
Introduction to Modern Data Analysis

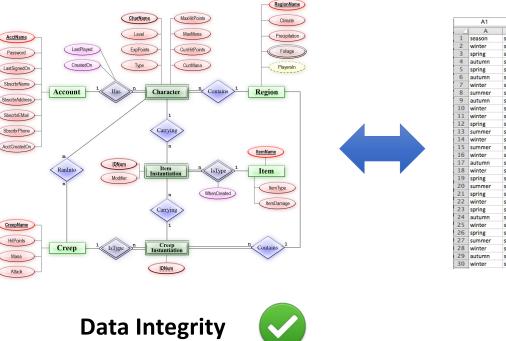
15

PART 2A

Structuring Data for Analysis

Q3

24


Q2

1,000

Database vs Flat File

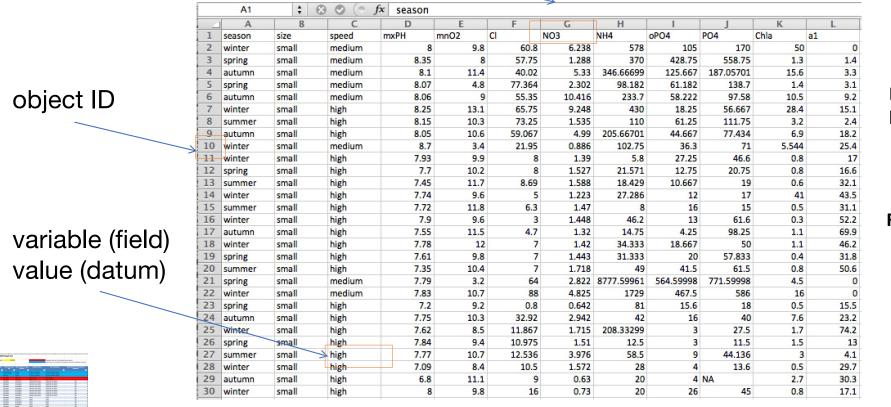
Database

Flat File

2	A	B	C	D	E	F	G	H	1	J	K	L
1	season	size	speed	mxPH	mnO2	CI	NO3	NH4	oPO4	PO4	Chla	a1
2	winter	small	medium	8	9.8	60.8	6.238	578	105	170	50	0
3	spring	small	medium	8.35	8	57.75	1.288	370	428.75	558.75	1.3	1.4
4	autumn	small	medium	8.1	11.4	40.02	5.33	346.66699	125.667	187.05701	15.6	3.3
5	spring	small	medium	8.07	4.8	77.364	2.302	98.182	61.182	138.7	1.4	3.1
6	autumn	small	medium	8.06	9	55.35	10.416	233.7	58.222	97.58	10.5	9.2
7	winter	small	high	8.25	13.1	65.75	9.248	430	18.25	56.667	28.4	15.1
8	summer	small	high	8.15	10.3	73.25	1.535	110	61.25	111.75	3.2	2.4
9	autumn	small	high	8.05	10.6	59.067	4.99	205.66701	44.667	77.434	6.9	18.2
10	winter	small	medium	8.7	3.4	21.95	0.886	102.75	36.3	71	5.544	25.4
11	winter	small	high	7.93	9.9	8	1.39	5.8	27.25	46.6	0.8	17
12	spring	small	high	7.7	10.2	8	1.527	21.571	12.75	20.75	0.8	16.6
13	summer	small	high	7.45	11.7	8.69	1.588	18.429	10.667	19	0.6	32.1
14	winter	small	high	7.74	9.6	5	1.223	27.286	12	17	41	43.5
15	summer	small	high	7.72	11.8	6.3	1.47	8	16	15	0.5	31.1
16	winter	small	high	7.9	9.6	3	1.448	46.2	13	61.6	0.3	52.2
17	autumn	small	high	7.55	11.5	4.7	1.32	14.75	4.25	98.25	1.1	69.9
18	winter	small	high	7.78	12	7	1.42	34.333	18.667	50	1.1	46.2
19	spring	small	high	7.61	9.8	7	1.443	31.333	20	57.833	0.4	31.8
20	summer	small	high	7.35	10.4	7	1.718	49	41.5	61.5	0.8	50.6
21	spring	small	medium	7.79	3.2	64	2.822	8777.59961	564.59998	771.59998	4.5	0
22	winter	small	medium	7.83	10.7	88	4.825	1729	467.5	586	16	0
23	spring	small	high	7.2	9.2	0.8	0.642	81	15.6	18	0.5	15.5
24	autumn	small	high	7.75	10.3	32.92	2.942	42	16	40	7.6	23.2
25	winter	small	high	7.62	8.5	11.867	1.715	208.33299	3	27.5	1.7	74.2
26	spring	small	high	7.84	9.4	10.975	1.51	12.5	3	11.5	1.5	13
27	summer	small	high	7.77	10.7	12.536	3.976	58.5	9	44.136	3	4.1
28	winter	small	high	7.09	8.4	10.5	1.572	28	4	13.6	0.5	29.7
29	autumn	small	high	6.8	11.1	9	0.63	20	4	NA	2.7	30.3
30	winter	small	high	8	9.8	16	0.73	20	26	45	0.8	17.1

