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1. Introduction

In [2], we have provided a (basically) math-free general
overview of machine learning.

In this document, we present an introductory mathemat-
ical treatment of the discipline (with a focus on supervised
learning), starting with its underlying formalism.

1.1 Statistical Learning
Statistical learning is a series of procedures and approaches
that allows analysts to tackle problems such as:

identifying risk factors associated to breast/prostate
cancer;
predicting whether a patient will have a second, fatal
heart attack within 30 days of the first on the basis
of demographics, diet, clinical measurements, etc.;
establishing the relationship between salary and de-
mographic information in population survey data;
predicting the yearly inflation rate using various indi-
cators, etc.

Statistical learning tasks are typically divided into 2 main
classes: supervised learning and unsupervised learning.1

1.1.1 Supervised Learning Framework
In this environment, the outcome (response, target, depen-
dent variable, etc.) is denoted by Y , and the vector of p
predictors (features) by ~X = (X1, . . . , X p).

If Y is quantitative (price, height, etc.), then the prob-
lem of predicting Y in terms of X is a regression task; if
X takes on values in a finite unordered set (survived/died,
colours, vegetation types, etc.), it is a classification task.

1There are other types, such as semi-supervised or reinforcement learn-
ing, but these are topics for future documents.
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This is typically achieved with the use of training data,
which is to say observations or instances

obs. predictors resp.
1 x1,1 · · · x1,p y1
...

...
...

...
N xN ,1 · · · xN ,p yN

which we often denote by [X | Y] (the column denoting the
observation IDs is dropped).

The objectives of supervised learning are usually to:

accurately predict unseen test cases;
understand which inputs affect the outcomes (if any),
and how, and/or
assess the quality of predictions and/or inferences
made on the basis of the training data.

1.1.2 Unsupervised Learning
In this environment, there are no outcome variables, only
the features on a set of observations X.2 The obectives are
much more vague – analysts could seek to:

find sets of features (variables) that behave similarly
across observations;
find combinations of features with the most variation;
find natural groups of similar observations, etc.

A spotlight is shone on such methods in [1,27].

1.1.3 Statistical Learning vs. Machine Learning
The term “statistical learning” is not used frequently in prac-
tice (except by mathematicians and statisticians, perhaps);
the current tendency is to speak of machine learning.

If a distinction must be made, we could argue that:

statistical learning arises from statistical-like models,
and the emphasis is usually placed on interpretabil-
ity, precision, and uncertainty, whereas
machine learning arise from artificial intelligence
studies, with emphasis on large scale applications
and prediction accuracy.

The dividing line between the terms is blurry – the vocabu-
lary used by practitioners mostly betrays their educational
backgrounds (but see [22] for another take on this).

1.1.4 Motivating Example
Throughout, we will illustrate the concepts and notions via
theGapminder dataset, which records socio-demographic
information relating to the planet’s nations, ranging from
1960 to 2011 [23,24].

We will be interested in determining if there is a link
between life expectancy, at various moments in time, and
the rest of the predictors.

2The response variable Y that was segregated away from X in the
supervised learning case could now be one of the variables in X.

The dataset contains 7139 observations of 9 columns:

a country × year identifier (2 variables, i and X1);
a region and continent pair of categorical predictors
(2 variables, X2 and X3);
four numerical predictors: population X4, infant mor-
tality X5, fertility X6, gross domestic product in 1999
dollars X7, and
life expectancy Y , the numerical response.

In other words, we will be looking for models of the form

Y = f (X1, . . . , X7) + ε ≡ f ( ~X ) + ε,

where f is the systematic component of Y explained by X ,
and ε is the random error term, which accounts for mea-
surement errors and other discrepancies.

1.1.5 Systematic Component and Regression Function
It is the systematic component that is used for predictions
and inferences.

As long as f is “good”, we can:

make predictions for the response Y at new points
~X = ~x;
understand which features of ~X = (X1, . . . , X p) are
important to explain the variation in Y , and
depending on the complexity of f , understand the
effect of each feature X j on Y .

Imagine a model with one predictor X and a target Y , with
systematic component f , so that

Y = f (X ) + ε.

How can we find the ideal f ?

What is a good value of f (−2), say?

2 P.Boily (2021)
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Ideally, we would like to have f (−2) = E[Y | X = −2].3

For any x in the range of X , the function

f (x) = E[Y | X = x]

is the regression function of Y on X .

In the general setting with p predictors, the regression
function is

f (~x) = f (x1, . . . , xp) = E[Y | X1 = x1, . . . , X p = xp]

= E[Y | ~X = ~x].

It is optimal in the sense that the regression function mini-
mizes the average square deviation from the response vari-
able, that is to say,

f = argg min
�

E[(Y − g( ~X ))2 | ~X = ~x]
	

.

The term
ε = ε ~X = Y − f ( ~X )

is the irreducible error of the regression. Typically, ε ~X 6= 0
for all ~X , since, even when f is known exactly, there will
still be some uncertainty in the predictions due to some
noise-generating mechanism in the “real world”.

If f̂ is any estimate of the regression function f ,4 then

E[(Y − Ŷ )2 | ~X = ~x] = E[( f ( ~X ) + ε − f ( ~X ))2 | ~X = ~x]

= [ f ( ~X )− f̂ ( ~X )]2
︸ ︷︷ ︸

reducible

+ Var(ε)
︸ ︷︷ ︸

irreducible

.

Since the irreducible component is not a property of the
estimate f̂ , the objective of minimizing E[(Y−Ŷ )2] can only
be achieved by working through the reducible component.

When we speak of learning a model, we mean that we
use the training data to find an estimate f of f̂ that mini-
mizes this reducible component, in some way.

1.1.6 Estimating the Regression Function
In theory, we know that the regression function is

f (~x) = E[Y | ~X = ~x];

in practice, however, there might be too few (or even no)
observations at ~X = ~x to trust the estimate provided by the
sample mean.

One solution is to approximate the expectation by a nearest
neighbour average

f̂ (~x) = Avg{Y | ~X ∈ N(~x)},

where N(~x) is a neighbourhood of ~x .
3Why?
4In particular, if Ŷ = f ( ~X ), then Ŷ ≈ Y = f ( ~X ) + ε).

In general, this approach works reasonably well when p is
“small” (p ≤ 4?) and N is “large”, but it fails when p is too
large because of the curse of dimensionality.

The problem is that nearest neighbours are usually far
when p is large. Indeed, if N(~x) is defined as the nearest 5%
of observations to ~x , say5, then we need to leave the “local”
neighbourhood of ~x to build N(~x), which could compromise
the quality of f̂ (~x) as an approximation to f (~x).

We provide more details in Section 5, but this is a topic
about which it is worth being well-read (see [10] for a for-
mal treatment).

The various statistical learning methods attempt to provide
estimates of the regression function by minimizing the re-
ducible component through parametric or non-parametric
approaches.6

For instance, the classical linear regression approach is
parametric (see Section 2.1): it assumes that the true re-
gression function f is linear and suggests the estimate

fL(~x) = β0 + β1 x1 + · · ·+ βp xp.

The objective, in this case, is to learn the p+ 1 parameters
β0,β1, . . . ,βp with the help of the training data.

In practice, this assumption is almost never correct, but
it often provides an interpretable7 approximation to the
true regression function f .

As an example, if the true fit of the motivating example was

life expectancy= f (fertility, infant mortality, gdp) + ε,
5The proportion must be large enough to bring the variance down.
6In this context, parametric means that assumptions are made about

the form of the regression function f , non-parametric that no such as-
sumptions are made.

7We will revisit this concept at a later stage.
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say, then the linear regression approach would assume that

fL(fertility, infant mortality, gdp) = β0 + β1 · fertility

+ β2 · infant mortality+ β3 · gdp.

The main advantages of the linear model are that it is in-
terpretable and that it is easier to learn p+ 1 parameters
than it is to learn a whole function f .

On the flip side, as previously mentioned, the linear
model does not usually match the true regression func-
tion f ; if fL 6≈ f , then predictions will suffer.

We could decide to consider more complex functions in
order to get better estimates (and thus better prediction
accuracy), but this comes at a cost – the resulting functions
are more difficult to learn and they tend to overfit the data
(i.e. they mistake noise in the data for a signal to model,
see Section 1.3 for details).

On the other hand, a spline is a non-parametric model
(see Section 6.2): it makes no assumption about the form
of f , and it seeks to estimate it by getting close to the data
points without being too rough or too wiggly.

The main advantage of non-parametric approaches is that
they have the potential to fit a wider range of regression
shapes. But since estimating f is not reduced to learning
a small number of parameters, substantially more data is
required to obtain accurate estimates (and the whole situa-
tion is susceptible to overfitting).

Non-parametric methods are usually more flexible (they
can produce a large range of shapes when estimating the
true regression function f ); parametric models are usually
more interpretable (the set of parameters to learn is small
and we can make sense of them, which leads us to under-
stand how the predictors interact to produce outputs).

Ensemble learning methods (Section 7.5), support vec-
tor machines (Section 7.2), neural network [5, 9], and
splines are high-flexibility/low-interpretability approaches;
the LASSO (Section 5.3) and OLS are low-flexibility/high-
interpretability approaches; generalized additive models
(Section 6.3) and regression trees (Section 7.1) are medium-
flexibility/medium-interpretability approaches. Importantly,
there are no high-flexibility/high-interpretability approaches.

The trade-off between two competing desirable properties
is the calling card of machine learning; we will encounter
such trade-offs time and time again; they dictate what the
discipline can and cannot hope to achieve.

1.2 Model Evaluation
In an ideal world (from a model performance point of view),
we would be able to identify the modeling approach that
performs “best”, and use it for all problems.

In practice, however, the preceding discussion son trade-
offs hows that the concept of “best performance” is impos-
sible to define in practice in a way that meets all desired
requirements, and a balance must be struck.

But another issue lurks just around the corner, even when
we settle on an “optimal” performance evaluation measure.

No-Free Lunch Theorem: no single method is optimal
over all possible datasets.8

Given a specific task and dataset, then, how do we select
the approach that will yield the best results (for a given
value of “best”)? In practice, this is the main machine
learning challenge.

In order to evaluate a model’s performance at a specific task,
we must be able to measure how well predictions match
the observed data.

In a regression/value estimation setting,9 various met-
rics are commonly used:

mean squared error (MSE):
1
N

N
∑

i=1

(yi − f̂ ( ~x i))
2;

mean absolute error (MAE):
1
N

N
∑

i=1

|yi − f̂ ( ~x i)|;

normalized mean squared error (NMSE):

N
∑

i=1

(yi − f̂ ( ~x i))
2

N
∑

i=1

(yi − y)2
;

normalized mean absolute error (NMAE):

N
∑

i=1

|yi − f̂ ( ~x i)|

N
∑

i=1

|yi − y|

;

8In reality, achine learning is simply applied optimization; the proof of
this important result is outside the scope of this document (but see [32,33]
for details).

9We discuss the classification setting on p. 7 and in Sections 3 and 7.
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mean average percentage error (MAPE):

1
N

N
∑

i=1

|yi − f̂ ( ~x i)|
yi

;

correlation ρ ŷ ,y , etc.

The MSE has convenient mathematical properties, and we
will follow the lead of just about every reference in making
it our go-to metric, but note that the conceptual notions
we will discuss would be qualitatively similar for all perfor-
mance evaluation tools.

To evaluate the suitability of a model for predictive pur-
poses, these metrics should be evaluated on testing data
(or unseen data), not on the training data.10

For instance, if we are trying to determine whether any
clinical measurement in patients are likely to predict the
onset of Alzheimer’s disease, we do not particularly care if
the algorithm does a good job of telling us that the patients
we have already tested for the disease have it or not – it is
new patients that are of interest.11

Let Tr= {( ~x i , yi)}Ni=1 be the training set and suppose that
we use some statistical learning method to estimate the
true relationship Y = f ( ~X ) + ε by Ŷ = f̂ ( ~X ) (i.e., we fit f̂
over Tr). Hopefully, f̂ ( ~x i)≈ yi for all i = 1, . . . , N , and

MSETr =
1
N

N
∑

i=1

(yi − f̂ ( ~x i)
2)

is small. If it is, then the model does a good job of describ-
ing Tr. But, as discussed above, this is largely irrelevant to
(if not uncorrelated with) our ability to make good predic-
tions; what we would really like to know is if

f̂ ( ~x∗)≈ f ( ~x∗) = y∗

for observations ( ~x∗, y∗) 6∈ Tr.

An optimal statistical learning method for a given com-
bination of task and dataset is one that minimizes

MSETe =
1
M

N+M
∑

j=N+1

(y j − f̂ ( ~x j))
2

over the testing set Te = {( ~x j , y j)}M+N
j=N+1, where, a priori,

none of the test observations were in Tr.12

The general situation is illustrated in Figures 1 and 2.
10Failure to do so means that the model can at best be used to describe

the dataset (which might still be a valuable contribution).
11Although it would be surprising if the performance on the test data

performance is any good if the performance on the training data is mid-
dling. We shall see at a later stage that the training/testing paradigm can
also help with problems related to overfitting.

12New test observations may end up assuming the same values as some
of the training observations, but that is an accident of sampling or due to
the reality of the scenario under consideration.

