mathematics, statistics, com-
puter science, economics, or engineering, however, are not
as likely to have encountered ethical research boards or to
have had formal ethics training.6

Furthermore, discussions on ethical matters are often tabled,
perhaps understandably, in favour of pressing technical or
administrative considerations (such as algorithm selection,
data cleaning strategies, contractual issues, etc.) when
faced with hard deadlines.

The problem, of course, is that the current deadline is
eventually replaced by another deadline, and then by a new
deadline, with the end result that the conversation may
never take place.

It is to address this all-too-common scenario that we take
the time to discuss ethics in the data science context; more
information is available in [58].

6We are obviously not implying that these individuals have no ethical
principles or are unethical; rather, that the opportunity to establish what
these principles might be, in relation with their research, may never have
presented itself.

4.1 The Need for Ethics
When large scale data collection first became possible, there
was to some extent a ‘Wild West’ mentality to data collec-
tion and use. To borrow from the old English law principle,
whatever was not prohibited (from a technological perspec-
tive) was allowed.

Now, however, professional codes of conduct are be-
ing devised for data scientists [1,17,73], outlining responsi-
ble ways to practice data science – ways that are legitimate
rather than fraudulent, and ethical rather than unethical.7

Although this shifts some added responsibility onto data
scientists, it also provides them with protection from clients
or employers who would hire them to carry out data science
in questionable ways – they can refuse on the grounds that
it is against their professional code of conduct.

4.2 What Is/Are Ethics?
Broadly speaking, ethics refers to the study and definition
of right and wrong conducts. Ethics may consider what is a
right or a wrong action in general, or consider how broad
ethical principles are appropriately applied in more specific
circumstances.

And, as noted by R.W. Paul and L. Elder, ethics is not
(necessarily) the same as social convention, religious beliefs,
or laws [59]; that distinction is not always fully understood.

The following influential ethical theories are often used
to frame the debate around ethical issues in the data sci-
ence context:

Kant’s golden rule: do unto others as you would
have them do unto you;
Consequentialism: the end justifies the means;
Utilitarianism: act in order to maximize positive
effect;
Moral Rights: act to maintain and protect the fun-
damental rights and privileges of the people affected
by actions;
Justice: distribute benefits and harm among stake-
holders in a fair, equitable, or impartial way.

In general, it is important to remember that our planet’s
inhabitants subscribe to a wide variety of ethical codes,
including also:

Confucianism, Taoism, Buddhism, Shinto, Ubuntu,
Te Ara Tika (Maori), First Nations Principles of
OCAP, various aspects of Islamic ethics, etc.

It is not too difficult to imagine contexts in which either
of these (or other ethical codes, or combinations thereof)
would be better-suited – the challenge is to remember to
inquire, and to heed the answers.

7This is not to say that ethical issues have miraculously disappeared –
Volkswagen, Whole Foods Markets, General Motors, and Ashley Madison,
to name but a few of the big data science and data analysis players, have
all recently been implicated in ethical lapses [31]. More dubious examples
can be found in [19,54].
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4.3 Ethics and Data Science
How might these ethical theories apply to data analysis?
The (former) University of Virginia’s Centre for Big Data
Ethics, Law and Policy suggested some specific examples of
data science ethics questions [16]:

who, if anyone, owns data?
are there limits to how data can be used?
are there value-biases built into certain analytics?
are there categories that should never be used in
analyzing personal data?
should data be publicly available to all researchers?

The answers may depend on a number of factors, not least
of which being who is actually providing them.

To give you an idea of some of the complexities, let us
consider the first of those questions: who, if anyone, owns
data?

In some sense, the data analysts who transform the
data’s potential into usable insights are only one of the
links in the entire chain. Processing and analyzing the data
would be impossible without raw data on which to work,
so the data collectors also have a strong ownership claim
to the data.

But collecting the data can be a costly endeavour, and
it is easy to imagine how the sponsors or employers (who
made the process economically viable in the first place)
might feel that the data and its insights are rightfully theirs
to dispose of as they wish.

In some instances, the law may chime in as well. One
can easily include other players: in the final analysis, this
simple question turns out to be far from easily answered.

This also highlights some of the features of the data anal-
ysis process, which we will discuss in Section 5: there is
more to data analysis than just data analysis. The answer
is not easily forthcoming, and may change from one case
to another.

A similar challenge arises in regards to open data, where
the “pro” and “anti” factions both have strong arguments
(see [14,55,56], and [23] for a science-fictional treatment
of the transparency-vs.-secrecy/security debate).

A general principle of data analysis is to eschew the anec-
dotal in favour of the general – from a purely analytical
perspective, too narrow a focus on specific observations can
end up obscuring the full picture (a vivid illustration can
be found in [21]).

But data points are not solely marks on paper or electro-
magnetic bytes on the cloud. Decisions made on the basis
of data science (in all manners of contexts, from security,
to financial and marketing context, as well as policy) may
affect living beings in negative ways. And it can not be
ignored that outlying/marginal individuals and minority
groups often suffer disproportionately at the hands of so-
called evidence-based decisions [33,44,45].

4.4 Guiding Principles
Under the assumption that one is convinced of the impor-
tance of proceeding ethically, it could prove helpful to have
a set of guiding principles to aid in these efforts.

In his seminal science fiction series about positronic robots,
Isaac Asimov introduced the now-famous Laws of Robotics,
which he believed would have to be built-in so that robots
(and by extension, any tool used by human beings) could
overcome humanity’s Frankeinstein’s complex (the fear of
mechanical beings) and help rather than hinder human
social, scientific, cultural, and ecomomic activities [5]:

1. A robot may not injure a human being or, through
inaction, allow a human being to come to harm.

2. A robot must obey the orders given to it by human
beings, except where such orders would conflict with
the 1st Law.

3. A robot must protect its own existence as long as such
protection does not conflict with the 1st and 2nd Law.

Were they uniformly well-implemented and respected, the
potential for story-telling would have been somewhat re-
duced; thankfully, Asimov found entertaining ways to break
the Laws (and to resolve the resulting conflicts) which made
the stories both enjoyable and insightful.

Interestingly enough, he realized over time that a Zeroth
Law had to supersede the First in order for the increasingly
complex and intelligent robots to succeed in their goals.
Later on, other thinkers contributed a few others, filling in
some of the holes (see Table 1).

We cannot speak for the validity of these laws for robotics
(a term coined by Asimov, by the way), but we do find the
entire set satisfyingly complete.

What does this have to do with data science? Various
thinkers have discussed the existence and potential merits
of different sets of Laws ( [70]) – wouldn’t it be useful if
there were Laws of Analytics, moral principles that could
help us conduct data science ethically?

Best Practices Such universal principles are unlikely to
exist, but a number of best practices and guiding principles
have been suggested.

“Do No Harm”: data collected from an individual should
not be used to harm the individual. This may be
difficult to track in practice, as data scientists and
analysts do not always participate in the ultimate
decision process.

Informed Consent covers a wide variety of ethical issues,
chief among them being that individuals must agree
to the collection and use of their data, and that they
must have a real understanding of what they are
consenting to, and of possible consequences for
them and others.
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00. A robot may not harm sentience or, through
inaction, allow sentience to come to harm.

0. A robot may not harm humanity, or, through
inaction, allow humanity to come to harm, as long
as this action/inaction does not conflict with the
00th Law.

1. A robot may not injure a human being or, through
inaction, allow a human being to come to harm, as
long as this does not conflict with the 00th or the
0th Law.

2. A robot must obey the orders given to it by human
beings, except where such orders would conflict
with the 00th, the 0th or the 1st Law.

3. A robot must protect its own existence as long as
such protection does not conflict with the 00th, the
0th, the 1st or the 2nd Law.

4. A robot must reproduce, as long as such repro-
duction does not interfere with the 00th, the 0th,
the 1st, the 2nd or the 3rd Law.

5. A robot must know it is a robot, unless such
knowledge would contradict the 00th, the 0th, the
1st, the 2nd, the 3rd or the 4th Law.

Table 1. Asimov’s (expanded) Laws of Robotics.

The Respect of “Privacy” is a dearly-held principle, but it
is hard to adhere to it religiously with robots and spi-
ders constantly trolling the net for personal data. In
the Transparent Society, D. Brin (somewhat) contro-
versially suggests that privacy and total transparency
are closely linked [14]:

“And yes, transparency is also the trick
to protecting privacy, if we empower cit-
izens to notice when neighbors [sic] in-
fringe upon it. Isn’t that how you enforce
your own privacy in restaurants, where
people leave each other alone, because
those who stare or listen risk getting caught?’