Rows vs Columns

Columns contain attributes (variables, fields, etc.)


÷ fx season A1 8 0 (= A В D G н K C E oPO4 Chla 1 season size speed mxPH. mnO2 CI NO3 NH4 **PO4** a1 2 60.8 6.238 578 105 170 50 winter small medium 8 9.8 0 3 57.75 1.288 370 428.75 558.75 1.3 1.4 spring small medium 8.35 8 40.02 5.33 346.66699 125.667 187.05701 15.6 3.3 4 autumn small medium 8.1 11.4 5 8.07 4.8 77.364 2.302 98.182 61.182 138.7 1.4 3.1 spring small medium 8.06 9 55.35 10.416 233.7 58.222 97.58 10.5 9.2 6 autumn small medium 7 8.25 9.248 430 18.25 28.4 15.1 winter 13.1 65.75 56.667 small high 8 summer small high 8.15 10.3 73.25 1.535 110 61.25 111.75 3.2 2.4 9 high 8.05 10.6 59.067 4.99 205.66701 44.667 77.434 6.9 18.2 autumn small 10 winter small medium 8.7 3.4 21.95 0.886 102.75 36.3 71 5.544 25.4 5.8 27.25 0.8 17 11 winter 7.93 9.9 8 1.39 46.6 small high 7.7 8 1.527 21.571 12.75 20.75 0.8 16.6 12 spring small high 10.2 13 7.45 11.7 8.69 1.588 18,429 10.667 19 0.6 32.1 summer small high 14 7.74 1.223 27.286 43.5 winter small high 9.6 5 12 17 41 15 summer small high 7.72 11.8 6.3 1.47 8 16 15 0.5 31.1 7.9 1.448 46.2 0.3 16 winter 9.6 3 13 61.6 52.2 small high 17 7.55 11.5 4.7 1.32 14.75 4.25 98.25 1.1 69.9 autumn small high 46.2 18 winter small high 7.78 12 7 1.42 34.333 18.667 50 1.1 7 19 spring small high 7.61 9.8 1.443 31.333 20 57.833 0.4 31.8 7.35 7 41.5 0.8 50.6 20 10.4 1.718 49 61.5 summer small high 21 spring smal medium 7.79 3.2 64 2.822 8777.59961 564.59998 771.59998 4.5 0 22 winter medium 7.83 10.7 88 4.825 1729 467.5 586 16 0 small 23 7.2 spring small high 9.2 0.8 0.642 81 15.6 18 0.5 15.5 7.75 42 24 autumn 10.3 32.92 2.942 16 40 7.6 23.2 small high 25 7.62 8.5 11.867 1.715 208.33299 3 27.5 1.7 74.2 winter smal high 7.84 9.4 10.975 1.51 12.5 3 11.5 1.5 13 26 spring small high 27 summer high 7.77 10.7 12.536 3.976 58.5 9 44.136 3 4.1 small 28 7.09 8.4 10.5 1.572 28 4 13.6 0.5 29.7 winter small high 11.1 20 29 autumn small high 6.8 9 0.63 4 NA 2.7 30.3 30 winter small high 8 9.8 16 0.73 20 26 45 0.8 17.1