1.3 Bias-Variance Trade-Off
The "U" shape of the testing MSE in Figure 2 is generic –
something of this nature occurs for nearly all datasets and
choice of statistical learning family of methods (although
the actual shape could be quite different). Underfitting and
overfitting is a fact of the machine learning life.

This shape can be explained by two properties of SL meth-
ods: the bias and the variance. Consider a test observation
( ~x∗, y∗), and a fitted model f̂ (trained on training data Tr).
which approximates the true model

Y = f ( ~X ) + ε, where f (~x) = E[Y | ~X = ~x].

The expected test MSE at ~x∗ can be decomposed into 3
fundamental quantities

E
�

MSETe( ~x∗)
�

= E
�

(y∗ − f̂ ( ~x∗))2
�

= Var( f̂ ( ~x∗))
︸ ︷︷ ︸

variance

+
�

E
�

f̂ ( ~x∗)− f ( ~x∗)
�	2

︸ ︷︷ ︸

squared bias

+Var(ε).

As before, Var(ε) is the irreducible error, due to the in-
herent noise in the data; the variance component error
Var( f̂ ( ~x∗)) arises since different training sets would yield
different fitted models f̂ , and the (squared) bias compo-
nent error arises, in part, due to the “difficult” problem
being approximated by a “simple” model (see [10,15] for
details).

The overall expected test MSE E[MSETe] is the average
of E[MSETe( ~x∗)] over all allowable ~x∗ in the testing space.
Note that, E[MSETe]≥ Var(ε), by construction.

In general, more flexible methods (i.e., more complex
methods) tend to have higher variance and lower bias, and
vice-versa: simpler methods have higher bias and lower
variance. It is this interplay between bias and variance
that causes models to underfit (high bias) or overfit (high
variance) the data (see bias-variance trade-off diagram
below [15]).

P.Boily (2021) 5
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Figure 1. The training/testing paradigm. Training data is fed into a variety of statistical learning methods, possibly
arranged in increasing order of complexity, yielding a sequence of models. These models are then used to make
predictions on the testing set (using only the predictors variables); the predictions are then compared with the actual
values to evaluate the performance of the models on the testing set. The performance of the models on the training set
can also be evaluated.

Figure 2. Generic illustration of the bias-variance trade-off; when the complexity of the model increases, the training
error decreases, but the testing error eventually starts increasing. Generally, models that are too simple will have “large”
prediction errors on both the training and the testing sets (underfitting), whereas for models that are too complex, the
training error tends to be “small” while the testing error tends to be “large” (overfitting).

6 P.Boily (2021)
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1.2 Model Evaluation (Revisited)
In a classification setting, the response Y is categorical,
which is to say that Y ∈ C , where C = {C1, . . . , CK}, but
the objectives remain the same:

build a classifier C( ~x∗) that assigns a label Ck ∈ C to
test observations ~x∗;
understand the role of the predictors in this assign-
ment, and
assess the uncertainty and the accuracy of the classi-
fier.

The main difference with the regression setting (and it’s
a big one), is that we do not have access to an MSE-type
metric to evaluate the classifier’s performance.

The counterpart of the regression function

f (~x) = E[Y | ~X = ~x]

is defined as follows: for 1≤ k ≤ K , let pk(~x) = P(Y = Ck |
~X = ~x) (in other words, pick the most numerous categorical
label of observations for which the signature vector is ~x) –
the Bayes optimal classifier at ~x is the function

C(~x) = C j if p j(~x) =max{p1(~x), . . . , pK(~x)}.

As was the case or regression, it could be that there are
too few observations at ~X = ~x to estimate the probability
exactly, in which case we might want to allow for nearest
neighbour averaging:

Ĉ(~x) = C j , if p̃ j(~x) =max{p̃1(~x), . . . , p̃K(~x)},

where p̃k(~x) = P(Y = Ck | ~X ∈ N(~x)) and N(~x) is a neigh-
bourhood of ~x .13

The quantity that plays an analogous role to the MSE for
C̃(~x) is the misclassification error rate:

ERRTe =
1
M

M
∑

j=N+1

I [y j 6= C̃( ~x j)],

where I is the indicator function

I [condition] =

¨

0 if the condition is false

1 otherwise

The Bayes optimal classifier C(~x) is the optimal classifier
with respect to ERRTe.

The Bayes error rate

η~x = 1− E
h

max
k

P(Y = Ck | ~X = ~x)
i

corresponds to the irreducible error and provides a lower
limit on any classifier’s expected error.

13The curse of dimensionality is also in play when p becomes too large.

Most classifiers build structured models Ĉ(~x) which di-
rectly approximate the Bayes optimal classifier C(~x) (such
as support vector machines or naïve Bayes classifiers), but
some classifiers build structured models p̂k(~x) for the con-
ditional probabilities pk(~x), 1 ≤ j ≤ K, which are then
used to build Ĉ(~x) (such as logistic regression, generalized
additive models, k−nearest neighbours).

The latter models are said to be calibrated (i.e., the
relative values of p̂k(~x) represent relative probabilities),
whereas the former are non-calibrated (only the most
likely outcome is provided; it is impossible to say to what
extent a given outcome is more likely than another).

The bias-variance trade-off is also observed in classifiers,
although the decomposition is (of necessity) different (see
[10] for details).

In a k−nearest neighbours classifier, for instance, the pre-
diction for a new observation (x∗, y∗) ∈ Te is obtained
by finding the most frequent class label of the k nearest
neighbours to x∗ in Tr on which the model ĈkNN(~x) is built.

As the number of nearest neighbours under consider-
ation increases, the complexity of the the model ĈkNN(~x)
decreases, and vice-versa.

We would thus expect:

a model with a large k to underfit the data;
a model with a small k to overfit the data, and
models in the “Goldilock zone” to strike a balance
between prediction accuracy and interpretability
of the decision boundary (see Figure 3).

Let us summarize the main take-aways from the first sec-
tion:

for numerical responses, the optimal regression func-
tion Y = f ( ~X ) + ε is f (x) = E[Y | ~X = ~x];
for categorical responses, the optimal classifier Y =
C( ~X ) is the Bayes optimal classifier;
models are learned over training data Tr;
in practice, we learn the best model from a restricted
group of model families;
the best model f̂ (~x) (resp. Ĉ(~x)) minimizes the re-
ducible part of the prediction error MSETe (resp. ERRTe),
evaluated on testing data Te;
the bias-variance trade-off tells us that models that
are too simple (or too rigid) underfit the data, and
that models that are too complex (or too “loose”)
overfit the data;
the total prediction error on Te is bounded below by
the irreducible error (resp. Bayes error rate).

Finally, remember that a predictive model’s performance
can only be evaluated on unseen data (i.e., on data not
drawn from the training set Tr).

P.Boily (2021) 7
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Figure 3. Illustration of the accuracy-boundary interpretability trade-off for classifiers on an artificial dataset [15]; Bayes
optimal classifier C(~x) (leftmost), underfit Ĉ100NN(~x) model (2nd leftmost), Goldilock Ĉ10NN(~x) model (3rd leftmost),
overfit Ĉ1NN(~x) model (4th leftmost). Notice the interplay between prediction accuracy and complexity of the decision
boundary (the dashed curve in the last three graphs shows the Bayes optimal boundary).

2. Regression

Recall that, in the regression setting, the goal is to estimate
the regression function

f (~x) = E[Y | ~X = ~x],

the solution to the regression problem

Y = f ( ~X ) + ε.

The best estimate f̂ is the model that minimizes

MSETe( f̂ ) = Avg
~x∗∈Te

E
�

(y∗ − f̂ ( ~x∗))2
�

.

In practice, this can be hard to achieve without restrictions
on the functional form of f̂ , so we try to learn the best f̂
from various families of models.

Remember, however, that no matter the f̂ ,

MSETe( f̂ )≥ Var(ε.)

What else can we say about f̂ ? In the ordinary least
square framework (OLS), we assume that

f̂OLS(~x)≈ ~x> ~β ,

which is to say that we assume that f̂OLS is nearly globally
linear (we neglect the intercept term, in one interpretation).

In practice, the true regression function is almost never
linear, but the linear assumption yields models f̂ that are
both conceptually and practically useful – the model f̂
is easily interpretable, and the associated prediction error
MSETe( f̂ ) is often “small-ish”.

Example
Let us revisit the Gapminder dataset, focusing on obser-
vations from 2011.

Is there a relationship between gross domestic prod-
uct and life expectancy?

How strong is the relationship?
Which factors contribute to the life expectancy?
How accurately could we predict life expectancy given
a set of new predictors?
Is the relationship linear?
are there combinations of factors that are linked with
life expectancy?

How do we answer such questions?

2.1 Regression Modeling
The most common data modeling methods are linear and
logistic regression methods. By some estimation, 90% of
real-world data applications end up using these as their
final model, typically after very carefully preparing the data
(cleaning, encoding, creation of new variables, transforma-
tion of variables, etc.).

That is mostly due to:

these regression models being straightforward to in-
terpret and to train;
the prediction error MSETe having a closed-form lin-
ear expression, and
the OLS solution being computable using simple ma-
trix manipulations.

2.1.1 Matrix Formulation
Consider a dataset Tr = {( ~x1, y1), . . . , ( ~xn, yn)}with n obser-
vations and p features. The corresponding design matrix,
response vector, and coefficient vector are, respectively,

X=





1 x1,1 · · · x1,p
...

...
...

1 xn,1 · · · xn,p



 , Y=





y1
...

ym



 , β =









β0
β1
...
βp









.

The objective is to find f such that Y= f (X) + ε. The OLS
solution assumes that f (X) = Xβ; we must thus learn β
using the training data Tr.

8 P.Boily (2021)
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Figure 4. Scatterplots of various predictors against life expectancy, with line of best fit, in 2011, for the Gapminder
dataset. Can they be used to answer the questions on the previous page?

If β̂ is the estimate of the true coefficient vector β , the
linear regression model associated with Tr is

f̂ (~x) = β̂0 + β̂1 x1 + · · ·+ β̂p xp.

How do we find β̂? The OLS estimate minimizes the loss
function

L (β) = ‖Y−Xβ‖2
2

= (Y−Xβ)>(Y−Xβ)

= Y>Y− ((Xβ)>Y+ Y>Xβ) + (Xβ)>Xβ

= Y>Y− (β>X>Y+ Y>Xβ) +β>X>Xβ .

The loss function is a non-negative symmetric quadratic
form in β , with no restriction on the coefficients, so any
minimizer of L must also be one of its critical points (as-
suming certain regularity conditions on the data).

We are thus looking for coefficients for which L (β) = 0.

Since
∇L (β) = −2(X>Y−X>Xβ),

any minimizer β̂ must satisfy the canonical equations:

X>Y= X>Xβ̂ .

If X>X is invertible, the minimizer β̂ is unique and is given
by

β̂ = (X>X)−1X>Y, with Var(β̂) = σ̂2(X>X)−1,

where σ̂2 is the variance of the residuals.14 We say that
“we have learned the coeficient vector β̂ on the training
data Tr using linear regression”.

In what follows, we write x to represent the vector

(1, x1, . . . , xp)
>.

At times, we will also use the notation to represent ~x; the
context should make clear which version is meant.

14Note that X>X is a p× p matrix, which makes the inversion relatively
easy to compute even when n is large.

P.Boily (2021) 9
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The fitted value of the model f̂ at input ~x i ∈ Tr is

ŷi = f̂ ( ~x i) = x>i β̂ ,

and the predicted value at an arbitrary ~x∗ is

ŷ∗ = f̂ ( ~x∗) = x∗>β̂ .

The fitted surface is thus entirely described by the p + 1
parameters β̂; the number of (effective) parameters is a
measure of the complexity of the learner.

2.1.2 Motivating Example
We shall study a subset of the Gapminder dataset: the
observations for 2011, the predictor variables infant mortal-
ity X1, and fertility X2, the derived variable GDP per capita
X3, and the response variable life expectancy Y .

The training data contains n= 166 observations and p = 2
predictor features. The design matrix X is thus of dimension
166× 3, and

X>X=





166.0 4537.3 486.54
4537.3 225043.25 18445.28
486.54 18445.28 1790.238





and

X>Y=





11756.7
291153.33
32874.95



 ,

from which we conclude that

β̂ = (X>X)−1X>Y=





79.677
−0.276
−0.443



 .

The fitted surface is thus

y∗ = f̂ (x∗) = 79.677− 0.276x∗1 − 0.443x∗2

for a test observation x∗ = (x∗1, x∗2).

Warning: predictions should not be made for observations
outside the range (or the envelope) of the training predic-
tors. In this example, the predictor envelope is shown in
red at the top of the next column – one should resist the
temptation to predict y∗ for x∗ = (100,2), say.

Since the family of OLS learners is a subset of all possi-
ble learners, the best we can say about f̂OLS is that

MSETe( f̂OLS)≥min
f̂

�

MSETe( f̂ )
	

≥ Var(ε).

In practice, we are free to approximate f with any learner
f̂ . If we want f̂ to be useful, however, we need to verify
that it is a “decent” approximation.

There is another trade-off at play: when we restrict
learners to specific families of functions,15 we typically also
introduce a series of assumptions on the data.