Keeping Data Public is another aspect of data privacy, and
a thornier issue – should some data be kept private?
Most? All? It is fairly straightforward to imagine
scenarios where adherence to the principle of public
data could cause harm to individuals (revealing the
source of a leak in a country without where the gov-
ernment routinely jails members of the opposition,
say), contradicting the first principle against causing
harm. But it is just as easy to imagine scenarios where
keeping data private would have a similar effect.

Opt-in/Opt-out: informed consent requires the ability to
not consent, i.e. to opt out. Non-active consent is
not really consent.

Anonymize Data: identifying fields should be removed
from the dataset prior to processing and analysis.
Let any temptation to use personal information in an
inappropriate manner be removed from the get-go,
but be aware that this is easier said than done, from
a technical perspective.

Let the Data Speak: absolutely no cherry-picking of your
data. Use all of it in some way or another. Validate
your analysis and make sure your results are repeat-
able.

4.5 The Good, the Bad, and the Ugly
Data projects could be classified as good, bad or ugly, ei-
ther from a technical or from an ethical standpoint (or
both).

We have identified instances in each of these classes (of
course, our biases might show through):

good projects increases knowledge, can help uncover
hidden links, and so on: [6, 8–10, 15, 22, 24, 40, 42,
43,47,57,60,69,74]
bad projects, if not done properly, can lead to bad
decisions, which can in turn decrease the public’s
confidence and potentially harm some individuals:
[21,41,50,62,75]
ugly projects are, flat out, unsavoury applications;
they are poorly executed from a technical perspec-
tive, or put a lot of people at risk; these (and similar
approaches/studies) should be avoided: [7, 25, 33,
44–46]

5. Analytics Workflow

An overriding component of the discussion so far has been
the importance of context. And although the reader may
be eager at this point to move into data analysis proper,
there is one more context that should be considered first –
the project context.

We have alluded to the idea that data science is much
more than simply data analysis and this is apparent when
we look at the typical steps involved in a data science project.
Inevitably, data analysis pieces take place within this larger
project context, as well as in the context of a larger techni-
cal infrastructure or pre-existing system.

5.1 The “Analytical” Method
As with the scientific method, there is a “step-by-step”
guide to data analysis:

1. statement of objective
2. data collection
3. data clean-up
4. data analysis/analytics
5. dissemination
6. documentation
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Notice that data analysis only makes up a small segment
of the entire flow.

In practice, the process often end up being a bit of a mess,
with steps taken out of sequence, steps added-in, repeti-
tions and re-takes (see Figure 4). And yet, it works on the
whole (if done correctly).

J. Blitzstein and H. Pfister (who teach a well-rated data
science course at Harvard) provide their own workflow di-
agram, but the similarities are easy to spot (see below).

The Cross Industry Standard Process, Data Mining is
another framework, with projects consisting of 6 steps:

1. business understanding
2. data understanding
3. data preparation
4. modeling
5. evaluation
6. deployment

The process is iterative and interactive – the dependencies
are highlighted in Figure 5.

In practice, the process is often corrupted by:

1. lack of clarity;
2. mindless rework;
3. blind hand-off to IT, and
4. failure to iterate.

CRISP-DM has a definite old-hat flavour (witness the use of
the expression “data mining,” which has become outdated),
but it can be useful to check off its sub-components, if only
for a sanity check.

Business Understanding:

understanding the business goal
assessing the situation
translating the goal in a data analysis objective
developing a project plan

Data Understanding:

considering data requirements
collecting and exploring data

Data Preparation:

selection of appropriate data
data integration and formatting
data cleaning and processing

Modeling:

selecting appropriate techniques
splitting into training/testing sets
exploring alternatives methods
fine tuning model settings

Evaluation:

evaluation of model in a business context
model approval

Deployment:

reporting findings
planning the deployment
deploying the model
distributing and integrating the results
developing a maintenance plan
reviewing the project
planning the next steps

All these approaches have a common core: data science
projects are iterative and (often) non-sequential.

Helping the clients and/or stakeholders recognize this
central truth will make it easier for analysts and consultants
to plan the data science process and to obtain actionable
insights for organizations and sponsors.

Another take-away is that there is a lot of real estate in
the process before we can even start talking about model-
ing and analysis – data analysis is not only about data
analysis.
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Figure 4. The reality of the analytic workflow – definitely not a linear process!

Figure 5. CRISP-DM in theory (left); corrupted CRISP-DM often found in practice (right) [72].

5.2 Data Collection, Storage, Processing, and Modeling
Data enters the pipeline by being collected. There are
various possibilities:

data may be collected in a single pass;
it may be collected in batches, or
it may be collected continuously.

This mode of entry may have an impact on the subsequent
steps, including on how frequently models, metrics, and
other outputs are updated.

Once it is collected, data must be stored. Choices related
to storage (and processing) must reflect:

how the data is collected (mode of entry);
how much data there is to store and process (small
vs. big), and
the type of access and processing that will be required
(how fast, how much, by whom).

Unfortunately, stored data may go stale (addresses no
longer accurate, etc.); regular data audits are recommended.
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Processing the data is required before it can be analyzed.
This is discussed in detail in other reports/chapters/doc-
uments, but the key point is that raw data has to be con-
verted into a format that is amenable to analysis, by

identifying invalid, unsound, and anomalous en-
tries;
dealing with missing values;
transforming the variables and the datasets so that
they meet the requirements of the selected algorithms.

In contrast, the analysis step itself is almost anti-climactic
– simply run the selected methods/algorithms on the pro-
cessed data. The specifics of this procedure depend, of
course, on the choice of method/algorithm.

We will not get into the details of how to make that
choice8, but data science teams should be familiar with a
fair number of techniques and approaches:

data cleaning
descriptive statistics and correlation
probability and inferential statistics
regression analysis (linear and other variants)
survey sampling
bayesian analysis
classification and supervised learning
clustering and unsupervised learning
anomaly detection and outlier analysis
time series analysis and forecasting
optimization
high-dimensional data analysis
stochastic modeling
distributed computing
etc.

These only represent a small slice of the analysis pie; you
may not master them all (maybe not even a majority) at the
moment, but that is one of the reasons why data science is
a team sport (more on this in Section 6).

5.3 Model Assessment and Life After Analysis
Before applying the findings from a model or an analysis,
one must first confirm that the model is reaching valid
conclusions about the system of interest.

All analytical processes are, by their very nature, re-
ductive – the raw data is eventually transformed into a
small(er) numerical outcome (or summary) by various
analytical methods, which we hope is still related to the
system of interest (see Section 3).

Data science methodologies include an assessment (eval-
uation, validation) phase. This does not solely provide an
analytical sanity check (i.e., are the results analytically com-
patible with the data?); it can be used to determine when
the system and the data science process have stepped out
of alignment.

8Truth be told, choosing wisely is probably the the most difficult aspect
of a data science project.

Past successes can lead to reluctance to re-assess and re-
evaluate a model. Even if the analytical approach has been
vetted and has given useful answers in the past, it may not
always do so.

At what point does one determine that the current data
model is out-of-date? At what point does one determine
that the current model is no longer useful? How long does
it take a model to react to a conceptual shift?9 This is
another reason why regular audits are recommended – as
long as the analysts remain in the picture, the only obstacle
to performance evaluation might be the technical difficulty
of conducting said evaluation.

When an analysis or model is ‘released into the wild’ or
delivered to the client, it often take on a life of its own.
When it inevitably ceases to be current, there may be little
that (former) analysts can do to remedy the situation.

Consultants and analysts rarely have full (or even par-
tial) control over model dissemination; consequently, re-
sults may be misappropriated, misunderstood, shelved, or
failed to be updated, all without their knowledge. What
can conscientious analysts do to prevent this?

Unfortunately, there is no easy answer, short of advo-
cating for analysts and consultants to not solely focus on
data analysis – data science projects afford an opportunity
to educate clients and stakeholders as to the importance
of these auxiliary concepts.

Finally, because of analytic decay, it is crucial not to view
the last step in the analytical process as a static dead end,
but rather as an invitation to return to the beginning of the
process.

5.4 Automated Data Pipelines
In the service delivery context, the data analysis process
is typically implemented as an automated data pipeline,
to enable the analysis process to occur repeatedly and au-
tomatically.

Data pipelines are usually implemented in 9 components
(5 stages and 4 transitions, see Figure 9, on p. 23):

1. data collection
2. data storage
3. data preparation
4. data analysis
5. data presentation

Each of these components must be designed and then im-
plemented. Typically, at least one pass of the data analysis
process has to be done manually before the implementa-
tion is completed. We will return to this topic in Section 7.