Rows contain objects*

Rows vs Columns

variable (field) name

Recordkeeping

Research

Dataset Shape and Focus

Research: many rows, few columns

	A1	÷ 6	3 📀 (*)	fx	season								
	A	В	С		D	E	F	G	Н	1	J	K	L
1	season	size	speed	m	(PH	mnO2	CI	NO3	NH4	oPO4	PO4		a1
2	winter	small	medium		8	9.8	60.8	6.238	578	105	170	50	(
3	spring	small	medium		8.35	8	57.75	1.288	370	428.75	558.75	1.3	1.4
4	autumn	small	medium		8.1	11.4	40.02	5.33	346.66699	125.667	187.05701	15.6	3.3
5	spring	small	medium		8 1	4.8	77.364	2.302	98.182	61.182	138.7	1.4	3.:
6	autumn	small	medium										9.3
7	winter	small	high			Recor	dkoor	hing n	nanvo	nlum	ns fer	w rows	
8	summer	small	high			necoi	uncer	<u>8</u> . I			13,10		<u>ر</u>
9	autumn	small	high		6	-							18.
10	winter	small	medium		8.,	3.4	21.95	0.886	102.75	36.3	71	5.544	25.4
11	winter	small	high		7.93	9.9	8	1.39	5.8	27.25	46.6	0.8	1
12	spring	small	high		7.7	10.2	8	1.527	21.571	12.75	20.75	0.8	16.
3	summer	small	high		7.45	11.7	8.69	1.588	18.429	10.667	19	0.6	32.
4	winter	small	high		7.74	9.6	5	1.223	27.286	12	17	41	43.
15	summer	small	high		7.72	11.8	6.3	1.47	8	16	15	0.5	31.
16	winter	small	high		7.9	9.6	3	1.448	46.2	13	61.6	0.3	52.3
17	autumn	small	high		7.55	11.5	4.7	1.32	14.75	4.25	98.25	1.1	69.9
18	winter	small	high		7.78	12	7	1.42	34.333	18.667	50	1.1	46.3
.9	spring	small	high		7.61	9.8	7	1.443	31.333	20	57.833	0.4	31.4
20	summer	small	high		7.35	10.4	7	1.718	49	41.5	61.5	0.8	50.
21	spring	small	medium		7.79	3.2	64	2.822	8777.59961	564.59998	771.59998	4.5	
2	winter	small	medium		7.83	10.7	88	4.825	1729	467.5	586	16	
3	spring	small	high		7.2	9.2	0.8	0.642	81	15.6	18	0.5	15.
4	autumn	small	high		7.75	10.3	32.92	2.942	42	16	40	7.6	23.
5	winter	small	high		7.62	8.5	11.867	1.715	208.33299	3	27.5	1.7	74.
6	spring	small	high		7.84	9.4	10.975	1.51	12.5	3	11.5	1.5	1
7	summer	small	high		7.77	10.7	12.536	3.976	58.5	9	44.136	3	4.1
8	winter		high		7.09	8.4	10.5	1.572	28	4	13.6	0.5	29.
-	autumn	small	high		6.8	11.1	9	0.63	20	4	NA	2.7	30.3
29													

Recordkeeping

Research

Data Preparation for Analysis

Validating, Cleaning, Augmenting, Transforming

Data Preparation

- Data validation + verification
- Data cleaning
- Data transformation
- (Data Exploration?)

Data Preparation

- Data validation + verification
- Data cleaning
- Data transformation
- (Data Exploration?)

Each of these steps may themselves involve data analysis and other techniques

Data Validation + Verification

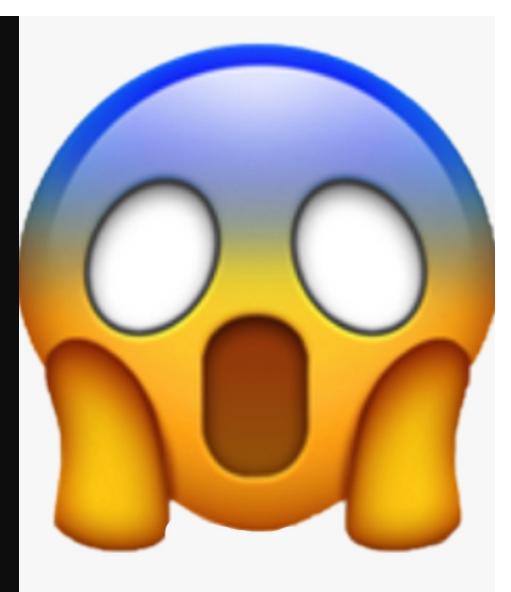
- Verification: Confirm that the data is correct relative to the dataset
- Validation: Confirm that the data correctly represents the objects
- We determine data cleaning requirements based on the results of our data verification and validation