15That is, when impose structure on the learners.

2.1.3 Least Squares Assumptions
The OLS assumptions are

linearity: the response variable is a linear combina-
tion of the predictors;
homoscedasticity: the error variance is constant for
all predictor levels;
uncorrelated errors: the error is uncorrelated from
one observation to the next;
full column rank for design matrix X: the predic-
tors are not perfectly multi-collinear;
weak exogeneity: predictor values are free of mea-
surement error.

Mathematically, the assumptions translate to

Y= Xβ + ε,

where β ∈ Rp+1 is determined on a training set Tr without
measurement error, and for which

E[ε | X] = 0 and E[εε> | X] = σ2 In.

Typically, although that is not a requirement, it is often
further assumed that

ε | X∼N (0,σ2 In).

We will discuss how these assumptions can be generalized
in Sections 2.1.5 and 6.

In the meantime, how can we determine if the choice of
model is valid? In the traditional statistical analysis context,
there is a number of tests available to the analyst (we will
discuss them shortly). In the machine learning context,
there is only one real test:

does the model make good predictions?

10 P.Boily (2021)
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2.1.4 Least Squares Properties
Let us assume that the OLS assumptions are satisfied. What
can we say about the linear regression results?16

Coefficient of Determination Let

SSRes= Y>[In −X(X>X)−1X>]Y= Y>[In −H]Y

and
SSTot= Y>Y− ny2.

The coefficient of determination of the OLS regression is
the quotient

R2 =
SSTot− SSRes

SSTot
=

Cov2(Y,Xβ̂)
σ2

yσ
2
y

.

The coefficient of determination identifies the proportion
of the variation of the data which is explained by the linear
regression. As such, 0≤ R2 ≤ 1.

If R2 ≈ 0, then the predictor variables have little ex-
planatory power on the response; if R2 ≈ 1, then the linear
fit is deemed to be “good”, as a lot of the variability in the
response is explained by the predictors.

In practice, the number of predictors also affects the goodness-
of-fit (this is related to the curse of dimensionality discussed
previously). The quantity

R2
a = 1−

n− 1
n− p− 1

(1− R2) = 1−
SSRes/(n− p− 1)

SSTot/(n− 1)

is the adjusted coefficient of determination of the linear
regression. While R2

a can be negative, it is always smaller
than R2. It plays also plays a role in the feature selection
process.

In the Gapminder example, we have

SSRes= 2837.7, SSTot= 11882.18,

so that

R2 = 1−
SSRes
SSTot

= 1−
2837.7

11882.18
= 0.761

and

R2
a = 1−

n− 1
n− p− 1

(1− R2)

= 1−
166− 1

166− 2− 1
(1− 0.761) = 0.757,

which suggests that a fair proportion of the variability in
the life expectancy (about 75.7%) is explained by infant
mortality and fertility.

16See [16], say, for a refresher.

Significance of Regression We can determine if at least
one of the predictors X1, . . . , X p is useful in predicting the
response Y by pitting

H0 : (β1, . . . ,βp) = 0 against H1 : (β1, . . . ,βp) 6= 0.

Under the null hypothesis H0, the F−statistic

F∗ =
(SSTot− SSRes)/p
SSRes/(n− p− 1)

∼ Fp,n−p−1.

At significance level α, if F∗ ≥ Fp,n−p−1;α (the 1− α quan-
tile of the F distributions with p and n− p− 1 degrees of
freedom), then we reject the null hypothesis in favour of
the alternative.

In the Gapminder model

Y = 79.677− 0.276X1 − 0.443X2 + ε, n= 166, p = 2,

we have

F∗ =
(11882.18− 2837.7)/2
2837.7/(166− 2− 1)

= 258.169.

At a significance level α = 0.05, the critical value of the
F2,163 distribution is F2,163;0.05 = 3.051819.

Since F∗ ≥ F2,163;0.05, at least one of β1,β2 6= 0, with
probability 95%.

Interpretation of the Coefficients For j = 1, . . . , p, the co-
efficient β j is the average effect on Y of a 1-unit increase
in X j , holding all other predictors fixed.

Ideally, the predictors are uncorrelated (such as would be
the case in a balanced design [26]). Each coefficient can
then be tested (and estimated) separately, and the above
interpretation is at least reasonable in theory.

In practice, however, we can not always control the
predictor variables, and it might be impossible to “hold all
other predictors fixed.”

When the predictors are correlated, there are potential
variance inflation issues for the estimated regression coef-
ficients, and the interpretion is risky, since when X j changes,
so do the other predictors.17

More importantly, the interpretation can also be read as a
claim of causality, which should be avoided when dealing
with observational data.

“The only way to find out what will happen
when a complex system is disturbed is to disturb
the system, not merely to observe it passively.”
(paraphrased from [3])

17If Y represents the total monetary value in a piggy bank, X1 the
number of coins, and X2 the number of pennies, what is likely to be
the sign of β2 in the model Y = β0 + β1X1 + β2X2 + ε? Are X1 and X2
correlated? What would the interpretation look like, in this case?

P.Boily (2021) 11
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In the Gapminder the correlation between the variables X1
and X2 is ρ(X1, X2) =. The predictors are strongly corre-
lated, and the standard interpretation is not available to
us.

Hypothesis Testing We can also determine if a specific
predictor X j is useful in predicting the response Y , by testing
for

H0 : β j = 0 against H1 : β j 6= 0.

Under the null hypothesis H0, the test statistic

t∗ =
β̂ j

se(β̂ j)
∼ Tn−2,

where se(β̂ j) =
q

σ̂2(X>X)−1
j, j , and σ̂2 = SSRes

n−p−1 , and Tn−2 is
the Student T distribution with n− 2 degrees of freedom.

At a significance level α, if |t∗| ≥ |tn−2;α/2| (the 1−α/2
quantile of the T distribution with n− 2 degrees of free-
dom), then we reject the null hypothesis in favour of the
alternative.

In the Gapminder model, n = 166, p = 2, β̂1 = −0.276 and
(X>X)−1

1,1 = 0.00003534, so that

σ̂2 =
2837.7

163
= 17.5, se(β̂1) =

p

17.5 · 3.5× 10−5 = 0.025

and

t∗ = −
0.276
0.025

= −11.14.

At a significance level α = 0.05, the critical value of the T164
distribution is t164;0.025 = −1.97. Since |t∗| ≥ |t164;0.025|,
β1 6= 0 with probability 95%.

Confidence Intervals The standard error of β̂ j reflects
how the estimate would vary under various Tr; it can be
used to compute a (1− α)% confidence interval for the
true β j:

C. I.(β j;α)≡ β̂ j ± zα/2 · se(β̂ j);

at α= 0.05, zα/2 = 1.96≈ 2, so that

C. I.(β j; 0.05)≡ β̂ j ± 2 se(β̂ j).

In the Gapminder example, we have

coeff. est. s.e. t∗ 95% C.I.
β0 79.677 0.7985 99.786 [78.1, 81.3, ]
β1 −0.276 0.0248 −11.138 [−0.33,−0.23]
β2 0.443 0.4131 −1.075 [−1.27,0.38]

In frequentist statistics, the confidence interval has a par-
ticular interpretation – it does not mean, as one might wish,
that there is a 95% chance, say, that the true β j is found in
the C. I.; rather, it suggests that the approach used to build
the 95% C. I. will yield an interval in which the true β j will
reside approximately 95% of the time.18

18Compare with the Bayesian notion of a credible interval [8].

The resulting confidence intervals also depend on the un-
derlying model. For instance, the 95% C. I. for β1 in the
full model is [−0.33,−0.23], whereas the corresponding
C. I. in the reduced model

Ŷ = γ0 + γ1X1

is [−0.33,−0.27] (the estimates are necessarily distinct as
well: β̂1 = −0.2763 6= −0.2989= γ̂1).

Feature Selection How would we determine if all the pre-
dictors help explain the response Y , or if only a (proper)
subset of the predictors is needed?

The most direct approach to solve this problem (in the
linear regression context) is to run best subsets regression.

The procedure is as follows: fit an OLS model for all
possible subsets of predictors and select the optimal model
based on a criterion that balances training error with
model size.

There are 2p+1 such models (a quantity that quickly
becomes unmanageable).

In practice, we need to automate and speed-up the search
through a subset of predictor subsets. OLS approaches in-
clude forward selection and backward selection.19

Forward selection is a bottom-up approach:

1. start with the null modelM0 : Y = β0 + ε;
2. fit p simple linear regressions Y = β0 + β jX j + ε and

add to the null model the predictor X j1 resulting in
the lowest SSRes:

M1 : Y = β0 + β j1 X j1 + ε;

3. add to that model the variable that results in the
lowest SSRes among all the two-variable models:

M2 : Y = β0 + β j1 X j1 + β j2 X j2 + ε;

4. the process continues until a stopping criterion is met.

Backward selection is a top-down approach, and it works
in reverse, removing predictors from the full model.

In both approaches, there are at most

p+(p−1)+· · ·+2+1=
p(p+ 1)

2
� 2p+1 (when p is large)

regressions to run.

These methods are, frankly, not ideal in the machine learn-
ing framework (see Section 5 for alternatives).

19We will discuss these approaches in detail in Section 5.2.
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Other Questions

How do we handle qualitative variables? (dummy
binary variables);
How do we handle interaction terms? (add features);
How do we handle outliers? (median regression,
Theil-Sen estimate);
How do we handle non-constant variance of error
terms? (data transformations, weighted least square
regression, Bayesian regression);
How do we handle high-leverage observations? (ro-
bust regression);
How do we handle collinearity? (principal compo-
nent analysis, genearlized linear models, partial least
square regression);
How do we handle multiple tests? (Bonferroni cor-
rection: for q independent tests with the same data,
set significance level to α/q to get joint significance
equivalent to α for a single test).

2.1.5 Generalizations of Least Squares
The OLS assumptions are convenient from a mathematical
perspective, but they are not always met in practice.

One way out of this problem is to use remedial mea-
sures to transform the data into a compliant set; another
one is to extend the assumptions and to work out the cor-
responding mathematical formalism:

generalized linear models (GLM) implement responses
with non-normal conditional distributions;
classifiers (logistic regression, decision trees, sup-
port vector machines, naïve Bayes, neural networks)
extend regression to categorical responses (see Sec-
tions 3 and 7);
non-linear methods such as splines, generalized ad-
ditive models (GAM), nearest neighbour methods,
kernel smoothing methods are used for responses
that are not linear combinations of the predictors
(see Section 6);
tree-based methods and ensemble learning methods
(bagging, random forests, boosting) are used for pre-
dictor interactions (see Sections 7.1 and 7.5);
regularization methods (ridge regression, LASSO, elas-
tic net) facilitate the process of model selection and
feature selection (see 5.3).

Generalized Linear Models GLM extend the least square
paradigm by accommodating response variables with non-
normal conditional distributions. Apart from the error
structure, a GLM is essentially a linear model:

Yi ∼ D(µi), where g(µi) = x>i β .

A GLM consists of:

a systematic component x>i β ;
a random component specified by the distribution D
for Yi , and
a link function g.

The systematic component is specified in terms of the lin-
ear predictor for the ith observation ηi = x>i β ; the general
ideas and concepts of OLS carry over to GLM, with the
added presence of the link function and the distribution of
the response yi .

In principle, the link function g could be any function
linking the linear predictor ηi to the distribution of the
response Yi; in practice, however, g should be smooth (or
at least differentiable) and monotonic (and so invertible).

We could specify any distribution D for the response Yi ,
but they are usually selected from the exponential family
of distributions.20

OLS is an example of GLM, with:

systematic component ηi = x>i β ;
random component Yi ∼N (µi ,σ

2);
link function g(µ) = µ.

For a more substantial example, consider the following
situation. In the early stages of a rumour spreading, the
rate at which new individual learn the information increases
exponentially over time. If µi is the expected number of
people who have heard the rumour on day t i , a model of
the form µi = γexp(δt i) might be appropriate:

ln(µi)
︸ ︷︷ ︸

link

= lnγ+δt i = β0 + β1 t i = (1, t i)
>(β0,β1)

︸ ︷︷ ︸

systematic component

.

Furthermore, since we measure a count of individuals, the
Poisson distribution could be a reasonable choice:

Yi ∼ Poisson(µi),
︸ ︷︷ ︸

random component

ln(µi) = (1, t i)
>(β0,β1).

The main advantages of GLM are that:

there is no need to transform the response Y if it does
not follow a normal distribution;
if the link produces additive effects, the assumption
of homoscedasticity does not need to be met;
the choice of the link is separate from the choice of
random component, providing modeling flexibility;
models are still fitted via a maximum likelihood pro-
cedure;
inference tools and model checks (Wald ratio test,
likelihood ratio test, deviance, residuals, C. I., etc.)
still apply;
they are easily implemented in SAS (proc genmod),
R (glm()), etc., and
the framework unites various regression modeling
approaches (OLS, logistic, Poisson, etc.) under a
single umbrella.

20These are distributions have probability density functions that satisfy

f (~x | ~θ ) = h(~x)g( ~θ )exp( ~φ( ~θ ) · ~T (~x)).