9How long does it take Netflix to figure out that you no longer like
action movies and want to watch comedies instead, say? How long does
it take Facebook to recognize that you and your spouse have separated
and that you do not wish to see old pictures of them in your feed?
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6. Roles and Responsibilities

Straight Talk From The Front Lines

To leverage Big Data efficiently, an organization
needs business analysts, data scientists, and big
data developers and engineers.

– De Mauro, Greco, Grimaldi [27]

A data analyst or a data scientist (in the singular) is un-
likely to get meaningful results – there are simply too many
moving parts to any data project.

Successful projects require teams of highly-skilled in-
dividuals who understand the data, the context, and the
challenges faced by their teammates. Our experience as
consultants and data scientists has allowed us to identify
the following roles.10

Project Managers / Team Leads have to understand the
process to the point of being able to recognize whether
what is being done makes sense, and to provide re-
alistic estimates of the time and effort required to
complete tasks. Team leads act as interpreters be-
tween the team and the clients/stakeholders, and
advocate for the team.11 They might not be involved
with the day-to-day aspects of the projects but are
responsible for the project deliverables.

Domain Experts / SMEs are, quite simply, authorities in
a particular area or topic. Not “authority” in the sense
that their word is law, but rather, in the sense that they
have a comprehensive understanding of the context
of the project, either from the client/stakeholder side,
or from past experience. SMEs can guide the data
science team through the unexpected complications
that arise from the disconnect between data science
team and the people “on-the-ground”, so to speak.

Data Translators have a good grasp on the data and the
data dictionary, and help SMEs transmit the underly-
ing context to the data science team.

Data Engineers / Database Specialists work with clients
and stakeholders to ensure that the data sources can
be used down the line by the data science team. They
may participate in the analyses, but do not necessarily
specialize in esoteric methods and algorithms. Most
data science activities require the transfer of some
client data to the analysis team. In many instances,
this can be as simple as sending a CSV file as an e-mail
attachment. In other instances, there are numerous
security and size issues.

Data Scientists are team members who work with the pro-
cessed data to build sophisticated models that provide

10Note that individuals can play more than one role on a team.
11They may also need to shield the team from clients/stakeholders.

actionable insights. They have a sound understand-
ing of algorithms and quantitative methods, and of
how they can be applied to a variety of data scenarios.
They typically have 2 or 3 areas of expertise and can
be counted on to catch up on new material quickly.

Computer Engineers design and build computer systems
and other similar devices. They are also involved in
software development, which is frequently used to
deploy data science solutions.

AI/ML QA/QC Specialists design testing plans for solu-
tions that implement AI/ML models; in particular,
they should help the data science team determine
whether the models are able to learn.

Communication Specialists are team members who can
communicate the actionable insights to managers,
policy analysts, decision-makers and other stake hold-
ers. They participate in the analyses, but do not nec-
essarily specialize in esoteric methods and algorithms.
They should keep on top of popular accounts of quan-
titative results. They are often data translators, as
well.

Data science projects can be downright stressful. In an
academic environment, the pace is significantly looser, but

deadlines still exist (exams, assignments, theses),
work can pile up (multiple courses, TAs, etc.)

In the workplace, there are two major differences:

a data science project can only receive 1 of 3 “grades”:
A+ (exceeded expectations), A- (met expectation),
or F (didn’t meet expectations);
while project quality is crucial, so is timeliness – miss-
ing a deadline is just as damaging as turning in unin-
spired or flawed work; perfect work delivered late
may cost the client a sizeable amount of money.

Sound project management and scheduling can help al-
leviate some of the stress related to these issues. These are
the purview of project managers and team leads, as is the
maintenance of the quality of team interactions, which
can make or break a project:

treat colleagues/clients with respect AT ALL TIMES –
that includes emails, Slack conversations, watercooler
conversations, meetings, progress reports, etc.;
keep interactions cordial and friendly – you do not
have to like your teammates, but you are all pulling
in the same direction;
keep the team leader/team abreast of developments
and hurdles – delays may affect the project manage-
ment plan in a crucial manner (plus your colleagues
might be able to offer suggestions), and
respond to requests and emails in a timely manner
(within reason, of course).
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Figure 6. A data science team in action, warts and all [Meko Deng, 2017].

7. Getting Insight From Data

With all of the appropriate context now in mind, we can
finally turn to the main attraction, data analysis proper.

Let us start this section with a few definitions, in order
to distinguish between some of the common categories of
data analysis.

What is data analysis? We see finding patterns in data
as being data analysis’s main goal. Alternatively, we could
describe the data analysis as using data to:

answer specific questions;
help in the decision-making process;
create models of the data;
describe or explain the situation or system under
investigation;
etc.

While some practitioners include other analytical-like activ-
ities, such as testing (scientific) hypotheses, or carrying out
calculations on data, we view those as separate activities.

What is data science? One of the challenges of working in
the data science field is that nearly all quantitative work can
be described as data science (often to a ridiculous extent).

Our simple definition, to paraphrase T. Kwartler, is that
data science is the collection of processes by which we
extract useful and actionable insights from data. Robin-
son [66] further suggests that these insights usually come
via visualization and (manual) inferential analysis.

The noted data scientist H. Mason thinks of the discipline as
“the working intersection of statistics, engineering, com-
puter science, domain expertise, and “hacking” [77])

What is machine learning? Starting in the 1940s, researchers
began to take seriously the idea that machines could be
taught to learn, adapt and respond to novel situations.

A wide variety of techniques, accompanied by a great
deal of theoretical underpinning, were created in an effort
to achieve this goal.

Machine learning is typically used in a second stage,
to obtain “predictions” (or “advice”), while reducing the
operator’s analytical, inferential and decisional workload
(although it is still present to some extent) [66].

What is artificial/augmented intelligence? The science fic-
tion answer is that artificial intelligence is non-human in-
telligence that has been engineered rather than one that
has evolved naturally. Practically speaking, this translates
to “computers carrying out tasks that only humans can do”.

A.I. attempts to remove the need for oversight, allow-
ing for automatic “actions” to be taken by a completely
unattended system.

These goals are laudable in an academic setting, but we
believe that stakeholders (and humans, in general) should
not seek to abdicate all of their agency in the decision-
making process; as such, we follow the lead of various
thinkers and suggest further splitting A.I. into “general
A.I.” and “augmented intelligence”.
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7.1 Asking the Right Question
Definitions aside, however, data analysis, data science, ma-
chine learning, and artificial intelligence are about asking
questions and providing answers to these questions.

We might ask various types of questions, depending on
the situation. Our position is that, from a quantitative per-
spective, there are only really three types of questions:

analytics questions
data science questions, and
quantitative methods questions.

Analytics questions could be something as simple as:

how many clicks did a specific link on my web-
site get?

Data science questions tend to be more complex – we
might ask something along the lines of:

if we know, historically, when or how often peo-
ple click on links, can we predict how many peo-
ple from Winnipeg will access a specific page
on our website within the next three hours?

Whereas analytics-type questions are typically answered by
counting things, data science-like questions are answered
by using historical patterns to make predictions.

Quantitative methods questions might, in our view, be
answered by making predictions but not necessarily based
on historical data. We could build a model from first prin-
ciples – the physics of the situation, as it were – to attempt
to figure out what might happen.

For instance, if we thought there was a correlation be-
tween the temperature in Winnipeg and whether or not
people click on the links in our website, then we might
build a model that predicts “how many people from Win-
nipeg will access a page in the next week?”, say, by trying
to predict the weather instead.12

Analytics models do not usually predict or explain any-
thing – they just report on the data, which is itself meant
to represent the situation.

A data mining or a data science model tends to be pre-
dictive, but not necessarily explanatory – it shows the
existence of connections, of correlations, of links, but with-
out explaining why the connections exist.

In a quantitative method model, we may start by assum-
ing that we know what the links are, what the connections
are – which presumably means that we have an idea as to
why these connections exist13 – and then we try to explore
the consequences of the existence of these connections
and these links.

12Questions can also be asked in an unsupervised manner, see [4,61],
among others, and Section 7.5, briefly.

13Unless we’re talking about quantum physics – nobody has any idea
why things happen the way they do, down there.

We have a piece of advice for new data scientists and an-
alysts, which may prove to be the single most important
piece of advice they will receive in their quantitative career:

not every situation calls for analytics, data
science, statistical analysis, quantitative meth-
ods, machine learning, or A.I.