[3, 10.43, ROUn, golden delicious]

Data Cleaning

A question for you: **should you clean before you do exploratory analysis?**

S p is

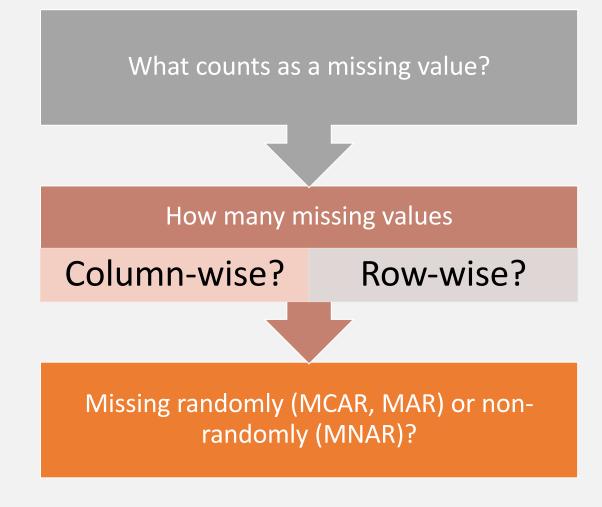

Some possible issues: Character encodings Missing Data Data collection or entry errors Systematic errors

The Curse of Free Text Fields

• The curse of categorical data is made much worse by the curse of free text fields

• If you have a field that is supposed to be categorical but it is a free text field, it is no longer categorical

• You can use machine learning techniques to help to some extent, but this is a case where an ounce or prevention is worth a pound of cure.



Data Cleaning Bingo

random missing values	outliers	values outside of expected range - numeric	factors incorrectly/iconsiste ntly coded	date/time values in multiple formats
impossible numeric values	leading or trailing white space	badly formatted date/time values	non-random missing values	logical inconsistencies across fields
characters in numeric field	values outside of expected range - date/time	expected range - DCB! null, 0,not available,		possible factors missing
multiple symbols used for missing values	???	fields incorrectly separated in row	blank fields	logical iconsistencies within field
entire blank rows	character encoding issues	duplicate value in unique field	non-factor values in factor	numeric values in character field

			denotes had be also added (accessed))					

Cleaning: Missing Values

Dealing with Missing Values

If percentage is very low (e.g. <= 5%) you might be able to just ignore those rows*

You can try to detect if the data is MNAR instead of MCAR/MAR using statistical tests

If missing values are MCAR/MAR you might be able to ignore them

You might be able to 'impute' the data using statistical modelling techniques

MCAR, MAR, MNAR

Missing Completely At Random (MCAR): Genuinely no pattern to the missing values (think "due to sunspots"

Missing At Random (MAR): Missing values are correlated with another variable you also have.

Missing Not At Random (MNAR): Missing values are correlated with another variable you **don't** have

Interesting example – fields where people can select "Choose not to reply"

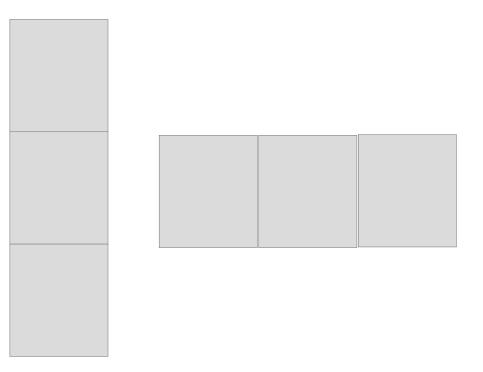
When does imputation make sense?