This includes the normal, binomial, Poisson, Gamma distributions, etc.
These are all distributions with conjugate priors (see [8]).
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2.2 Comparison Between kNN and OLS
We are going to try to get a better intuitive sense of the
bias-variance trade-off by comparing ordinary least squares
(OLS), a rigid yet simple model (as measured by the num-
ber of effective parameters), with k−nearest neighbours
(kNN), a very flexible yet more complex model (again, ac-
cording to the number of effective parameters).

Given an input vector z ∈ Rp, the k−nearest neighbours
model predicts the response Y as the average

Ŷ = Avg{Y (x) | x ∈ Nk(z)}=
1
k

∑

x∈N(z)

Y (x),

where Y (x) is the known response for predictor x ∈ Tr and
Nk(z) is the set of the k training observations nearest to z.21

Of course, the prediction may depend on the value of k: in
the classification image below, the 6NN prediction would
be a red star, whereas the 19NN model prediction would
be a blue disk.22

The following classification example (based on [10]) illus-
trates some of the trade-off consequences. Consider a train-
ing dataset Tr consisting of 200 observations with features
(x1, x2) ∈ R2 and responses y ∈ {BLUE(=0),ORANGE(=1)}.

Throughout, let [·] : R → {BLUE,ORANGE} denote the
function

[w] =

¨

BLUE w≤ 0.5

ORANGE w> 0.5

Linear Fit Fit an OLS model

ŷ(x) = β̂0 + β̂1 x1 + β̂2 x2

on Tr; the class prediction is ĝ(x) = [ ŷ(x)].

The decision boundary

∂OLS = {(x1, x2) | β̂0 + β̂1 x1 + β̂2 x2 = 0.5}

is shown in Figure 5 (on the left); it is a straight line which
can be described using only 2 effective parameters.23

There are several misclassifications on both sides of ∂OLS;
even though errors seem to be unavoidable, the OLS model
is likely to be too rigid.

21The notion of proximity depends on the distance metric in use; the
Euclidean case is the most common, but it does not have to be that one.

22For classification, kNN models use the mode instead of the average.
23Their number is a measure of a model’s complexity.

kNN Fit If ŷ(x) represents the proportion of ORANGE
points in Nk(x), then the class prediction is ĝ(x) = [ ŷ(x)].

The decision boundaries ∂1NN and ∂15NN are displayed in
Figure 5 (in the middle and on the right, respectively). They
are both irregular: ∂1NN is overfit, whereas ∂15NN is proba-
bly not so (although neither is great for interpretability).

The effective parameters are not as obviously defined for
this model; one approach is to view kNN as a model that
fits 1 parameter (a mean) to each ideal (non-overlapping)
neighbourhood in the data, so that the number of effec-
tive parameters is roughly equal to the number of such
neighbourhoods:

N
k
≈

¨

13 when k = 15

200 when k = 1

The kNN models are thus fairly complex, in comparison
with the OLS model.

There are no misclassification for k = 1, and several in
the case k = 15 (but not as many as with the OLS model).
The 15NN model seems to strike a balance between various
competing properties; it is likely nearer the “sweet spot” of
the test error curve.24

Conclusions The OLS model is stable (adding a few train-
ing observations is unlikely to alter the fit substantially),
but biased (the assumptions of a valid linear fit is question-
able); the kNN models are unstable (adding a few training
observations is likely to alter the fit substantially, especially
for small values of k), but unbiased (no apparent assump-
tions are made about the data).

So which approach is best? That depends entirely on what
the ultimate task is: description, prediction, etc.

In predictive data science, machine learning, and artificial
intelligence, the validity of modeling assumptions take a
backseat to a model’s ability to make good predictions on
new (and unseen) observations.

Naturally, we would expect that models whose assump-
tions are met are more likely to make good predictions than
models for whom that is not the case, but it does not need
to be the case.

The theory of linear models is mature and extensive, and
we could have discussed a number of its other features.

Machine learning methods are not meant to replace or
supplant classical statistical analysis methods, but rather,
to complement them. They simply provide different ap-
proaches to gain insights from data.

24Remember that we have not evaluated the performance of the models
on a testing set; we have only described some of its behaviour on the
training set Tr.
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Figure 5. Classification based on OLS (left), 1NN (middle), and 15NN (right) [10].

3. Classification

Qualitative variables take values (the levels) in an un-
ordered set C = {C1, . . . , CK}.

For instance,

hair colour ∈ {black, red,blond, grey, other}
email message ∈ {ham, spam}
life expectancy ∈ {high, low}

For a training set Tr with observations ( ~X , Y ) ∈ Rp×C , the
classification problem is to build a classifier Ĉ : Rp →C
to approximate the optimal Bayes classifier C : Rp → C
(see Section 1.3, p. 1.3).

In many instances, we might be more interested in the
probabilities

πk(x) = P{Ĉ(x) = Ck}, k = 1, . . . , K

than in the classification predictions themselves.

Typically, the classifier Ĉ is built on a training set

Tr= {(x j , y j)}Nj=1

and evaluated on a testing set

Te= {(xi , yi)}Mi=N+1.

Example
Let us revisit the Gapminder dataset, again focusing on
observations from 2011, with the difference that life ex-
pectancy is now recorded as “high” (1) if it falls above 72.45
(the median in 2011), and as “low” (0) otherwise.

We could run a simple linear regression of Y on ~X over
Tr and obtain the model

Ŷ = β̂0 + β̂1 · infant mortality+ β̂2 · fertility,

from which we would classify an observation’s life expectancy
as

Ĉ( ~X ) =

¨

high if Ŷ > 0.5

low else

In this specific example, the OLS approach does a good job,
as the data is roughly linearly separable (see below).

This will not, however, usually be the case. In this example,
the optimal regression function is

f (~x) = E[Y | ~X = ~x] = P(Y = 1 | ~X = ~x) = p1(~x)

because Y is a binary variable; this might lead us to believe
that f (~x) could also be used to directly classify and deter-
mine the class probabilities for the data, in which case there
would be no need for a separate classification apparatus.

There is one major drawback with this approach: if lin-
ear regression is used to model the data (which is to say,
if we assume that f (~x) ≈ ~x> ~β), we need to insure that
f̂OLS(~x) ∈ [0,1] for all ~x ∈ Te. This, in general, cannot be
guaranteed.

Another problem arises if we study the residual situation
further. If we model Y = {0, 1} with an OLS regression, we
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Figure 6. Visualization of life expectancy (as a class), infant mortality, and fertility in the 2011 Gapminder dataset.

have
Yi = x>i β + εi .

Thus

εi = Yi − x>i β =

¨

1− x>i β if Yi = 1

−x>i β if Yi = 0

But OLS assumes that ε ∼N (0,σ2 I), and so is not appro-
priate to model the response.

Furthermore, Var(Yi) = p1(xi)(1− p1(xi)) and

Var(εi) = Var(Yi − p1(xi)) = Var(Yi) = p1(xi)(1− p1(xi)),

which is not constant as it depends on xi .

The OLS assumptions are thus violated at every turn25 –
OLS is not a good fit/modeling approach to estimate

pk(~x) = P(Y = Ck | ~X = ~x).

3.1 Logistic Regression
The problems presented above point to OLS not being an
ideal method for classification, but the linear regression
still provided a good separator in the Gapminder example.

This suggests that we should not automatically reject
the possibility of first transforming the data and then seeing
if OLS might not be an appropriate modeling strategy on
the transformed data.

25There is another way in which OLS would fail, but it has nothing
to do with the OLS assumptions per se. When the set of qualitative
responses contains more than 2 level (such as C = {low,medium, high},
for instance), the response is usually encoded using numerals to facilitate
the implementation of the analysis:

Y =







0 if low
1 if medium
2 if high

This encoding suggests an ordering and a scale between the levels (the
difference between “high” and “medium” is equal to the difference between
“medium” and “low”, and half again as large as the difference between
“high” and “low”, say). OLS is not appropriate in this context.

3.1.1 Formulations
In logistic regression, we are seeking an invertible func-
tion g : R → [0,1], g(y∗) = y, such that g−1(yi) = y∗i .
This quantity must behave like a probability; in the 2-class
setting, we use gL(y∗) to approximate the probability

p1(~x) = P(Y = 1 | ~X = ~x).

The idea is to run OLS on a transformed training set

Tr∗ = {(xi , y∗i )}
N
i=1,

and to transform the results back using yi = g(y∗i ).

There are many such functions: the probit model,26 which
we will not discuss, and the logit model regression model
are two common approaches.

3.1.2 Logit Model
The logit model uses the transformation

y = gL(y
∗) =

e y∗

1+ e y∗
.

It is such that

g−1
L (0) = −∞, g−1

L (1) =∞, g−1
L (0.5) = 0, etc.

We solve for y∗ in order to get a transformed response
y∗ ∈ R (instead of one restricted to [0,1]):

p1(~x) =
e y∗

1+ e y∗
⇐⇒ y∗ = g−1

L (y) = ln
�

p1(~x)
1− p1(~x)

�

It is the log-odds transformed observations that we attempt
to fit with an OLS model:

Ŷ ∗ = ln
�

p1(~x)
1− p1(~x)

�

= β0 + β1X1 + · · ·+ βpX p = ~X
> ~β .

In order to make a prediction for p1(~x), we estimate y∗ and
use the logit transformation to obtain y .

26The probit transformation uses gP (y∗) = Φ(y∗), where Φ is the cumu-
lative distribution function of N (0, 1).
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For instance, if x>β̂ = 0.68, then

ŷ∗ = ln
�

p̂1(x)
1− p̂1(x)

�

= 0.68

and

p̂1(x) =
e y∗

1+ e y∗
=

e0.68

1+ e0.68
= 0.663.

Depending on the decision rule threshold γ, we may thus
predict that Ĉ(x) = C1 if p1(x) > γ and Ĉ(x) = C2 other-
wise.

The technical challenge is in obtaining the coefficients β̂;
they are found by maximizing the likelihood (see [13])

L(β) =
∏

yi=1

p1(xi)
∏

yi=0

(1− p1(xi))

=
∏

yi=1

exp(xi
>β)

1+ exp(xi
>β)

∏

yi=0

1
1+ exp(xi

>β)
,

that is to say,

β̂ = argmax
β
{L(β)}= argmax

β
{ln L(β)}

= argmax
β

(

∑

yi=1

ln p1(xi) +
∑

yi=0

ln(1− p1(xi))

)

= ... (terms in β and the observations xi).

The optimizer is found using numerical methods; in R,
the function glm() computes the maximum likelihood
estimate directly.

Example
Using the Gapminder data from the start of the section,
we obtain the following model:

ŷ∗ = ln

�

P(Y = high | ~X )
1− P(Y = high | ~X )

�

= 4.59− 0.22X1 − 0.06X2.

For a decision rule threshold of γ = 0.5, the decision bound-
ary is shown at the top of the next column (compare with
the linear regression boundary).

What is the estimated probability that the life expectancy is
high in a country whose infant mortality is 15 and whose
fertility is 4? By construction,

p1(Y = high|X1 = 15, X2 = 4)≈ gL([1,15, 24]>β̂)

=
exp(4.59− 0.22(15)− 0.06(24))

1+ exp(4.59− 0.22(15)− 0.06(24))

=
exp(0.9526322)

1+ exp(0.9526322)
= 0.72.

At this point, we might be wondering how all of this squares
up with the statistical learning framework we have been
describing. No testing set has made an appearance, no
misclassification or mean squared error rate has been cal-
culated.

We randomly select 116 observations and train a logistic
regression model on this training set Tr:

ŷ∗ = 6.12− 0.21x1 − 0.67x2.

Now, compute

p̂i = P(Yi = high|X1 = x1,i , X2 = x2,i) =
exp( ŷ∗i )

1+ exp( ŷ∗i )

on the observations in the testing set Te (see result below).

We obtain

MSETe =
1
50

50
∑

i=1

(p̂i −I [Yi = high])2 = 0.075.

Is that a good test error? It is difficult to answer without
more context.

P.Boily (2021) 17
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Perhaps a more intuitive way to view the situation is to
make actual predictions. For α ∈ [0, 1], define

predi(α) =

¨

high if p̂i > α

low else

In the specific version of Te used in this example, 36% of
the nations had a high life expectancy. If we set α= 0.81,
then the model predicts that 36% of the test nations will
have a high life expectancy, and the confusion matrix on
Te (see p. 20) is shown below:

α= 0.81
prediction
0 1

actual
0 30 2
1 2 16

But why do we pick α = 0.81 instead of α = 0.5, say
(which may be the only rational choice in the absence of
information)?

In the latter case, 42% of nations are predicted to have
high life expectancy, and the confusion matrix on Te is as
below.

α= 0.5
prediction
0 1

actual
0 28 4
1 2 17

We will revisit this question in Section 3.3.

3.2 Discriminant Analysis
In logistic regression, we model P(Y = Ck | x) directly via
the logistic function

p1(x) =
exp(x>β̂)

1+ exp(x>β̂)
.