Take the time to identify instances where more is asked out
of the data than what it can actually yield, and be prepared
to warn stakeholders, as early as possible, when such a
situation is encountered.

If we cannot ask the right questions of the data, of the
client, of the situation, and so on, any associated project is
doomed to fail from the very beginning.

Without questions to answer, analysts are wasting their
time, running analyses for the sake of analysis – the finish
line cannot be reached if there is no finish line. In order
to help clients/stakeholders, analysts need:

questions to answer,
questions that can be answered by the types of meth-
ods and skills at their disposal, and
answers that will be recognized as answers.

"How many clicks did this link get?" is a question that is
easily answerable if we have a dataset of clicks, but it might
not be a question that the client cares to see answered.

Data analysts and scientists often find themselves in a
situation where they will ask the types of questions that
can be answered with the available data, but the answers
might not prove actually useful.

From a data science perspective, the right question is
one that leads to actionable insights. And it might mean
that new data has to be collected in order to answer it.

7.2 Structuring and Organizing Data
Let us resume the discussion started in Sections 1.1, 1.2.

Data Sources We cannot have insights from data without
data. As with many of the points we have made, this may
seem trivially obvious, but there are many aspects of data
acquisition, structuring, and organization that have a
sizable impact on what insights can be squeezed from data.

More specifically, there are a number of questions that
can be considered:

why do we collect data?
what can we do with data?
where does data come from?
assuming we collect data so we can have a collection
of data, what does “a collection” of data look like?
how can we describe data?
do we need to distinguish between data, information,
knowledge?14

14According to the adage, “data is not information, information is not
knowledge, knowledge is not understanding, understanding is not wis-
dom.” (C.Stoll, attributed).
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Historically, data has had three functions:

record keeping – people/societal management (!);
science – new general knowledge, and
intelligence – business, military, police, social (?),
domestic (?), personal (!)

Traditionally, each of these functions has

used different sources of information;
collected different types of data, and
had different data cultures and terminologies.

Data science is an interdisciplinary field, it should come as
no surprise that we may run into all of them on the same
project (see Table 2).

Ultimately, data is generated from making observations
about and taking measurements of the world. In the pro-
cess of doing so, we are already imposing particular con-
ceptualizations and assumptions on our raw experience.

More concretely, data comes from a variety of sources,
including:

records of activity,
(scientific) observations,
sensors and monitoring, and,
more frequently lately, from computers themselves.

As discussed in Section 2, although data may be collected
and recorded by handed, it is fast becoming a mostly digi-
tal phenomenon.

Computer science (and information science) has its own
theoretical, fundamental viewpoint about data and infor-
mation, operating over data in a fundamental sense – 1s
and 0s that represent numbers, letters, etc. Pragmatically,
the resulting data is now stored on computers, and is acces-
sible through our world-wide computer network.

While data is necessarily a representation of something
else, analysts should endeavour to remember that the data
itself still has physical properties: it takes up physical
space and requires energy to work with.

In keeping with this physical nature, data also has a
shelf life – it ages over time. We use the phrase “rotten
data” or “decaying data” in one of two senses:

literally, as the data storage medium might decay,
but also
metaphorically, as when it no longer accurately rep-
resents the relevant objects and relationships (or even
when those objects no longer exist in the same way)
– compare with “analytical decay” (see Section 5.3).

Useful data must stay ‘fresh’ and ‘current’, and avoid going
‘stale’ – but that is both context- and model-dependent!

Before the Data The various data-using disciplines share
some core (systems) concepts and elements, which should
resonate with the systems modeling framework previously
discussed in Section 3:

all objects have attributes, whether concrete or ab-
stract;
for multiple objects, there are relationships between
these objects/attributes, and
all these elements evolve over time.

The fundamental relationships include:

part–whole;
is–a;
is–a–type–of;
cardinality (one-to-one, one-to-many, many-to-many),
etc.,

while object-specific relationships include:

ownership;
social relationship;
becomes;
leads-to,
etc.

Objects and Attributes We can examine concretely the
ways in which objects have properties, relationships and
behaviours, and how these are captured and turned into
data through observations and measurements, via the apple
and sandwich example of Section 1.1.

There, we made observations of an apple instance,
labeled the type of observation we made, and provided
a value describing the observation. We can further use
these labels when observing other apple instances, and
associate new values for these new apple instances.

Regarding the fundamental and object specified rela-
tionships, we might be able to see that:

an apple is a type of fruit,
a sandwich is part of a meal,
this apple is owned by Jen,
this sandwich becomes fuel,
etc.

It is worth noting that while this all seems tediously obvious
to adult humans, it is not so from the perspective of a tod-
dler, or an artificial intelligence. Explicitly, “understanding”
requires a basic grasp of:

categories,
instances,
types of attributes,
values of attributes, and
which of these are important or relevant to a specific
situation or in general terms.
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Table 2. Different data cultures and terms.

From Attributes to Datasets Were we to run around in
an apple orchard, measuring and jotting down the height,
width and colour of 83 different apples completely hap-
hazardly on a piece of paper, the resulting data would be
of limited value; although it would technically have been
recorded, it would be lacking in structure.

We would not be able to tell which values were heights
and which were widths, and which colours or which widths
were associated with which heights, and vice-versa.

Structuring the data using lists, tables, or even tree struc-
tures allows analysts to record and preserve a number of
important relationships:

those between object types and instances, property,
attribute types (sometimes also called fields, features
or dimensions), and values,
those between one attribute value and another value
(i.e., both of these values are connected to this object
instance),
those between attribute types, in the case of hierar-
chical data, and
those between the objects themselves (e.g., this car
is owned by this person).

Tables, also called flat files, are likely the most familiar
strategy for structuring data in order to preserve and in-
dicate relationships. In the digital age, however, we are
developing increasingly sophisticated strategies to store the
structure of relationships in the data, and finding new
ways to work with these increasingly complex relationship
structures.

Formally, a data model is an abstract (logical) description
of both the dataset structure and the system, constructed
in terms that can be implemented in data management
software.

In a sense, data models lie halfway between conceptual
models and database implementations. The data proper
relates to instances; the model to object types.

Ontologies provide an alternative representation of the sys-
tem: simply put, they are structured, machine-readable
collections of facts about a domain.15

In a sense, an ontology is an attempt to get closer to
the level of detail of a full conceptual model, while keeping
the whole machine-readable (see Figure 7 for an example).

Every time we move from a conceptual model to a spe-
cific type of model (a data model, a knowledge model),
we lose some information. One way to preserve as much
context as possible in these new models is to also provide
rich metadata – data about the data!

Metadata is crucial when it comes to successfully work-
ing with and across datasets. Ontologies can also play a
role here, but that is a topic for another day.

Typically data is stored in a database. A major motivator
for some of the new developments in types of databases and
other data storing strategies is the increasing availability of
unstructured and (so-called) ‘BLOB’ data.

Structured data is labeled, organized, and discrete,
with a pre-defined and constrained form. With that defini-
tion, for instance, data that is collected via an e-form that
only uses drop-down menus is structured.

Unstructured data, by comparison, is not organized,
and does not appear in a specific pre-defined data structure
– the classical example is text in a document. The text
may have to subscribe to specific syntactic and semantic
rules to be understandable, but in terms of storage (where
spelling mistakes and meaning are irrelevant), it is highly
unstructured since any data entry is likely to be completely
different from another one in terms of length, etc.

The acronym “BLOB” stands for Binary Large Object
data, such as images, audio files, or general multi-media
files. Some of these files can be structured-like (all pictures
taken from a single camera, say), but they are usually quite
unstructured, especially in multi-media modes.

15We could facetiously describe ontologies as “data models on steroids.”
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Figure 7. Representation of Langerhans cells in the Cell Ontology [52].

Not every type of database is well-suited to all data types.

Let us look at four currently popular database options in
terms of fundamental data and knowledge modeling and
structuring strategies:

key-value pairs (e.g. JSON);
triples (e.g. resource description framework – RDF));
graph databases, and
relational databases.

Key-Value Stores In these, all data is simply stored as a
giant list of keys and values, where the ‘key’ is a name or
a label (possibly of an object) and the ‘value’ is a value
associated with this key.

Triple stores operate on the same principle, but data is
stored according to ‘subject – predicate – object’.

The following examples illustrate these concepts

1. The apple type – apple colour key-value store might
contain

“Granny Smith – green” and
“Red Delicious16 – red”.

2. The person – shoe size key-value store might contain

“Jen Schellinck – women’s size 7”, and
“Colin Henein – men’s size 10”.

