Introduction to Modern Data
Analysis PART 2B

Outline For Analysis

Machine Learning vs Statistics vs Business Intelligence vs ...
Business Intelligence

- Data Analytics
- Comparison
- Relationships

Statistics

- A tools discussion
- Modern Statistics Controversies and Conversations
- Some Relevant Statistical Concepts and Techniques

Machine Learning/AI

- A quick tools discussion
- Relevant Techniques Overview
- Supervised, Unsupervised, Reinforcement
- Text Mining

BI vs ML/AI vs STATISTICS/DS vs OTHER

Business Intelligence

- Idea has been around for a while but term was popularized by Dresden (1989). Think data warehouses + data reports.
- Uses whatever tools and techniques come in handy to provide an understanding of (business) operations (past, present, future)

Artificial Intelligence/Machine Learning

- Research project that tries to create autonomous intelligent machines that's the end goal.
- Machine learning is a type of artificial intelligence that originally focused on finding ways for machines gathering sensor data to learn from this sensor data

Statistics (Data Science?)

- The study and theory of using data to generate information and knowledge
- Typically a focus on inference from a sample of data to a population
- Data Science is maybe just applied statistics?

Other Analysis Techniques: simulations, network analysis, mathematical models
Parallel evolution of techniques across these disciplines!

ML and
 Statistics Different Approaches

Practically speaking:

- Machine learning:
- is about the output. For example, many ML techniques focus on prediction, so in these cases the output is a specific prediction.
- is typically not explanation focused. The attitude is: If it works it works!
- Underlying mechanisms of both the ML model and the system itself are irrelevant
- Statistics:
- Is about understanding relationships and patterns in data
- Isn't directly explanation focused, in terms of mechanics, but can shed light on connections and say "focus here"
- Makes a serious attempt to be rigorous - wants to be a source of true information and knowledge, and quantify level of certainty

In reality, these days people typically combine both approaches.

Business/Organization Intelligence

Data Analytics

- Data analytics is sometimes used as an umbrella term for analysis in a business intelligence context.
- Importantly, this particular umbrella includes analysis focusing on:
- Raw values - comparisons, part whole relationships
- Summaries and roll ups
- Measures and Metrics
- With BI the process of inference is often less formal or structured - often driven or supported by data visualization
- Caution required, but not necessarily bad, when scope is kept in mind
- Still evidence-based, data-driven!

Desktop Data Analysis

- Business Intelligence needs are pushing the development of desktop data analysis tools and pipelines:
- PowerBI
- Tableau
- Democratization of data + increase in data/digital literacy
- This is likely going to push organizations forward as well
- Not necessarily a substitute for 'industrial' or 'professional' data pipelines

BI Gateway to AI/ML

- To some extent getting a solid professional/industrial BI pipeline up and running is a major stepping stone in an organization
- BUT - the data architecture and tools you need for $\mathrm{Al} / \mathrm{ML} / \mathrm{DS}$ analysis may not be the same as those for BI
- You will MAY need to redesign some parts of your BI pipeline to support AI/ML/DS
- In particular - your database architecture: Data Lakes vs DataMart vs NoSQL

Data Analytics

Analysis in a Business Context

simple patterns = simple analysis

(and that's okay!)

Analysis: Comparison

Spending Last Year and This Year
$\$ 35,000.00$

$\$ 35,000.00$

Spending Last Year and This Year
$\$ 35,000.00$

Percentage Over Budget This Year

Data Collection Data Storage

Analysis of Relationships

Percentage Over Budget (average)

Adding a Trendline

Percentage Over Budget (average)

Adding a Better Trendline

How To Quantify Trendline Fit?

- We could use something called the Mean Absolute Error (MAE)*:
- Determine the distance of the points to the line.
- Take the absolute values
- Add them up and take the average (divide by number of points)
- This give a measure of how well the model fits
- (Hint: Just use some R code, which will do this sort of thing for you automatically!)

*There are more sophisticated strategies for measuring fit, but this as a starting point.

Can we prove which is the better trendline?

MAE $=5.25$

Percentage Over Budget (average)

MAE $=0.56$

Consider A Categorical Hypothesis

- Suppose we have the following hypothesis:
- Across all departments, there is the same percentage of managers and nonmanagers
- Within any department, this percentage is 20% managers and 80% nonmanagers
- (Maybe we want to take this even further and say this is what the breakdown should be like...)

		Corporate Services	
Operations	Sales	20%	
Managers	20%	20%	20%
Non-			
Managers	80%	80%	80%

			Corporate Services		
Operations	Sales				
Managers	8	3	14	27	
Non-					
Managers	32	12	56	108	
	40	15	70	135	

	Operations	Sales	Corporate Services	Total
Managers	20\%	20\%	20\%	20\%
Non-Managers	80\%	80\%	80\%	80\%

	Operations	Sales	Corporate Services	Total
Managers	20\%	88\%	14\%	30\%
Non-Managers	80\%	12\%	86\%	70\%

Results: Anticipated vs Actual