We have discussed some of the properties of the process
in the previous section. It should be noted that logistic
regression is sometimes contra-indicated:

when the classes are well-separated, the coefficient
estimates may be unstable (adding as little as one
additional point to Tr could change the coefficients
substantially);
when Tr is small and the distribution of the predictors
is roughly Gaussian in each of the classes Y = Ck,
the coefficient estimates may be unstable too;
when there are more than 2 response levels, it is not
always obvious how to select an extension of logistic
regression.

In discriminant analysis (DA), we model instead

P(x | Y = Ck),

the distribution of the predictors ~X conditional on the level
of Y , and use Bayes’ Theorem to obtain

P(Y = Ck | x),

the probability of observing the response conditional on the
predictors.

Let C = {C1, . . . , CK} be the K response levels, K ≥ 2, and
denote by πk the probability that a random observation lies
in Ck, for k ∈ {1, . . . , K}; πk is the prior

πk = P(Y = Ck) =
|Ck|
N

.

Let fk(x) = P(x | Y = Ck) be the conditional density func-
tion of the distribution of ~X in Ck; we would expect fk(x)
to be large if there is a high probability that an observation
in Ck has a corresponding predictor ~X ≈ x, and small oth-
erwise.

According to Bayes’ Theorem,

pk(x) = P(Y = Ck | x) =
P(x | Y = Ck) · P(Y = Ck)

P(x)

=
P(x | Y = Ck) · P(Y = Ck)

∑K
j=1 P(x | Y = C j) · P(Y = C j)

=
πk fk(x)

∑K
j=1π j f j(x)

.

Given an observation x ∈ Te, the DA classifier is

ĈDA(x) = Cargmax j{p j(x)}.

In order to say more about discriminant analysis, we need
to make additional assumptions on the nature of the under-
lying distributions.

3.2.1 Linear Discriminant Analysis
If there is only one predictor (p = 1), we make the Gaus-
sian assumption,

fk(x) =
1

p
2πσk

exp

�

−
1
2

�

x −µk

σk

�2
�

,

where µk and σk are the mean and the standard deviation,
respectively, of the predictor for all observations in class Ck.27

If we further assume that σk ≡ σ for all k, then

pk(x) =
πk

1p
2πσ

exp
�

− 1
2

� x−µk
σ

�2�

∑K
j=1π j

1p
2πσ

exp
h

− 1
2

� x−µ j

σ

�2i

=
πk exp

�

− 1
2

� x−µk
σ

�2�

∑K
j=1π j exp

h

− 1
2

� x−µ j

σ

�2i

=
πk exp

�

µk
σ2

�

x − µk
2

��

exp
�

− x2

2σ2

�

∑K
j=1π j exp

� µ j

σ2

�

x − µ j

2

��

exp
�

− x2

2σ2

�

= πk exp
hµk

σ2

�

x −
µk

2

�i

· A(x).

27Any other predictor distribution could be used if it is more appropriate
for Tr, and we could assume that the standard deviations or the means
(or both) are identical across classes.
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Figure 7. Midpoint of two theoretical normal distributions (dashed line); midpoint of two empirical normal distributions
(solid line). Observations to the left of the decision boundary are classified as green, those to the right as purple. [15].

We do not have to compute the actual probabilities pk(x)
directly if we are only interested in classification; in that
case, the discriminant score for each class may be more
useful:

δk(x) = ln pk(x) = lnπk + x
µk

σ2
−
µk

2σ2
+ ln A(x).

As ln A(x) is the same for all k, we can drop it from the
score (it does not contribute to relative differences in class
scores); given an observation x ∈ Te, the linear discrimi-
nant analysis (LDA) classifier with p = 1 is

ĈLDA(x) = Cargmax j{δ̂ j(x)}
.

Under other assumptions on the density function, the dis-
criminant score formulation may change. The “linear” in
LDA comes from the linearity of the discriminant scores δk
(after the ln A(x) term has been dropped).

If K = 2 and π1 = π2 = 0.5, the midpoint x∗ = 1
2 (µ1 +µ2)

of the predictor means in C1 and C2 plays a crucial role.
Indeed, the discriminant scores δ1(x) and δ2(x)meet when

x∗
µ1

σ2
−
µ2

1

2σ2
= x∗

µ2

σ2
−
µ2

2

2σ2
=⇒ x∗ =

µ1 +µ2

2
,

as long as µ1 6= µ2. If µ1 < µ2, say, then the decision rule
simplifies to

Ĉ(x) =

¨

C1 if x ≤ x∗

C2 if x > x∗

The principle is illustrated in Figure 7; in practice, we esti-
mate πk, µk and σ from Tr:

π̂k =
Nk

N
, µ̂k =

1
Nk

∑

yi∈Ck

x i

σ̂2 =
K
∑

k=1

Nk − 1
N − K

 

1
Nk − 1

∑

yi∈Ck

(x i − µ̂k)
2

!

.

If there are p > 1 predictors, we can still make the Gaussian
assumption, but adapted to Rp:

fk(x) =
1

(2π)p/2 |Σk|
1/2

exp
�

−
1
2
(x−µk)

>Σ−1
k (x−µk),

�

,

where µk = (X1, . . . , X p) and Σk( j, i) = Cov(X i , X j) for all
~X with Y = Ck.

If we further assume that σk ≡ Σ for all k, then we can
show that the discriminant score is, again, linear (in x):

δk;LDA(x) = x>Σ−1µk −
1
2
µ>Σ−1µk + lnπk = ck,0 + c>k x.

We can estimate µk and Σ from the data, from which we
can recover the estimates

P(Y = Ck | x)≈ p̂k(x) =
exp(δ̂k;LDA(x))

∑K
j=1 exp(δ̂ j;LDA(x))

.

The decision rule is as before: given an observation x ∈ Te,
the LDA classifier with p > 1 is

ĈLDA = Cargmax j{δ̂ j;LDA(x)}
.

3.2.2 Quadratic Discriminant Analysis
The assumption that the conditional probability functions
be Gaussians with the same covariance in each training
class may be a stretch in some situations.

If Σi 6= Σ j for at least one pair of classes (i, j), then a
similar process gives rise to quadratic discriminant anal-
ysis (QDA), which reduces to discriminant scores

δk;QDA(x) = −
1
2
(x−µ)>Σ−1

k (x−µ) + lnπk

= −
1
2

x>Σ−1
k x+ x>Σ−1

k µk −
1
2
µ>Σ−1

k µk + lnπk.
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To learn the LDA model, we must estimate Kp + p(p+1)
2

parameters from Tr;28 to learn QDA, K
�

p+ p(p+1)
2

�

.29 QDA
is thus more complex (and more flexible) than LDA.

The latter is recommended if Tr is small; the former
if Tr is large, but LDA will yield high bias if the Σk ≡ Σ
assumption is invalid.

Note that LDA gives rise to nearly linear separating hy-
persurfaces and QDA to quadratic ones.

3.2.3 Gaussian Naive Bayes Classification
If we assume further that each Σk is diagonal (that is, if
we assume that the features are independent from each
other in each class), we obtain the Gaussian naïve Bayes
classifier (GNBC), with discriminant scores given by

δk;GNBC(x) = −
1
2

p
∑

j=1

(x j −µk, j)2

σ2
k, j

+ lnπk.

The classification process continues as before.

Note that the assumption of independence is usually not
met, hence the “naïve” part in the name. In spite of this,
GNBC can prove very useful when p is too large, where
both LDA and QDA breakdown.

Note that this approach can also be used for mixed
feature vectors, by using combinations of p.m.f.s and p.d.f.s
in fk, j(x j), as required. We will re-visit NBC in Section 7.4.

3.2.4 Logistic Regression (Reprise)
We can also recast the 2−class LDA model as

ln
�

p0(x)
1− p0(x)

�

= ln(p0(x))− ln(p1(x))

= δ0(x)−δ1(x) = a0 + a>x,

which has the same form as logistic regression. It is not the
same model, however:

in logistic regression, the parameters are estimated
using the maximum likelihood on P(Y | X);
in Section 7.4, the parameters are estimated using
the full likelihood P(x | Y )P(x) = P(x, Y ).

3.3 Receiver Operating Characteristic Curve
We finish this section by giving an example of LDA and QDA
on the Gapminder example of Section 3.1 (with a training
set Tr consisting of N = 116 observations and a testing set
Te consisting of M = 50 observations), and we will hold a
preliminary discussion on model evaluation.

Given an observation x ∈ Te, we use a decision rule
based on the probabilities p̂0(x), p̂1(x) and a decision thresh-
old α ∈ (0,1).

28p parameters for each µ̂k and 1+ 2+ · · ·+ p parameters for Σ̂.
29p parameters for each µ̂k and 1+ 2+ · · ·+ p parameters for each Σ̂k .

On the training set Tr with 116 observations, we have

N0 = 51, N1 = 65, π̂0 = 51/116, π̂1 = 65/116,

µ̂0 = (45.40,4.08)>, µ̂1 = (9.57, 1.92)>

Σ0 =
�

496.51 23.38
23.38 2.17

�

, Σ1 =
�

42.79 2.14
2.14 0.31

�

µ̂= (25.30,2.87)>, Σ=
�

557.89 30.51
30.51 2.27

�

Thus,

δ̂0;LDA = −0.06x1 + 2.65x2 − 4.78

δ̂1;LDA = −0.11x1 + 2.31x2 − 2.28

δ̂0;QDA = −4.66− 0.002x2
1 + 0.01x1 + 0.04x1 x2 + 1.81x2 − 0.47x2

2

δ̂1;QDA = −6.70− 0.02x2
1 − 0.13x1 + 0.24x1 x2 + 7.01x2 − 2.43x2

2

With the class probability estimates

p̂1;LDA =
exp(δ̂1;LDA)

exp(δ̂0;LDA) + exp(δ̂1;LDA)
,

p̂1,QDA ==
exp(δ̂1;QDA)

exp(δ̂0;QDA) + exp(δ̂1;QDA)

and the decision threshold α ∈ (0, 1), the LDA and QDA life
expectancy classifiers are defined on Te by

Ĉα;LDA(x) =

¨

1 (high) if p1;LDA(x)≥ α
0 (low) else

and

Ĉα;QDA(x) =

¨

1 (high) if p1;QDA(x)≥ α
0 (low) else

The confusion matrix of a classifier on Te is a tool to eval-
uate the model’s performance:

α
prediction
0 1

actual
0 TP FN
1 FP TN

Here, TP stands for true positive, FN for true negative,
FP for false positive, and TN for true negative. There are
various classifier evaluation metrics (remember that the
testing set Te has M observations):

accuracy measures the correct classification rate TP+TN
M ;

misclassifcation is FP+FN
M = 1− accuracy;

false positive rate (FPR) is FP
FP+TN ;

false negative rate (FNR) is FN
TP+FN ;

true positive rate (TPR) is TP
TP+FN ;

true negative rate (TNR) is TN
FP+TN ;

There are other measures, including the F1−score, the
Matthews’ correlation coefficient, etc. [31].
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In the Gapminder example, the α = 0.5 confusion matrices
for the LDA and QDA classifiers are:

LDA
prediction
0 1

actual
0 22 10
1 0 18

QDA
prediction
0 1

actual
0 28 4
1 2 16

In the LDA case:

accuracy= 22+18
22+10+0+18 = 80%

misclassification rate= 10+0
22+10+0+18 = 20%

FPR= 0
0+18 = 0%

FNR= 10
22+10 = 31.25%

TPR= 22
22+10 = 68.75%

TNR= 18
0+18 = 100%

In the QDA case:

accuracy= 28+16
28+4+2+16 = 88%

misclassification rate= 4+2
28+4+2+16 = 12%

FPR= 2
2+16 = 11.1%

FNR= 4
28+4 = 12.5%

TPR= 28
28+4 = 87.5%

TNR= 16
2+16 = 88.9%

At first glance, it would certainly seem that the QDA model
performs better (at a decision threshold of α = 0.5), but
the FPR is not ideal. What would be the ideal value of α?

The receiver operating characteristic (ROC) curve plots
the true positive rate against the false positive rate (in red)
for each of the classifiers obtained by varying the decision
threshold α from (0,1) (see below).

A number of models have the same (FPR,TPR) coordinates.
The important realization is that classifier that is completely
random would lie on the line TPR = FPR (in black). The
ideal threshold would then be the one associated with the
model which is farthest from that line (in green).

Let u(α) be the vector from 0 to the (FPR(α), TPR(α)) co-
ordinates of the classifier with threshold α, and let v(α) be
the vector through (FPR(α), TPR(α)) and perpendicular to
the line TPR= FPR. The ideal α∗ satisfies:

α∗ = argmax
α
{‖v(α)‖}= argmax

α
{‖v(α)‖2}

= argmax
α

¦


u(α)− proj(1,1)u(α)




2©

= argmax
α

¦


(FPR(α), TPR(α))− proj(1,1)(FPR(α), TPR(α))




2©

= argmax
α

�

‖(FPR(α)− TPR(α), TPR(α)− FPR(α))‖2	

= argmax
α
{(FPR(α)− TPR(α))2}.

With the QDA model, the threshold is α∗QDA = 0.28 (coor-
dinates (0,0.844)); with the LDA model, the threshold is
α∗LDA = 0.73 (coordinates (0.056, 0.906)). The correspond-
ing confusion matrices are shown below.