3. Other key-value stores: word – definition, report
name – report (document file), url – webpage.

16Now, there’s a misnomer...
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4. Triples stores just add a verb to the mix: person – is
– age might contain

“Elowyn – is – 18”,
“Llewellyn – is – 8”, and
“Gwynneth – is – 4”;

while object – is-colour – colour might contain

“apple – is-colour – red” and
“apple – is-colour – green”.

Both strategies results in a large amount of flexibility when
it comes to the ’design’ of the data storage, and not much
needs to be known about the data structure prior to imple-
mentation. Additionally, missing values do not take any
space in such stores.

In terms of their implementation, the devil is in the
details; note that their extreme flexibility can also be a
flaw [13], and it can be difficult to query them and find the
data of interest.

In graph databases, the emphasis is placed on the rela-
tionships between different types of objects, rather than
between an object and the properties of that object:

the objects are represented by nodes;
the relationships between these objects are repre-
sented by edges, and
objects can have a relationship with other objects of
the same type (such as “person is-a-sibling-of per-
son”).

They are fast and intuitive when using relation-based data,
and might in fact be the only reasonable option to use in
that case as traditional databases may slow to a crawl.

But they are probably too specialized for non relation-
based data, and they are not yet widely supported.

In relational databases, data is stored in a series of ta-
bles. Broadly speaking, each table represents an object
and some properties related to this object; special columns
in tables connect object instances across table (the entity-
relationship model diagram [ERD] of Figure 3 is an example
of a relational database model).

For instance, a person lives in a house, which has a
particular address. Sometimes that property of the house
will be stored in the table that stores information about
individuals; in other cases, it will make more sense to store
information about the house in its own table.

The form of relational databases are driven by the car-
dinality of the relationships (one-to-one, one-to-many, or
many-to-many). These concepts are illustrated in the cheat
sheet of Figure 8.

Relational databases are widely supported and well un-
derstood, and they work well for many types of systems
and use cases.

Note however, that it is difficult to modify them once they
have been implemented and that, despite their name, they
do not really handle relationships all that well.

We have said very little about keeping data in a single giant
table (spreadsheet, flatfile), or multiple spreadsheets.

On the positive side, spreadsheets are very efficient
when working with:

static data (e.g., it is only collected once), or
data about one particular type of object (e.g., sci-
entific studies).

Most implementations of analytical algorithms require the
data to be found in one location (such as an R data frame).
Since the data will eventually need to be exported to a
flatfile anyway, why not remove the middle step and work
with spreadsheets in the first place?

The problem is that it is hard to manage data integrity
with spreadsheets over the long term when data is collected
(and processed) continuously. Furthermore, flatfiles are
not ideal when working with systems involving many dif-
ferent types of objects and their relationships, and they are
not optimzed for querying operations.

For small datasets or quick-and-dirty work, flatfiles are
often a reasonable option, but analysts should look for al-
ternatives when working on large scale projets.

We have said criminally little on the topic – be aware that
projects have sunk time and time again when this aspect
of the process has not been taken seriously.

Simply put, serious analyses cannot be conducted prop-
erly without the right data infrastructure.

Implementing a Model In order to implement the data/-
knowledge model, data engineers and database specialists
need access to data storage and management software.

Gaining this access might be challenging for individuals
or small teams as the required software traditionally runs
on servers.

A server allows multiple users to access the database
simultaneously, from different client programs. The other
side of the coin is that servers make it difficult to ‘play’ with
the database.

User-friendly embedded database software (by oppo-
sition to client-server database engines) such as SQLite can
help overcome some of these obstacles.

Data management software lets human agents interact
easily with their data – in a nutshell, they are a human–
data interface, through which

data can be added to a data collection,
subsets can be extracted from a data collection based
on certain filters/criteria, and
data can be deleted from (or edited in) a data collec-
tion.
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Figure 8. Entity-relationship model diagram “crow’s foot” relationship symbols cheat sheet [18].
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But tempora mutantur, nos et mutamur in illis17 – whereas
we used to speak of:

databases and database management systems;
data warehouses (data management system designed
to enable analytics);
data marts (used to retrieve client-facing data, usu-
ally oriented to a specific business line or team);
Structured Query Language [SQL] (commonly-used
programming language that helps manage (and per-
form operations on) relational databases),

we now speak of (see [30]):

data lakes (centralized repository in which to store
structured/unstructured data alike);
data pools (a small collection of shared data that
aspires to be a data lake, someday);
data swamps (unstructured, ungoverned, and out of
control data lake in which data is hard to find/use and
is consumed out of context, due to a lack of process,
standards and governance);
database graveyards (where databases go to die?);
data is stored in non-traditional data structures.18

Once a logical data model is complete, we need only:

1. instantiate it in the chosen software;
2. load the data, and
3. query the data.

Traditional relational databases use SQL; other types of
databases either use other query languages (AQL, seman-
tic engines, etc.) or rely on bespoke (tailored) computer
programs (e.g. written in R, Python, etc.).

Once a data collection has been created, it must be man-
aged, so that the data remains accurate, precise, consis-
tent, and complete. Databases decay, after all; if a data
lake turns into a data swamp, it will be difficult to squeeze
usefulness out of it!

Data and Information Architectures There is no single cor-
rect structure for a given collection of data (or dataset).

Rather, consideration must be given to the type of re-
lationships that exist in the data/system (and are thought
to be important), the types of analysis that will be carried
out, and data engineering requirements relating to the
time and effort required to extract and work with the data.

The chosen structure, which stores and organizes the data,
is called the data architecture; designing a specific archi-
tecture for a data collection is a necessary part of the data
analysis process.

17“Times change, and we change with them.” C. Huberinus
18Popular NoSQL database software include: ArangoDB, MongoDB,

Redis, Amazon DynamoDB, OrientDB, Azure CosmosDB, Aerospike, etc.

Figure 9. An implemented automated pipeline; note the
transitions between the 5 stages.

The data architecture is typically embedded in the larger
data pipeline infrastructure described in Section 5.

As another example, automated data pipelines in the
service delivery context are usually implemented with 9
components (5 stages, and 4 transitions, as in Figure 9):

1. data collection
2. data storage
3. data preparation
4. data analysis
5. data presentation

Model validation could be added as a sixth stage, to com-
bat model “drift”.

By analogy, the data storage component, which houses
the data and it’s architecture, is the “heart” of the pipeline
(the engine that makes the pipeline go), whereas the data
analysis component is its “brain.”19

Most analysts are familiar with mathematical and statis-
tical models which are implemented in the data analysis
component; data models tend to get constructed separately
from the analytical models, at the data storage phase.

This separation can be problematic if the analytical model
is not compatible with the data model. As an example, if
an analyst needs a flatfile (with variables represented as
columns) to feed into an algorithm implemented in R, say.

If the data comes from forms with various fields stored
in a relational database, the discrepancy could create diffi-
culties on the data preparation side of the process.

Building both the analytical model and the data model
off of a common conceptual model might help the data
science team avoid such quandaries.

In essence, the task is to structure and organize both data
and knowledge so that it can be:

stored in a useful manner;
added to easily;
usefully and efficiently extracted from that store (the
“extract-transform-load” (ETL) paradigm), and
operated over by humans and computers alike (pro-
grams, bots, A.I.) with minimal external modification.

19What does that make the other components?
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Figure 10. AFM image of 1,5,9-trioxo-13-azatriangulene
(left) and its chemical structure model (right) [35].

7.3 Basic Data Analysis Techniques
Business Intelligence (BI) has evolved over the years:

1. we started to recognize that data could be used to
gain a competitive advantage at the end of the 19th
century;

2. the 1950s saw the advent of the first business database
for decision support;

3. in the 1980s and 1990s, computers and data became
increasingly available (data warehouses, data min-
ing);

4. in the 2000s, the trend was to take business analytics
out of the hands of data miners (and other specialists)
and into the hands of domain experts.

5. Now, big data and specialized techniques have ar-
rived on the scene, as have data visualization, dash-
boards, and software-as-service.

Historically, BI has been one of the streams contributing to
modern day data science;

system of interest: the commercial realm, specifi-
cally, the market of interest;
sources of data: transaction data, financial data,
sales data, organizational data;
goals: provide awareness of competitors, consumers
and internal activity and use this to support decision
making;
culture and preferred techniques: datamarts, key
performance indicators, consumer behaviour, slicing
and dicing, business ’facts’.

But no matter the realm in which we work, the ultimate
goal remains the same: obtaining actionable insight into
the system of interest. This can be achieved in a number
of ways.