Cleaning: Other Data Entry Errors

Syntax errors: Capitalization, misspellings

Heaping: people tend to round off measurement values (e.g. hours worked). This results in the data showing up in 'heaps'

Collector bias, sensor error: recording what is expected rather than what is, dealing with badly calibrated sensor


Transforming Data:

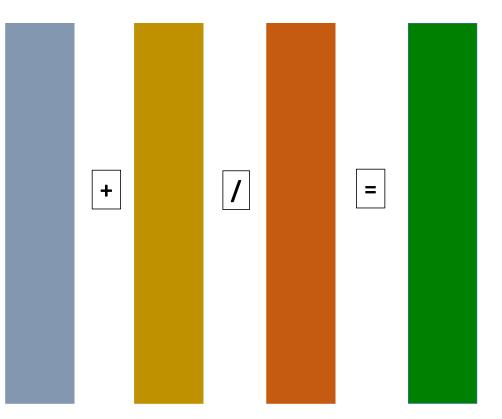
- Changing focus
- Summarizing, condensing
- Reshaping
- Adding complexity and abstraction (metrics)

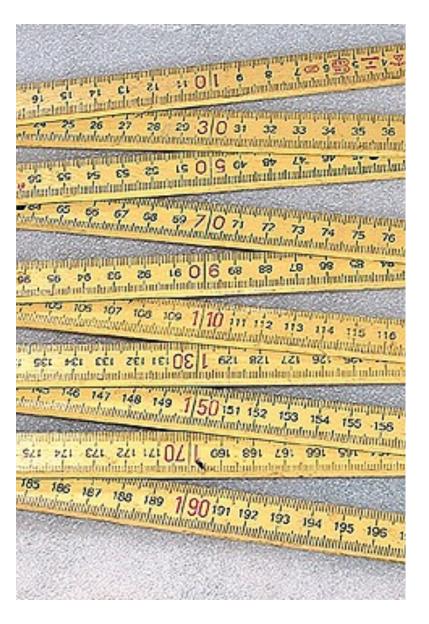
Long vs Wide Format

- A flat file with the same data can be structured in two shapes:
 - Long (Narrow) (Tall)(Stacked)
 - Wide (Unstacked)
- Different analysis *algorithms* require particular shapes
- Presentation of data

Long Format to Wide Format

		Group#	Group-Size	Status	-Check-Time	←─── `	variable name
		1	14		START		
		1	12	Ν	VIDDLE		
Ιο	ng	1	13		END		
	•	2	20 START		START	<u>ا</u> ا	ariable values
	2		5	MIDDLE			
			6		END		
variable nam	ne	3	6		START		
+ values	3		8	Ν	VIDDLE		
	<u> </u>	3	10		END		
		~					
	Group#	Group-Size-START	Group-Size-MI	DDLE	DDLE Group-Siz		
wide	1	14	12		13		
WILLE	2	20	5		6		
	3	6	8		10		

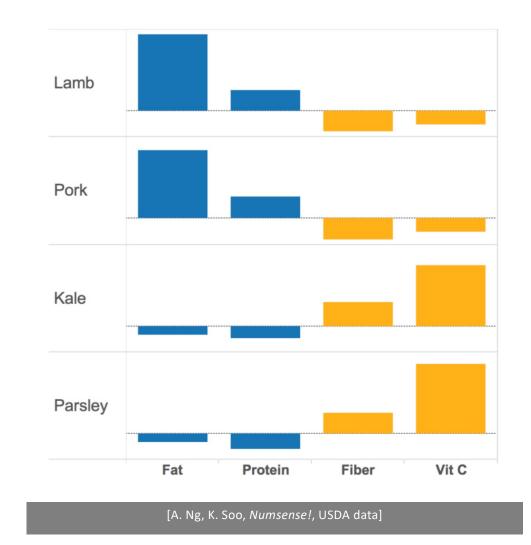

Reshaping Data: Tools


- Reshaping your flat file by hand (or in Excel) can be *extremely* tedious! And error prone!
- This is where tools like R can be extremely helpful and time saving
- Plus automation. Resist the 'manual' short cut!