α∗QDA
prediction
0 1

actual
0 27 5
1 0 18

α∗LDA
prediction
0 1

actual
0 29 3
1 1 17

Which model is best? It depends on the context of the task,
and on the consequences of the choice. What makes the
most sense here? Is there a danger of overfitting? Is param-
eter tuning acceptable, from a data massaging perspective?
What effect does the choice of priors have?
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4. Resampling Methods

How do we determine the variability of a regression fit? It
can be done by drawing different samples from the avail-
able data, fitting a regression model to each sample, and
then examining the extent to which the various fits differ
from one another.

Resampling methods provide additional information about
a fitted model, by applying the same fitting approach to
various sub-samples of the training set Tr.

We will consider three such methods:

cross-validation, which is used to estimate the test
error associated with a modeling approach in order
to evaluate model performance;
the bootstrap, which is used to provide a measure
of accuracy, standard deviation, bias, etc. of various
model parameter estimates, and
the jackknife, which is a simpler approach with the
same aims as the bootstrap.

For quantitative responses, the test error associated with a
statistical learning model is the average error arising when
predicting the response for observations that were not used
to train the model.

The training error, on the other hand, is computed
directly by comparing the model’s predictions to the actual
responses in Tr.

In general, the training error underestimates the test error,
dramatically so when the model complexity increases (i.e.
the variance-bias trade-off, see Figure 2).

A possible solution to this conundrum is to set aside
a large-enough testing set Te, but that’s not always possi-
ble if the original dataset is not that large in the first place.30

In the statistical learning framework, we estimate the test
error by holding a subset Va ⊆ Tr out from the fitting pro-
cess (which takes place on Tr \ Va).

The validation approach is a simple strategy that is used to
estimate the test error associated with a particular statistical
model on a set of observations.

Formally, the latter is split into a training set Tr and a
validation set Va (the hold-out set). The model is fit on the
training set; the fitted model is used to make predictions
on the validation set. The resulting validation set error
provides an estimate for the test error.

This approach is easy to implement and interpret, but it has
a number of drawbacks, most importantly:

30Some methods make direct adjustments to the training error rate in
order to estimate the test error (e.g., Mallow’s Cp statistic, R2

a, AIC, BIC,
etc.)

the validation error is highly dependent on the choice
of the validation set, and is thus quite volatile;
the model is fitted on a proper subset of the available
observations, and we might expect that this would
leadd to the validation error being larger than the
test error in general;
a number of classical statistical models can provide
test error estimates without having to resort to the
validation set approach.

4.1 Cross-Validation
K-Fold Cross Validation is a widely-used approach to esti-
mate the test error without losing some observations to a
hold-out test.31

The procedure is simple:

1. Divide the dataset randomly into K (roughly) equal-
sized folds (typically, K = 4,5, 10).

2. Each fold plays, in succession, the role of the valida-
tion set. If there are N observations in the dataset,
partition

{1, . . . , N}= C1
︸︷︷︸

fold 1

t· · · t CK
︸︷︷︸

fold K

.

If |Ck|= nk, we expect nk ≈
N
K for all k = 1, . . . , K .

3. For all k = 1, . . . , K, fit a model on {1, . . . , N} \ Ck
and denote the error on Ck by Ek.32

4. Write E for the average of the Ek.

5. The cross-validation estimate of the test error is

CV(K) =
K
∑

k=1

nk

N
Ek,

with standard error

Òse
�

CV(K)
�

=

√

√

√

√

1
K − 1

K
∑

k=1

(Ek − E)2.

These steps could also be replicated n times to generate a
distribution of an evaluation metric (such as the standard
error), see Figure 8 for an illustration.

The resulting mean can prove useful in order to deter-
mine how well a statistical learning procedure will perform
on unseen data.

31It can also provide a basis for model selection.
32For a regression model, there are many options but we typically use

Ek =
∑

i∈Ck

(yi − ŷi)2

nk
.
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Figure 8. Schematic illustration of cross-fold validation, for 8 replicates and 4 folds; 8× 4= 32 models from a given family are built
on various training sets (consisting of 3/4 of the available data – the training folds). Model family performance is evaluated on the
respective holdout folds; the distribution of the performance metric values (in practice, some combination of the mean/median and
standard deviation) can be used to compare various model families.

If, however, we are interested in selecting a method from
a list of methods, or a flexibility level among a family of
approaches, we do not care about the specific value of CV(K)
so much as where it is minimized.33

From the perspective of bias reduction (in the estimate
for the test error), the best choice is K = N , but this is
mitigated by the variance-bias trade-off. With K − N , we
have N models and N estimates for the test error, but these
estimates are highly correlated and the mean of highly
correlated estimates has high variance (see Section 4.3 for
details).

Example We use cross-validation in the Gapminder
dataset to estimate the test error MSETe when predicting
life expectancy as a regression against the logarithm of the
GDP per capita for the 2011 data.

We split the dataset into 10 random folds, each containing
16 or 17 observations, and fit 10 linear regression models
using the 149 or 150 remaining observations.34

33The estimate is usually biased, anyway.
34Note that the estimates for β0, β1, and MSETe are likely to be corre-

lated from one fold to the next, respectively, since the respective training
sets share a fair number of observations.

k nk β0;k β1;k MSETek

1 17 37.69 4.25 33.85
2 17 36.22 4.44 21.41
3 17 37.59 4.24 45.62
4 17 36.66 4.34 29.58
5 17 37.49 4.26 24.12
6 17 36.49 4.38 19.39
7 16 36.78 4.38 48.15
8 16 36.91 4.33 23.14
9 16 37.41 4.27 7.83

10 16 37.68 4.25 19.74

The K−fold cross-validation estimate of MSETe is thus

MSETe =
1

10

10
∑

k=1

MSETek
= 27.29

CV(K) =
10
∑

k=1

nk

166
MSETek

= 27.35

ŝe
�

CV(K)
�

=

√

√

√

√

1
10− 1

10
∑

k=1

(MSETek
−MSETe)2 = 12.38,

and 27.35± 2(12.38)≡ (2.59, 52.11) is a 95% C. I. for the
test error.
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We can also get K−fold cross-validation estimates of the
true β0 and β1:

β0(K) =
10
∑

k=1

nk

166
β0;k = 37.10

ŝe
�

β0(K)

�

=

√

√

√

√

1
10− 1

10
∑

k=1

(β0;k − β0)2 = 0.54,

and 37.10± 2(0.54)≡ (36.00, 38.18) is a 95% C. I. for β0;

β1(K) =
10
∑

k=1

nk

166
β1;k = 4.32

ŝe
�

β1(K)

�

=

√

√

√

√

1
10− 1

10
∑

k=1

(β1;k − β1)2 = 0.07,

and 4.32± 2(0.07)≡ (4.18,4.56) is a 95% C. I. for β1.

4.2 The Bootstrap
The bootstrap procedure uses re-sampling of the available
data to mimic the process of obtaining new replicates,
which allows us to estimate the variability of a statistical
model parameter of interest without the need to generate
new observations.

Replicates are obtained by repeatedly sampling observa-
tions from the original dataset with replacement. A boot-
strap dataset Tr∗ for a training set Tr with N observations is
a sample of N such observations, drawn with replacement.

The process is repeated M times to obtain bootstrap
samples Tr∗i and parameter estimates α̂∗i , for i = 1, . . . , M ,
from which we derive a bootstrap estimate

α̂∗ =
1
M

M
∑

i=1

α̂∗i ,

with standard error

Òse (α̂∗) =

√

√

√ 1
M − 1

M
∑

i=1

(α̂∗i − α̂∗)2.

The bootstrap can also be used to build approximate fre-
quentist confidence intervals for the parameter α.35 We
can even construct a covariance structure for the parame-
ters, given enough replicates.

Finally, it should be noted that in more complex scenar-
ios, the appropriate bootstrap procedure might be more
sophisticated than what has been described here.36

35But there are complications, so caution is advised.
36For instance, sampling with replacement at the observation level

would not preserve the covariance structure of time series data.

Example We use the bootstrap procedure for the regres-
sion problem with life expectancy and the log of the GDP
per capita in the 2011 Gapminder data. We use M = 200
bootstrap samples of size N = 166, each drawn from the
original dataset, with replacement.

The parameter estimates β̂ = (β̂0, β̂1)> for each bootstrap
sample are shown below (on the left).

It would appear that β approximately follows a multivariate
normal N (µ,Σ), with

µ≈ µ̂∗ =
�

37.22
4.31

�

, Σ≈ Σ̂∗ =
�

6.32 −0.72
−0.72 0.08

�

;

µ̂∗ provides the bootstrap estimates, the corresponding es-
timates for the standard errors are ŝe(µ̂∗) = (2.51,0.29)>,
and the 95% C. I. are:

C. I.(β0; 0.95) = 37.22± 2(2.51)≡ (32.19, 42.25)
C. I.(β1; 0.95) = 4.31± 2(0.29)≡ (3.73, 4.89).

Notice that the bootstrap estimates are wider than the cor-
responding cross-validation estimates.

4.3 The Jackknife
The jackknife estimator arises from cross-validation when
K = N ; the sole difference is in the variance estimate

Var(α̂∗) =
1

N(N − 1)

N
∑

i=1

(α̂∗i − α̂∗)
2.

The jackknife procedure is also known as leave one out
validation.

Example We use the jackknife procedure for the regres-
sion problem with life expectancy and the log of the GDP
per capita in the 2011 Gapminder data.

The parameter estimates β̂ = (β̂0, β̂1)> for each jackknife
sample are shown above (on the right). The jackknife esti-
mates are µ̂∗ = (37.11, 4.32)>, the corresponding estimates
for the standard errors are ŝe(µ̂∗) = (0.011,0.001)>, and
the 95% C. I. are:

C. I.(β0; 0.95) = 37.11± 2(0.011)≡ (37.088, 37.133)
C. I.(β1; 0.95) = 4.32± 2(0.001)≡ (4.314, 4.319).

Notice that the jackknife estimates are much tighter than
the corresponding bootstrap estimates.
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Figure 9. Training set and linear fit for each of the 10 folds in the Gapminder 2011 data. Note the similarity of the fits
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5. Model Selection
A linear model

Y = ~X> ~β + ε

should be seen as an attempt to approximate the regression
function

y = f (~x) = E[Y | ~X = ~x].
What we gain in convenience of fit (and structure), we lose
in modeling accuracy.

In this framework, we assume a linear relationship
between the response Y and the predictors X1, . . . , X p,
which we (typically) fit using (ordinary) least squares
framework, which is to say

β̂ = argmin
β
{‖Y−Xβ‖2},

for the response vector Y and design matrix X provided
by a training set Tr.

Fundamentally, there are 3 ways in which the OLS frame-
work can be extended:

1. additive but non-linear models (see Section 6.3);
2. non-linear models (see Sections 6 and 7);
3. replacing LS with alternative fitting procedures (which

we will discuss momentarily).

The latter approach can produce better accuracy than OLS
without sacrificing too much in the way of model inter-
pretability.37

But in the OLS framework, prediction accuracy suffers
when p > n, due to curse of dimensionality; model in-
terpretability can be improved by removing irrelevant fea-
tures or by reducing p.

The 3 classes of methods to do so are:

subset selection/feature selection;
dimension reduction, and
shrinkage and regularization methods.

In subset selection, we identify a subset of the p predictors
for which there is evidence of a (strong-ish) link with the
response, and we fit a model to this reduced set using the
OLS framework.

For shrinkage/regularization methods, we fit a model
involving all p predictors, but the estimated coefficients are
shrunk towards 0 relative to the OLS parameter estimates,
which has the effect of reducing variance and simultane-
ously perform variable selection.

In dimension reduction, we project the p predictors
onto an M−dimensional manifold H , with M � p; in
numerous circumstances, H is a subspace of Rp and we
can fit an OLS model on the projected coordinates.

37In practice, linear models have distinct advantages over more so-
phisticated models, mainly in the areas of superior interpretability and
(frequently) appropriate predictive performances (especially for linearly
separable data). These “old faithful” models will still be there if fancy
deep learning model fails analysts in the future.

5.1 Curse of Dimensionality
A model is said to be local if it depends solely on the obser-
vations near the input vector (k nearest neigbours classifi-
cation is local, whereas linear regression is global). With
a large training set, increasing k in a kNN model, say, will
yield enough data points to provide a solid approximation
to the theoretical classification boundary.

The curse of dimensionality (CoD) is the breakdown
of this approach in high-dimensional spaces: when the
number of features increases, the number of observations
required to maintain predictive power also increases, but
at a substantially higher rate (see Figure 10 for an illus-
tration of the CoD).

Manifestations of CoD
Let x i ∼ U1(0, 1) be i.i.d. for i = 1, . . . , N . For any z ∈ [0, 1]
and ε ∈ (0,1] such that

I1(z;ε) = {y ∈ R : |z − y|∞ < ε} ⊆ [0,1],

the expected number of observations x i in I1(z;ε) is
�

�I1(z;ε)∩ {x i}Ni=1

�

�≈ ε · N ,

so an ε∞−ball subset of [0,1]1 contains approximately ε
of the observations in {x i}Ni=1 ⊆ R, on average.