Traditionnally, analysts and consultants hope to do so by
seeking:

patterns – predictable, repeating regularities;
structure – the organization of elements in a system,
and
generalization – the creation of general or abstract
concepts from specific instances (see Figure 10).

The underlying analytical hope is to find patterns or struc-
ture in the data from which actionable insight arise.

While finding patterns and structure can be interesting
in its own right (in fact, this is the ultimate reward for
many scientists), in the data science context it is how these
discoveries are used that trumps all.

Variable Types In the example of a conceptual model
shown at the bottom of page 6, we have identified var-
ious types of variables; in an experimental setting, we
typically encounter:

control/extraneous variables – we do our best to
keep these controlled and unchanging while other
variables are changed;
independent variables – we control their values as
we suspect they influence the dependent variables;
dependent variables – we do not control their val-
ues; they are generated in some way during the exper-
iment, and presumed dependent on the other factors.

For instance, we could be interested in the plant height
(dependent) given the mean number of sunlight hours
(independent), given the region of the country in which
each test site is located (control).

Data Types These variables need not be of the same type.
In a typical dataset, we may encounter

numerical data – integers or continuous numbers,
such as 1, −7, 34.654, 0.000004, etc.
text data – strings of text, which may be restricted to
a certain number of characters, such as “Welcome to
the park”, “AAAAA”, “345”, “45.678”, etc.
categorical data – are variables with a fixed number
of values, may be numeric or represented by strings,
but for which there is no specific or inherent ordering,
such as (‘red’,’blue’,’green’), (‘1’,’2’,’3’), etc.
ordinal data – categorical data with an inherent or-
dering; unlike integer data, the spacing between val-
ues is not well-defined; (very cold, cold, tepid, warm,
super hot)

We can transform categorical data into numeric data by gen-
erating frequency counts of the different values/levels of
the categorical variable; regular analysis techniques could
then be used on the now numeric variable.20

20Similar approach underlies most of modern text mining, natural lan-
guage processing, and categorical anomaly detection. Information gets
lost in the process, which explains why meaningful categorical analyses
tend to stay fairly simple.
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Table 3. Nested data, with quarterly granularity.

Categorical data plays a special role in data analysis:

in data science, categorical variables come with a
pre-defined set of values;
in experimental science, a factor is an independent
variable with its levels being defined (it may also be
viewed as a category of treatment)
in business analytics, these are called dimensions
(with members).

However they are labeled, these variable can be used to
subset or roll up/summarize the data.

Hierarchical / Nested / Multilevel Data When a categorical
variable has multiple levels of abstraction, new categorical
variables can be created from these levels. We can view
these levels as new categorical variables, in a sense. The
‘new’ categorical variable has pre-defined relationships with
the more detailed level.

This is commonly the case with time and space variables
– we can ‘zoom’ in or out, as needed, which allows us discuss
the granularity of the data, i.e., the ‘maximum zoom factor’
of the data.

For instance, observations could be recorded hourly, and
then further processed (mean value, total, etc.) at the daily
level, the monthly level, the quarterly level, the yearly level,
etc., as in Table 3.

Data Summarizing The summary statistics of variables
can help analysts gain basic univariate insights into the
dataset (and hopefully, into the system with which it is
associated).

These data summaries do not typically provide the full
picture and connections/links between different variables
are often missed altogether. Still, they often give analysts a
reasonable sense for the data, at least for a first pass.

Table 4. Artificial dataset, with roll-ups.

Common summary statistics include:

min – smallest value taken by a variable
max – largest value taken by a variable
median – “middle” value taken by a variable
mean – average value taken by a variable
mode – most frequent value taken by a variable
# of obs – number of observations for a variable
missing values – # of missing observations for a
variable
# of invalid entries – number of invalid entries for
a variable
unique values – unique values taken by a variable
quartiles, deciles, centiles
range, variance, standard deviation
skew, kurtosis
total, proportion, etc.

We can also perform operations over subsets of the data –
typically over its columns, in effect compressing or ’rolling
up’ multiple data values into a single representative value
(see Table 4 for 4 roll-up summaries).

Typical roll-up functions include the ’mean’, ’sum’, ‘count’,
and ’variance’, but these do not always give sensical
outcomes: if the variable measures a proportion, say, the
sum of that variable over all observations is a meaningless
quantity, on its own.

We can apply the same roll-up function to many different
columns, thus providing a mapping (list) of columns to
values.
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Table 5. Contingency table (top), pivot table (bottom).

Datasets can also be summarized via contingency and pivot
tables. A contingency table is used to examine the rela-
tionship between two categorical variables – specifically
the frequency of one variable relative to a second variable
(this is also known as cross-tabulation).

A pivot table, on the other hand, is a table generated in
a software application by applying operations (e.g. ‘sum’,
‘count’, ‘mean’) to variables, possibly based on another
(categorical) variable (see Table 5 for examples).21

Analysis Through Visualization Consider the broad defi-
nition of analysis as:

identifying patterns or structure, and
adding meaning to these patterns or structure by
interpreting them in the context of the system,

There are two general options to achieve this:

1. use analytical methods of varying degrees of sophisti-
cation, and/or

2. visualize the data and use the brain’s analytic (per-
ceptual) power to reach meaningful conclusions about
these patterns.

At this point, we will only list some simple visualization
methods that are often used to reveal patterns:

scatter plots are best suited for two numeric vari-
ables;
line charts, for numeric variable and ordinal vari-
able;
bar charts for one categorical and one numeric, or
multiple categorical/nested categorical data;
boxplots, histograms, bubble charts, small multi-
ples, etc.

An in-depth discussion of data visualization, as well as best
practices and a more complete catalogues are provided
in [12].

21Contingency tables are a special intance of pivot tables (where the
roll-up function is ‘count’).

Figure 11. Analysis and pattern-reveal through
visualization.

7.4 Statistical Analysis
The underlying reason for statistical analysis is to reach
an understanding of the data.

In a first pass, a variable can be described along 2 di-
mensions: centrality and spread (skew and kurtosis are
also sometimes used).

Centrality measures include: median, mean, mode
(less frequent);
Spread (or dispersion) measures include: standard
deviation (sd), quartiles, inter-quartile range (IQR),
range (less frequent).

The median, range and the quartiles are easily calculated
from an ordered list of the data.

Median The median of a quantitative variable with n ob-
servations is a value which splits the ordered data into 2
equal subsets – half the observations are below (or equal
to) the median, and half are above (or equal to) it:

if n is odd, then the median is the n+1
2 −ordered ob-

servation;
if n is even, then the median is any value between
the n

2 and n
2 + 1 ordered observations (usually their

average, but not necessarily so).

The procedure is simple: order the data and follow the
even/odd rules to the letter.

As an example, imagine a quantitative variable with n= 5
observations, taking the values 4, 6,1, 3,7.
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Start by ordering the values: 1, 3, 4, 6, 7. Since n = 5 is odd,
we use the (n+ 1)/2 = (5+ 1)/2 = 3rd observation, which
is 4.22

If instead the variable had n= 6 observations, taking the
values 4, 6, 1, 3, 7, 23, we again start by ordering the values:
1,3,4,6,7,23. Since n = 6 is even, we use any value be-
tween the n/2 = 6/2 = 3rd and the n/2+1 = 6/2+1 = 4th
observations, say 5.2.23

Mean The mean of a sample is simply the arithmetic av-
erage of its observations. For observations x1, x2, . . . , xn,
the sample mean is

mean(x1, . . . , xn) = x =
x1 + x2 + . . .+ xn

n
=

1
n

�

n
∑

i=1

x i

�

Using the same variable values as in the previous examples,
we obtain

1. mean(4, 6, 1, 3, 7) = 4+6+1+3+7
5 = 21

5 = 4.2≈ 4, which
is median(4, 6,1, 3,7).

2. mean(1,3,4,6,7,23) = 1+3+4+6+7+23
6 = 44

6 ≈ 7.3,
which is not as close to median(1,3, 4,6, 7,23) = 5.

Mean or Median? We see that the median and the mean
can differ. Which measure of centrality should be used to
report on the data?

Historically, the mean has been favoured as it is sup-
ported, theoretically, by the Central Limit Theorem, which
we will not be discussing here.

When the data distribution24 is roughly symmetric then
both values will be near one another.

But when the data distribution is skewed, then the
mean is pulled toward the long tail and as a result gives
a distorted view of the true centre.

Consequently, medians are generally used for house prices,
incomes, etc., since that description is robust against out-
liers and incorrect readings, whereas the mean is not.