Adding Complexity: Metrics

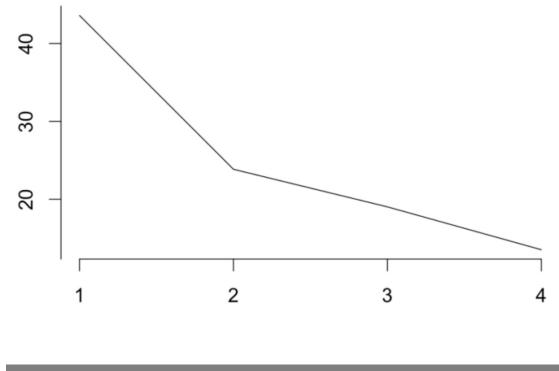
- Measures:
 - Concrete properties
 - come from taking measurements
- Metrics:
 - Built up out of measures
 - Quantifies a more abstract concept

Metrics: Good, Bad, Ugly


- "When a measure becomes a target, it ceases to be a good measure" Goodhart's Law
- "The more any quantitative <u>social indicator</u> is used for social decision-making, the more subject it will be to corruption pressures and the more apt it will be to distort and corrupt the social processes it is intended to monitor." *Campbell's Law*

(Surgeons Example)

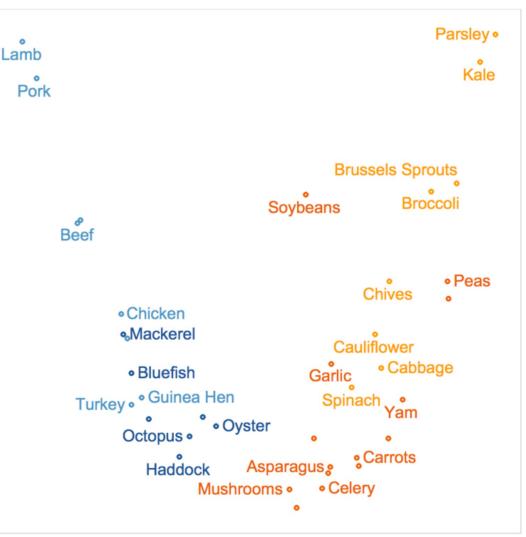
Data Reduction: Principal Components Analysis (PCA)*


- In this example, presence of nutrients appears to be correlated among food items.
- In the (small) sample consisting of Lamb, Pork, Kale, and Parsley, *Fat* and *Protein* levels seem in step, as do *Fiber* and *Vitamin C*.
- In a larger dataset, the correlations are r = 0.56 and r = 0.57.
- How much could 2 variables explain?

* For categorical variables see also: MCA, FAMD (https://drbulu.github.io/blog/factorial_methods_part1_overview/)

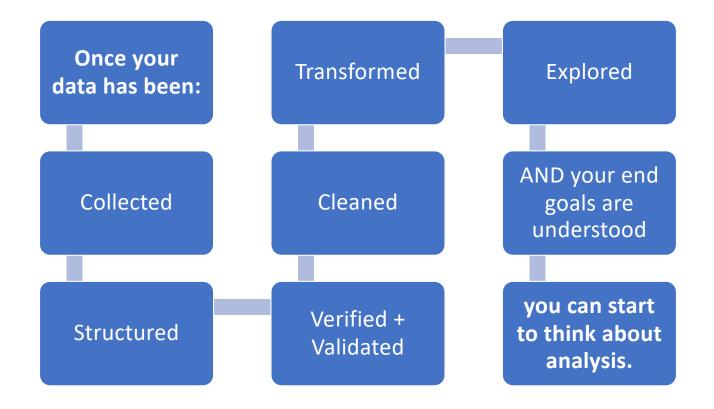
Retaining Principal Components

- The **proportion of the spread** in the data which can be explained by each principal component is shown in the scree plot.
- How many PCs are retained in the analysis?
 - keep the PCs where the cumulative proportion is below some threshold
 - keep the PCs leading to a kink
- Here, 2 PCs \approx 68% of the spread.


[A. Ng, K. Soo, Numsense!, USDA data]

PC₁differentiates meats from vegetables

 PC_2


PC₂differentiates **subcategories** within meats (using *Fat*) and vegetables (using *Vitamin C*).

- Meats are concentrated on the left (low PC₁ values).
- Vegetables are concentrated on the right (high PC₁ values).
- Seafood has lower Fat content (low PC₂ values) and is concentrated at the bottom.
- Non-leafy veggies have lower Vitamin C content (low PC₂ values) and are also bunched at the bottom.

[A. Ng, K. Soo, Numsense!, USDA data]

Are we there yet?