Let xi ∼ U2(0,1) be i.i.d. for all i. For any z ∈ [0,1]2

and ε ∈ (0,1] such that

I2(z;ε) = {Y ∈ R2 : ‖z− Y‖∞ < ε} ⊆ [0, 1]2,

the expected number of observations xi in I2(z;ε) is
�

�I1(z;ε)∩ {xi}Ni=1

�

�≈ ε2 · N ,

so an ε∞−ball subset of [0, 1]2 contains approximately ε2

of the observations in {xi}Ni=1 ⊆ R
2, on average.

In general, the same reasoning shows that an ε∞−ball
subset of [0,1]p ⊆ Rp contains approximately εp of the
observations in {xi}Ni=1 ⊆ R

p, on average.
Thus, to capture r percent of uniformly distributed ob-

servations in a unit p−hypercube, a p−hypercube with edge

εp(r) = r1/p

is needed, on average. For instance, to capture r = 1/3 of
the observations in a unit p−hypercube in R, R2, and R10,
a hyper-subset with edge ε1(1/3)≈ 0.33, ε2(1/3)≈ 0.58,
and ε10(1/3)≈ 0.90, respectively.

The inference is simple: in general, as p increases, the
nearest observations to a given point x j ∈ Rp are in fact
quite distant from x j , in the Euclidean sense, on average
– locality is lost!38 This can wreak havoc on models and
algorithms that rely on the (Euclidean) nearness of obser-
vations (k nearest neighbours, k−means clustering, etc.).

38The situation can be different when the observations are not i.i.d.
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Figure 10. Illustration of the curse of dimensionality; N = 100 observations are uniformly distributed on the unit
hypercube [0, 1]d , d = 1,2, 3. The red regions represent the smaller hypercubes [0,0.5]d , d = 1, 2,3. The percentage of
captured datapoints is seen to decrease with an increase in d [14].

The CoD manifests itself in various ways. In datasets with
a large number of features:

most observations are nearer the edge of the sam-
ple than they are to other observations, and
realistic training sets are necessarily sparse.

Imposing restrictions on models can help mitigate the ef-
fects of the CoD, but if the assumptions are not warranted
the end result may be catastrophic.

5.2 Subset Selection
Given p predictors (some of which may be interaction
terms), there are 2p OLS models that can be fit on a training
set Tr. Which of those models should be selected as the
best model?

5.2.1 Best Subset Selection (BSS)
In the BSS approach, the search for the best model is usually
broken down into 3 stages:

1. let M0 denote the null model (without predictor)
which simply predicts the sample mean for all obser-
vations;

2. For k = 1, . . . , p (as long as the model can be fit):

(a) fit every model that contains exactly k predictors
(there are

�p
k

�

of them);
(b) pick the model with smallest SSRes (largest R2)

and denote it byMk;

3. select a unique model from {M0, . . . ,Mp} using CV(K),
Cp (AIC), BIC, R2

a, or any other appropriate metric.39

BSS is conceptually simple, but with 2p models to try out,
it quickly becomes computationally infeasible for large p
(p > 40, say).

39We cannot use SSRes or R2 as metrics in this last step, as we would
always select Mp since SSRes decreases monotonically with k and R2

increases monotonically with k. Low SSRes/high R2 are associated with a
low training error, whereas the other metrics attempt to say something
about the test error, which is what we are after: after all, a model is good
if it makes good predictions!

When p is large, the chances of finding a model that per-
forms well according to step 3 but poorly for new data
increase, which can lead to overfitting and high-variance
estimates, which were exactly the problems we were trying
to avoid in the first place.40

5.2.2 Stepwise Selection (SS)
SS methods attempt to overcome this challenge by only
looking at a restricted set of models. Forward stepwise
selection starts with the null modelM0 and adding pre-
dictors one-by-one until it reaches the full modelMp:

1. LetM0 denote the null model;

2. For k = 0, . . . , p− 1 (as long as the model can be fit):

(a) consider the p− k models that add a single pre-
dictor toMk;

(b) pick the model with smallest SSRes (largest R2)
and denote it byMk+1;

3. select a unique model from {M0, . . . ,Mp} using CV(K),
Cp (AIC), BIC, R2

a, or any other appropriate metric.

Backward stepwise selection works the other way, start-
ing with the full modelMp and removing predictors one-
by-one until it reaches the null modelM0:

1. LetMp denote the full model;

2. For k = p, . . . , 1 (as long as the model can be fit):

(a) consider the k models that remove a single pre-
dictor fromMk;

(b) pick the model with smallest SSRes (largest R2)
and denote it byMk−1;

3. select a unique model from {M0, . . . ,Mp} using CV(K),
Cp (AIC), BIC, R2

a, or any other appropriate metric.

40We are assuming that all models are OLS models, but subset selection
algorithms can be used for other families of supervised learning methods;
all that is required are appropriate training error estimates for step 2(b)
and test error estimates for step 3.
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The computational advantage of SS over BSS is evident:
instead of having to fit 2p models, SS only requires

1+ p+ (p− 1) + · · ·+ 2+ 1=
p2 + p+ 2

2

models to be fit to Tr. However, there is no guarantee that
the “best” model (among the 2p BSS models) will be found
in the p2+p+2

2 SS models.

SS can be used in settings where p is too large for BSS
to be computationally feasible. Note that for OLS models,
backward stepwise selection only works if p ≤ n (otherwise
OLS might not have a unique parameter solution); if p > n,
only forward stepwise selection is viable.

5.2.3 Hybrid Selection (HS)
HS methods attempt to mimic BSS while keeping model
computation in a manageable range, not unlike in SS. More
information on this topic is available in [15].

5.2.4 Selecting the Optimal Model
The full model always has largest R2/smallest SSRes (as it
is a measure of the training error, and as such, is subject to
the overfitting property found in the bias-variance trade-off
diagram of Figure 2).

In order to estimate the test error (and thus pick the
optimal model in the list {M0, . . . ,Mp}, we can either:

adjust the training error to account for the bias in-
duced by overfitting, or
directly estimate the test error using a validation set
or cross-validation.

Adjustment Statistics Commonly, we use one of the fol-
lowing adjustment statistics: Mallow’s Cp, the Akaike infor-
mation criterion (AIC), the Bayesian information criteria
(BIC), or the adjusted coefficience of determination R2

a; Cp,
AIC, and BIC must be minimized, while R2

a must be maxi-
mized.

The adjustment statistics require the following quantities:

N , the number of observations in Tr;
p, the number of predictors under consideration;
d = p+ 2,
σ̂2, the estimate of Var(ε) (irreducible error);
SSRes and SSTot, the residual and the total sum of
squares.

Mallow’s Cp statistic is given by

Cp =
1
N
(SSRes+ 2dσ̂2) =MSETr +

2dσ̂2

N
︸ ︷︷ ︸

adjustment

.

As d increases, so does the adjustment term. Note that if
σ̂2 is an unbiased estimate of Var(ε), Cp is an unbiased
estimate of MSETe.

The Akaike information criterion (AIC) is given by

AIC= −2 ln L + 2d
︸︷︷︸

adjustment

,

where L is the maximized value of the likelihood function
for the estimated model. If the errors are normally dis-
tributed, this requires finding the maximum of

L =
N
∏

i=1

1
p

2πσ̂
exp

�

−
(Yi − ~X i

>
β)2

2σ̂2

�

=
1

(2π)N/2σ̂N
exp

�

−
1

2σ̂2

N
∑

i=1

(Yi − ~X i
>
β)2

�

,

or, upon taking the logarithm,

ln L = constant−
1

2σ̂2
‖Y−Xβ‖2,

and so

argmax
β
{ln L(β)}= argmin

β
{‖Y−Xβ‖2}.

However,

AIC= −2 ln L + 2d = constant+
1
σ̂2
‖Y−Xβ‖2 + 2d

= constant+
SSRes
σ̂2

+ 2d

= constant+
N
σ̂2
·

1
N

�

SSRes+ 2dσ̂2
�

= constant+
N
σ̂2

Cp.

Evidently, when the error structure is normal, minimizing
AIC is equivalent to minimizing Cp.

The Bayesian information criterion uses a different ad-
justment term:

BIC=
1
N
(SSRes+ dσ̂2 ln N) =MSETr + dσ̂2 ln N

N
︸ ︷︷ ︸

adjustment

.

This adjustment penalizes models with large number of
predictors; minimizing BIC results in selecting models with
fewer variables than those obtained by minimizing Cp, in
general.

The adjusted coefficient of determination R2
a is the Ur-

example of an adjusted statistic:

R2
a = 1−

SSRes/(n− p− 1)
SSTot/(n− 1)

= 1− (1− R2)
n− 1

n− p− 1
.

Maximizing R2
a is equivalent to minimizing SSRes

n−p−1 . Note
that R2

a penalizes models with unnecessary variables.

28 P.Boily (2021)



DATA SCIENCE REPORT SERIES STATISTICAL METHODS FOR SUPERVISED LEARNING

Validation and Cross-Validation (Reprise) As before, we
want to selectMk∗ from a sequence of models {M1,M2, . . .}.
The procedure is simple: we compute MSEVa on some val-
idation set or CV(K) for eachMk, and select k∗ for which
the value is smallest (see Section 4.1).

The main advantages of this approach is that there is
no need to estimate the irreducible error Var(ε) = σ2, that
the method produces an estimate for MSETe “for free,” and
that it can be used when the number of parameters is hard
to pinpoint (in deep learning networks, for instance).

Historically, adjustment approaches were preferred because
cross-validation was computationally demanding, especially
when p, n were large, but that is not as much of a problem
in modern times.

Consequently, cross-validation is championed as the op-
timal model selection approach, using the one standard
error rule: calculate the standard error of ˆMSETe for each
model size, and select the smallest model for which ˆMSETe
is within one standard from the lowest point on the cross-
validation error curve.

This is equivalent to Occam’s Razor41 on models that have
equivalent predictive power, roughly speaking.

In the image below (modified from [15]), the lowest
point is reached when p = 6 (blue “X”) and the dashed red
lines represent the 1-standard error limits; according to the
rule described above, we would select the model with p = 4
parameters (red dot).

41”When presented with competing hypotheses about the same predic-
tion, one should select the solution with the fewest assumptions.”

Stepwise selection methods are used extensively in practice,
but there are serious limitations to this approach:

all intermediate tests are biased, as they are all based
on the same data;
R2

a only takes into account the number of features in
the final model, not the degrees of freedom that have
been used up during the entire process;
if the cross-validation error is used, stepwise selection
should be repeated or each sub-model.

All in all, SS is a classic example of p−hacking: we are
getting results without setting hypotheses up first.

5.3 Feature Selection Methods
Removing irrelevant or redundant variables is a common
data processing task. It is used both to help with the bias-
variance trade-off and to mitigate the effects of the curse
of dimensionality.

5.3.1 Overview
Feature selection approaches follow 2 axes:

filter vs. wrapper
unsupervised vs. supervised

Filter methods inspect each variable individually and core
them according to some importance metric. The features
that are less relevant (i.e., those that score below some
fixed threshold or rank) are then removed from the dataset.

Wrapper methods, on the other hand, select feature
subsets for which the evaluation criterion used by the even-
tual analytical method is optimized. The process is itera-
tive and typically computationally intensive: candidate
subsets are used in the analysis until one produces an ac-
ceptable evaluation metric related to the analysis.42

Unsupervised methods determine the importance of a fea-
ture solely on the basis of the values it takes; supervised
methods evaluate each feature’s importance by studying its
relationship with the target feature (via correlation, etc.).

Wrapper methods (such as BSS, SS) are usually (but not
always) supervised methods. Unsupervised filter methods
include removing constant variables, variables with “too
many” missing values, ID-like variables, features with low
variability, etc.43

Supervised filter methods have been well-studied and
are commonly used. As an example, we can compute the
correlation

ρX Y =

N
∑

i=1

(x i − x)(yi − y)

√

√

√

N
∑

i=1

(x i − x)2
N
∑

i=1

(yi − y)2

42Wrapper methods are so-called as they “wrap” feature selection around
the statistical learning algorithm.

43Such methods search for irrelevant or noisy features.
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between each predictor X and the response variable Y , and
retain only those features strongly correlated with Y .44

Another such method depend on the mutual informa-
tion shared between a categorical target Y and a categorical
predictor X :

I(Y ; X ) = H(Y )−H(Y | X ),

where the entropy H(Y ) and the conditional class en-
tropy H(Y | X ) are given by

H(Y ) = −
∑

C∈CY

P(Y = C) ln P(Y = C)

H(Y | X ) = −
∑

C ∈ CY
V ∈ CX

P(X = V, Y = C) ln
�

P(X = V, Y = C)
P(X = V )

�

,

with CX ,CY being the levels of X , Y , respectively, and
0 × ln0 = 0, by convention. In a nutshell, I(Y ; X ) mea-
sures the amount of information that can be obtained about
Y by knowing X . Features which provide “high” mutual
information about the target Y are retained.

For classification tasks, other common metrics include:
Gain Ratio, Inf Gain, Gini, MDL, etc. For regression tasks,
the usual metrics are MSE of Mean, MAE of Mean, Relief,
etc. More details are available in [18].