22There are 2 observations below 4 (1,3) and 2 above 4 (6,7).
23There are 3 observations below 5.2 (1,3,4) and 3 above 5.2 (6,7,23).
24The overall shape taken by the variable’s values, taking into account

repeated observations. We have left the definition vague by design to
avoid getting lost in mathematical foundations, but consult any probability
textbook for details.

Figure 12. Spread σ of normal distributions [Wikipedia].

Standard Deviation The centrality measures provide an
idea as to where the variable’s values are “massed”.

The spread of a distribution, on the other hand, provides
an idea as to how disparate the variable observations can be.

The standard deviation (sd) is one measure of spread –
the higher the value, the more disparate observations tend
to be (see Figure 12). It is built from a fancy average of
the n variable values (x1, . . . , xn). If their mean is µ, then

sd=

√

√ (x1 −µ)2 + · · ·+ (x1 −µ)2

n
.

Using the same variable values as in the previous examples,
we obtain

sd(4,6, 1,3, 7) =

√

√ (4− 4.2)2 + · · ·+ (7− 4.2)2

5
≈ 2.14

and

sd(4, 6,1, 3,7, 23) =

√

√ (4− 7.3)2 + · · ·+ (23− 7.3)2

6
≈ 3.98.

The second of those is larger, and so we conclude that it
has more spread (which is explained by the presence of an
outlier, namely, the value 23).

The variance of a variable is another measure of dispersion;
it is simply the square of the standard deviation.

Quantiles Another way to provide information about the
spread of the data is with the help of centiles, deciles, or
quartiles.

The lower quartile Q1 of a column with n entries is a nu-
merical value which splits the ordered data into 2 unequal
subsets: 25% of the observations are below (or at) Q1, and
75% of the observations are above (or at) Q1.

Similarly, the upper quartile Q3 splits the ordered data
into 75% of the observations below (or at) Q3, and 25% of
the observations above (or at) Q3.
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The median can be interpreted as the middle quartile Q2
of the data, the minimum as Q0, and the maximum as Q4;
the vector (Q0,Q1,Q2,Q3,Q4) represents the 5-point sum-
mary of the data – it is used to describe a variable at a
glance.25

Centiles pi , where i = 0, . . . , 100, and deciles d j , where
j = 0, . . . , 10, run through different splitting percentages

p25 =Q1, p75 =Q3, p50 = d5 =Q2, etc.

The procedure to obtain quantiles is simple:

1. Sort the n observations {x1, x2, . . . , xn} in increasing
order y1 ≤ y2 ≤ . . . ≤ yn. The smallest y1 has rank
1 and the largest yn has rank n.

2. A value between the observations of ranks b `n4 c and
b `n4 c+ 1 is a quartile Q`, `= 1,2,3 (if n is odd, use
the formulation of the median for Q2).26

3. A value between the observations of ranks b jn
10 c and

b jn
10 c+ 1 is a decile d j , j = 1, . . . , 9 (if n is odd, use

the formulation of the median for d5).
4. A value between the observations of ranks b in

100 c and
b in

100 c+1 is a centile pi , i = 1, . . . , 99 (if n is odd, use
the formulation of the median for p50).

In practice, we usually take the average of the observations
of rank b kn

m c and b kn
m c+ 1 to obtain a unique m−quantile

of order k for the data, where k = 1, . . . , m− 1.27 Using
the same variable values as in the previous examples, we
obtain

Q1(1, 3,4, 6,7) =
yb5/4c + yb5/4c+1

2
=

y1 + y2

2
=

1+ 3
2
= 2

and

d7(1,3, 4,6, 7,23) =
yb7(6)/10c + yb7(6)/10c+1

2

=
y4 + y5

2
=

6+ 7
2
= 6.5.

Skewness When the data distribution is symmetric, then
the median is equal to the mean, and Q1 and Q3 are equidis-
tant from the median Q2:

Q3 −Q2 ≈Q2 −Q1.

In general, when Q3 −Q2�Q2 −Q1, the data distribution
is said to be skewed to the right; when Q3−Q2�Q2−Q1,
the distribution is skewed to the left.28

25The 5-pt summary is associated with the boxplot.
26The floor function b·c returns the largest integer smaller than or equal

to the input ·: b2.5c= 2, b−2.5c= −3, b3c= 3.
27Remember that the quantiles of order 0 and m are the minimum and

the maximum, respectively.
28In the illustrations on the previous page, at the bottom of the leftmost

column of text, the first distribution is skewed to the right while the third
is skewed to the left.

Other Measures In general, we can get a better under-
standing of a variable by looking at it through the lens of
multiple descriptive measures.

Other, more exotic measures of centrality and disper-
sion are sometimes used:

centrality: mid-range (Q0+Q4
2 ); tri-mean (Q1+2Q2+Q3

4 );
dispersion: range (Q4 − Q0), inter-quartile range
(Q3 −Q1).

In certain instances, specific values for the mean, vari-
ance, quantiles, skewness, etc. are interesting in their own
right;29 in other cases, the interest might arise from the
description of the overall shape of a dataset that they
provide, as this can suggest appropriate analytical and sta-
tistical models.

Correlation Consider the following n = 20 paired mea-
surements (x i , yi) of hydrocarbon levels (x) and pure oxy-
gen levels (y) in fuels:

x: 0.99 1.02 1.15 1.29 1.46 1.36 0.87 1.23 1.55 1.40
y: 90.01 89.05 91.43 93.74 96.73 94.45 87.59 91.77 99.42 93.65

x: 1.19 1.15 0.98 1.01 1.11 1.20 1.26 1.32 1.43 0.95
y: 93.54 92.52 90.56 89.54 89.85 90.39 93.25 93.41 94.98 87.33

In such situations, the goals are often to:

measure the strength of association between x and y ,
and

describe the relationship between x and y .

A graphical display provides an initial description of the
relationship.

It appears that the points lie around a hidden line!

29Polling/election scenarios, for instance.
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Figure 13. The gamut of correlation values (author unknown).

For paired data (x i , yi), i = 1, . . . , n, let x , y be the respec-
tive means of x , y; the correlation coefficient of x , y is

ρX Y =

∑n
i=1(x i − x)(yi − y)
q

∑n
i=1(x i − x)2
∑n

i=1(yi − y)2
=

Sx y
Æ

Sx x Sy y

.

The coefficient ρX Y is defined only if Sx x 6= 0 and Sy y 6= 0,
i.e. neither x i nor yi are constant. The variables x and y
are uncorrelated if ρX Y = 0 (or very small, in practice),
and correlated if ρX Y 6= 0 (or |ρX Y | is “large”, in practice).

For the hydrocarbon data, we have Sx y ≈ 10.18, Sx x ≈ 0.68,
Sy y ≈ 173.38, and ρX Y ≈

10.18p
0.68·173.38

≈ 0.94.

The coefficient of correlation has useful properties:

ρX Y is unaffected by changes of scale or origin. Adding
constants to x does not change x− x and multiplying
x and y by constants changes both the numerator
and denominator equally;
ρX Y is symmetric in x and y (i.e. ρX Y = ρY X ) and
−1 ≤ ρX Y ≤ 1; if ρX Y = ±1, then the observations
(x i , yi) all lie on a straight line with a positive (nega-
tive) slope (see Figure 13);
the sign of ρX Y reflects the trend of the points;
a high correlation coefficient value |ρX Y | does not
necessarily imply a causal relationship between the
two variables (but see Figure 15);
note that x and y can have a very strong non-linear
relationship without ρX Y reflecting it (−0.12 on the
left, 0.93 on the right, see Figure 14).

Figure 14. Non-linear relationships.

Figure 15. “Correlation doesn’t imply causation, but it
does waggle its eyebrows suggestively and gesture furtively
while mouthing ’look over there’.” xkcd.com, #552.

Linear Regression Regression analysis can be used to
describe the relationship between a predictor variable (or
regressor) X and a response variable Y . Assume that they
are related through the model

Y = β0 + β1X + ε,

where ε is a random error and β0,β1 are the regression
coefficients.

It is assumed that the mean of the random error is 0,30

and that the error’s variance σ2
ε = σ

2 is constant. Then the
model can be re-written as

E[Y |X ] = β0 + β1X .

Suppose that we have observations (x i , yi), i = 1, . . . , n so
that

yi = β0 + β1 x i + εi , i = 1, . . . , n.

The aim is to find estimators b0, b1 of the unknown pa-
rameters β0,β1, in order to obtain the estimated (fitted)
regression line

ŷi = b0 + b1 x i

The residual or error in predicting yi using ŷi is thus

ei = yi − ŷi = yi − b0 − b1 x i , i = 1, . . . , n.

How do we find the estimators? One approach is to use
the least square framework: find b0, b1 so that

∑n
i=1 e2

i is
as small as possible.

30We usually denote the mean operation with E, so that E[ε] = 0.
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Figure 16. Fitted line for the fuels data:
ŷ = 74.28+ 14.95x .

It is not too difficult to show that the least square estima-
tors are

b1 =
Sx y

Sx x
and b0 = y − b1 x .

For the fuels data, we have already found that

Sx y ≈ 10.18, Sx x ≈ 0.68, and Sy y = 173.38.

Thus, b1 =
10.18
0.68 = 14.95. Since

n= 20, x = 1.20, and y = 92.16,

we also have b0 = 92.16− 20(1.20) = 74.28.

Consequently, the fitted regression line is

ŷ = 74.28+ 14.95x .

The exact values of the estimators or the predictions may
or may not be of interest; contextually, perhaps the main
take-away is that as the hydrocarbon levels x increase, so
do the oxygen levels y , and vice-versa.31

A whole slew of questions can be answered using the theo-
retical apparatus of regression analysis:

How do we determine if the fitted line is a good model
for the data?
Can we estimate the variance σ2?
Can we predict the value of y given a specific x?
Can we predict likely values of y given a specific x?
Can we determine if the regression is significant?

The framework can also be extended to include non-linear
models, correlated variables, probability estimation, and/or
multivariate models; any book on statistical analysis con-
tains at least one chapter or two on the topic (see [11,39],
for instance).

We will not pursue the topic further except to say that
regression analysis is one of the arrows that every data
scientist should have in their quiver.

31Remember, this does not necessarily mean that the relationship be-
tween the levels is causal.

Figure 17. The trousers of classification.

7.5 Quantitative Methods
We provided a list of quantitative methods in Section 5.2;
we finish this document by expanding on a few of them.

Classification and Supervised Learning Tasks Classifica-
tion is one of the cornerstones of machine learning. Instead
of trying to predict the numerical value of a response vari-
able (as in regression), a classifier uses historical data32

to identify general patterns that could lead to observations
belonging to one of several pre-defined categories.

For instance, if a car insurance company only has resources
to investigate up to 20% of all filed claims, it could be useful
for them to predict:

whether a claim is likely to be fraudulent;
whether a customer is likely to commit fraud in the
near future;
whether an application for a policy is likely to result
in a fraudulent claim;
the amount by which a claim will be reduced if it is
fraudulent, etc.

Analysts and machine learners use a variety of different
techniques to carry this process out (see Figure 17 and
[2,3,36]), but the steps are always the same:

1. use training data to teach the classifier;
2. test/validate the classifier using hold-out data;
3. if it passes the test, use the classifier to classify novel

instances.

Some classifiers (such as deep learning neural nets) are
‘black boxes’: they might be very good at classification, but
they are not explainable.

In some instances, that is an acceptable side effect of the
process, in others, not so much – if an individual is refused
refugee status, say, they might rightly want to know why.

32This training data usually consists of a randomly selected subset of
the labeled (response) data.
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Unsupervised Learning Techniques The hope of artificial
intelligence is that intelligent behaviours will eventually be
able to be automated. For the time being, however, that is
still very much a work in progress.

But one of the challenges in that process is that not ev-
ery intelligent behaviour arises from a supervised process.

Classification, for instance, is the prototypical supervised
task: can we learn from historical/training examples? It
seems like a decent approach to learning: evidence should
drive the process.

There are limitations: it is difficult to make a concep-
tual leap solely on the basis of training data,33 if only be-
cause the training data data might not be representative of
the system, or because the learner target task is too narrow.

In unsupervised learning, we learn without examples, based
solely on what is found in the data. There is no specific
question to answer (in the classification sense), other than:
what can we learn from the data? Typical unsupervised
learning tasks include:

clustering (novel categories);
association rules mining;
recommender systems, etc.

For instance, an online bookstore might want to make rec-
ommendations to customers concerning additional items
to browse (and hopefully purchase) based on their buying
patterns in prior transactions, the similarity between books,
and the similarity between customer segments.

But what are those patterns?
How do we measure similarity?
What are the customer segments?
Can any of that information be used to create promo-
tional bundles?

The lack of a specific target makes unsupervised learning
much more difficult than supervised learning, as does the
challenges of validating the results.

This contributes to the proliferation of clustering algo-
rithms and cluster quality metrics [3,4,76].

Other Machine Learning Tasks Of course, this scratches
but a miniscule part part of the machine learning ecosys-
tem. Other common tasks include [61]:

profiling and behaviour description;
link prediction;
data reduction;
influence/causal modeling, etc.

to say nothing of more sophisticated learning frameworks
(semi-supervised, reinforcement [71], deep learning [32],
etc.).

33If our teaching experience is anything to go by...

Time Series Analysis and Process Monitoring Processes
are often subject to variability:

variability due the cumulative effect of many small,
essentially unavoidable causes (a process that only
operates with such common causes is said to be in
(statistical) control;
variability due to special causes, such as improperly
adjusted machines, poorly trained operators, defec-
tive materials, etc. (the variability is typically much
larger for special causes, and such processes are said
to be out of (statistical) control.

The aim of statistical process monitoring (SPM) is to iden-
tify occurrence of special causes. This is often done via time
series analysis.

Consider n observations {x1, . . . , xn} arising from some col-
lection of processes. In practice, the index i is often a time
index or a location index, i.e., the x i are observed in se-
quence or in regions.34

The processes that generate the observations could change
from one time/location to the next due to:

external factors (war, pandemic, regime change, elec-
tion results, etc.), or
internal factors (policy changes, modification of man-
ufacturing process, etc.).

The mean and standard deviation might not provide a useful
summary of the situation.

To get a sense of what is going on with the data (and
the associated system), it could prove preferable to plot the
data in the order that it has been collected (or according
to geographical regions, or both).

The horizontal coordinate represents:

the time of collection t (order, day, week, quarter,
year, etc.), or
the location i (country, province, city, branch, etc.).

The vertical coordinate represents the observations of in-
terest x t or x i (see Figure 19 for an example).

In process monitoring terms, we may be able to identify
potential special causes by identifying trend breaks, cycles
discontinuities, or level shifts in time series.

For instance, consider the three time series of Figure 18. Is
any action necessary?

In the first example (left), there are occasional drops
in sales from one year to the next, but the upward trend
clear is clear. We see the importance of considering the
full time series; if only the last two points are presented to
stockholders, say, they might conclude that action is needed,
whereas the whole series paints a more positive outlook.

34In the first situation, the observations form a time series.
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Figure 18. Sales (in 10, 000$) for 3 different products – years (left), quarters (middle), weeks (right)

Figure 19. Real S&P stock price index (red), earnings
(blue), and dividends (green), together with interest rates
(black), from 1871 to 2009.

In the second case (middle), there is a cyclic effect with
increases from Q1 to Q2 and from Q2 to Q3, but decreases
from Q3 to Q4 and from Q4 to Q1. Overall, we also see an
upward trend. The presence of regular patterns is a positive
development.

Finally, in the last example (right), something clearly
happened after the tenth week, causing a trend level shift.
Whether it is due to internal or external factors depends
on the context, which we do not have at our disposal, but
some action certainly seems to be needed.

We might also be interested in using historical data to fore-
cast the future behaviour of the variable. This is similar to
the familiar analysis goals of:

finding patterns in the data, and
creating a (mathematical) model that captures the
essence of these patterns.

Time series patterns can be quite complex and must often
be broken down into multiple component models (trend,
seasonal, irregular, etc.).

Typically, this can be achieved with fancy analysis meth-
ods, but it is not a simple topic, in general. Thankfully,
there are software libraries that can help.

Anomaly Detection The special points from process mon-
itoring are anomalous in the sense that something unex-
pected happens there, something that changes the nature
of the data pre- and post-break.

In a more general context, anomalous observations
are those that are atypical or unlikely.

From an analytical perspective, anomaly detection can
be approached using supervised, unsupervised, or conven-
tional statistical methods.

The discipline is rich and vibrant (and the search for
anomalies can end up being an arms race against the “bad
guys”), but it is definitely one for which analysts should
heed contextual understanding – blind analysis leads to
blind alleys!35

There is a lot more to say on the topic of data analysis –
we will delve into various topics in detail in subsequent
chapters. Strap yourselves in, we’re going for a ride!
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