5.3.2 Shrinkage Methods
SS methods use OLS to fit a linear model with subsets of
predictors. Another approach is provided by the least ab-
solute shrinkage and selection operator (LASSO) and its
variants.

In what follows, assume that the training set consists of N
centered and scaled observations xi = (x i,1, · · · , x i,p), to-
gether with target observations yi .

Let β̂OLS, j be the jth OLS coefficient, and set a threshold
λ > 0, whose value depends on the training dataset Tr.

Recall that β̂OLS is the exact solution to the OLS problem

β̂OLS = argmin
β
{‖Y−Xβ‖2

2}= argmin
β
{SSRes}.

In general, no restrictions are assumed on the values of
the coefficients β̂OLS, j – large magnitudes imply that cor-
responding features play an important role in predicting
the target. This observation forms the basis of a series of
useful OLS variants.

Ridge regression (RR) is a method to regularize the OLS
regression coefficients. Effectively, it shrinks the OLS coef-
ficients by penalizing solutions with large magnitudes – if
the magnitude of a specific coefficient is large, then it must

44Note that is approach is of limited use if the relationship between X
and Y is non-linear.

have great relevance in predicting the target variable. This
leads to a modified OLS problem:

β̂RR = argmin
β
{‖Y−Xβ‖2

2
︸ ︷︷ ︸

SSRes

+Nλ‖β‖2
2

︸ ︷︷ ︸

shrinkage
penalty

}.

This quantity is small when SSRes is small (i.e., the model
is a good fit to the data) and when the shrinkage penalty
is small (i.e., when each β j is small). RR solutions are typi-
cally obtained via numerical methods.45

The hyperparameter λ controls the relative impact of both
components. If λ is small, then the shrinkage penalty is
small even if the individual coefficients β j are large; if λ
is large, then the shrinkage penalty is only small when all
coefficients β j are small (see Figure 11 for an illustration).

Setting the “right” value for λ is crucial; it can be done
via cross-validation (see [15, pp.227-228] for details).

The OLS estimate are equivariant: if β̂ j is the estimate

for the coefficient β j of X j , then
β̂ j

c is the estimate for the
coefficient of the scaled variable cX j . RR coefficients do
not have this property, which is why the dataset must be
centered and scaled to start with.

Finally, note that RR estimates help to mitigate the bias-
variance trade-off and reduce issues related to overfitting
(even if they do not reduce the dimensions of the dataset).

Regression with best subset selection runs on the same
principle but uses a different penalty term, which effectively
sets some of the coefficients to 0 (this could be used to select
the features with non-zero coefficients, potentially). The
problem consists in solving another modified version of the
OLS scenario, namely

β̂BS = argmin
β
{‖Y−Xβ‖2

2+Nλ‖β‖0}, ‖β‖0 =
∑

j

sgn(|β j |).

Solving the BS problem typically (also) requires numerical
methods and cross-validation.46

A slight modification to the RR shrinkage penalty can over-
come the lack of covariance. The LASSO is an alternative
to RR obtained by solving

β̂L = argmin
β
{‖Y−Xβ‖2

2 + Nλ‖β‖1};

the penalty effectively forces coefficients which combine
the properties of RR and BS, selecting at most max{p, N}

45For orthonormal covariates X>X= Ip , we have β̂RR, j =
β̂OLS, j
1+Nλ .

46For orthonormal covariates, we have

β̂BS, j =

�

0 if |β̂LS,j|<
p

Nλ
β̂LS,j if |β̂LS,j| ≥

p
Nλ

30 P.Boily (2021)



DATA SCIENCE REPORT SERIES STATISTICAL METHODS FOR SUPERVISED LEARNING

Figure 11. Ridge regression coefficients in a generic problem (top); note how the parameters converge to 0 when the
threshold λ increases (left); the ratio between the magnitude of the ridge regression parameter and the OLS parameter is
shown on the right. LASSO coefficients on the same data; note how the coefficients go directly to 0 after a certain
threshold λ (modified from [15]).

features, and usually no more than one per group of highly
correlated variables (the other coefficients are forced down
to 0 when λ is large enough, see Figure 11 for an illustra-
tion).47

Why do we get β̂L, j = 0 for some j, but not for the RR
coefficients? The RR and LASSO formulations are equiva-
lent to

β̂RR = argmin
β
{SSRes | ‖β‖2

2 ≤ s} for some s

β̂L = argmin
β
{SSRes | ‖β‖1 ≤ s} for some s

Graphically, this looks like the images shown in Figure 12.
The RR coefficients β̂RR are found at the first intersection
of the ellipses of constant SSRes around the OLS coefficient

47For orthonormal covariates, we have

β̂L, j = β̂OLS, j ·max

�

0, 1−
Nλ

|β̂OLS, j |

�

.

β̂ with the 2−sphere ‖β‖2
2 ≤ s; that intersection is usually

away from the axes (due to the lack of “sharp” points); this
is not usually the case for the intersection of the 1−sphere
‖β‖2 ≤ s.

The LASSO thus typically produces simpler models, but
predictive accuracy matters too (in the form of MSETe, say).
Depending on the data, either of the two approaches can
be optimal, thanks to the No Free Lunch Theorem.

If the response is related to a relatively small number of
predictors (which we do not usually know a priori), LASSO
is recommended.

The use of other penalty functions (or combinations thereof)
provides various extensions: elastic nets; group, fused and
adaptive lassos; bridge regression, etc.

The modifications described above were defined assuming
an underlying linear regression model, but they generalize
to arbitrary classification/regression models as well. For
a loss (cost) function L (Y, ŷ(W)) between the actual tar-
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Figure 12. Level curves and neighbourhoods for ridge regression (right) and LASSO (left) [15].

get and the values predicted by the model parameterized
by W, and a penalty vector R(W) = (R1(W), · · · , Rk(W))

>,
the regularized parametrization W∗ solves the general
regularization problem

W∗ = argmin
W
{L (Y, ŷ(W)) + Nλ>R(W)},

which can be solved numerically, assuming some nice prop-
erties on L and R [11]; as before, cross-validation can be
used to determine the optimal vector λ [10].

Example In R, regularization is implemented in the pack-
age glmnet (among others). An elastic net can be used
to select features that are related with the life expectancy
Y in the Gapminder 2011 observations.

The LASSO method (α= 1) leads to the model

Y = 70.8− 5.7(infant mortality) + 0.2(gdp)

− 1.8(Africa) + 0.2(Europe)− 0.9(Oceania),

while RR (α= 0) leads to the model

Y = 70.8− 0.4(population)− 4.7(infant mortality)
− 0.4(fertility) + 0.6(gdp)− 1.6(Africa)
+ 0.5(Americas) + 0.6(Asia) + 1.0(Europe)
− 0.7(Oceania),

which agrees with the discussion above.

The values of the coefficient themselves are not as impor-
tant as their signs and the fact that they are roughly similar
in both models.

5.4 Dimension Reduction Methods
There are many advantages to working with reduced, low-
dimensional data:

visualisation methods of all kinds are available and
(more) readily applicable to such data in order to
extract and present insights;
high-dimensional datasets are subject to the so-called
curse of dimensionality(CoD), which asserts that
when the number of features in a model increases,
the number of observations required to maintain pre-
dictive power also increases, but at a substantially
larger rate (see Figure 10);
another consequence of the curse is that in high-
dimension sets, all observations are roughly dissimi-
lar to one another – observations tend to be nearer
the dataset’s boundaries than they are to one another.

Dimension reduction techniques such as the ubiquitous
principal component analysis, independent component
analysis, factor analysis (for numerical data), or multi-
ple correspondence analysis (for categorical data) project
multi-dimensional datasets onto low-dimensional but high-
information spaces (see Manifold Hypothesis [18]) prior
to fitting whatever model is deemed appropriate.

Some information is necessarily lost in the process, but
in many instances the drain can be kept under control and
the gains made by working with smaller datasets can offset
the losses of completeness.

For m = 1, . . . , M ≤ p, let zm = ~X>j φ be linear combina-
tions of the original predictors {X1, . . . , X p}.

If we are fitting y = f (~x) = E[Y | ~X = ~x] using OLS,
we can also fit yi = θ0 + z>i θ + εi , i = 1, . . . , N using OLS.
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Figure 13. Illustration of PCA on an artificial 2D dataset. The red axes (second image from left) represent the axes of the best elliptic
fit. Removing the minor axis by projecting the points on the major axis leads to a dimension reduction and a (small) loss of information
(last image on the right).

If the constants φm, j are selected wisely, then transform-
ing the variables can yield a model that outperforms OLS
regression – the predictions might be better than those ob-
tained by fitting yi = β0 + x>i β + εi , i = 1, . . . , N .

By definition, θ0 = β0 and

z>i θ =
M
∑

m=1

θmzi,m =
M
∑

m=1

θmx>i φ =
M
∑

m=1

θm

p
∑

j=1

φm, j x i, j

=
p
∑

j=1

M
∑

m=1

θmφm, j x i, j =
p
∑

j=1

β j x i, j = x>i β ,

where β j =
∑M

m=1 θmφm, j , which is to say that the dimen-
sion reduction regression is a special case of the original
linear regression model, with contstrained coefficients β j .

Such constraints can help with the bias-variance trade-
off (when p� N , picking M � p can reduce the variance
of the fitted coefficients).

The challenge then is to find an appropriate way to
pick the φm, j . We will consider two approaches: principal
components and partial least squares.

5.4.1 Principal Component Analysis
Principal component analysis (PCA) can be used to find
the combinations of variables along which the data points
are most spread out; it attempts to fit a p−ellipsoid to a
centered representation of the data.

The ellipsoid axes are the principal components of the data.
Small axes are components along which the variance is
“small”; removing these components leads, in an ideal set-
ting, to a “small” loss of information48 (see Figure 13)

The procedure is simple:

1. centre and “scale” the data to obtain a matrix X (warn-
ing: not the design matrix);

2. compute the data’s covariance matrix K= X>X;
3. compute K’s eigenvalues Λ and its orthonormal eigen-

vectors matrix W;
4. each eigenvector w (also known as loading) repre-

sents an axis, whose variance is given by the associ-
ated eigenvalue λ.

The loading that explains the most variance along a single
axis (the first principal component) is the eigenvector of
the empirical covariance matrix corresponding to the largest
eigenvalue, and that variance is proportional to the eigen-
value; the second largest eigenvalue and its corresponding
eigenvector form the second principal component and
variance pair, and so on, yielding orthonormal principal
components PC1, . . . , PCr , where r = rank(X).49

48Although there are scenarios where it could be those “small” axes
that are more interesting – such as is the case with the “pancake stack”
problem.

49If some of the eigenvalues are 0, r < p, and vice-versa, implying that
the data was embedded in a r−dimensional manifold to begin with.
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Figure 14. Selecting the number of PCs. The proportion of the variance explained by each (ordered) component is shown in the first
3 charts; the cumulative proportion is shown in the last chart. The kink method is shown in the second image, the individual threshold
component in the third, and the cumulative proportion in the fourth.

Principal component analysis can provide an avenue for di-
mension reduction, by “removing” components with small
eigenvalues (see Figure 13): the proportion of the spread
in the data which can be explained by each principal com-
ponent (PC) can be placed in a scree plot (a plot of eigen-
values against ordered component indices) and retain the
ordered PCs:

for which the eigenvalue is above some threshold
(say, 25%);
for which the cumulative proportion of the spread
falls below some threshold (say 95%), or
prior to a kink in the scree plot.

For instance, consider an 8−dimensional dataset for which
the ordered PCA eigenvalues are provided below:

PC 1 2 3 4 5 6 7 8
Var 17 8 3 2 1 0.5 0.25 0

Prop 54 25 9 6 3 2 1 0
Cumul 54 79 88 94 98 99 100 100

If only the PCs that explain up to 95% of the cumulative
variance are retained, the original data reduces to a 4-
dimensional subset; if only the PCs that individually ex-
plain more than 25% of the variance are retained, to a
2-dimensional subset; if only the PCs that lead into the
first kink in the scree plot are retained, to a 3-dimensional
subset (see Figure 14).

PCA is commonly-used, but often without regard to its
inherent limitations:
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it is dependent on scaling, and so is not uniquely
determined;
with little domain expertise, it may be difficult to
interpret the PCs;
it is quite sensitive to outliers;
the analysis goals are not always aligned with the
principal components, and
the data assumptions are not always met – in par-
ticular, does it always make sense that important
data structures and data spread be correlated (the
so-called counting pancakes problem), or that the
components be orthogonal?

There are other methods to find the principal manifolds
of a dataset, including UMAP, self-organizing maps, auto-
encoders, curvilinear component analysis, manifold sculpt-
ing, kernel PCA, etc. PCA.

Formalism because K is positive semi-definite (K ≥ 0),
the eigenvalues λi = s2

i ≥ 0 and they can be ordered in a
decreasing sequence

Λ= diag(λ1, . . . ,λp), where λ1 ≥ · · ·λp ≥ 0

and W= [w1| · · · |wp].

If k = rank(X), then there are p− k “empty” principal com-
ponent (corresponding to null eigenvalues) and k “regular”
principal components (corresponding to zero eigenvalues).
We write W∗ = [w1| · · · |wk] and Λ∗ = diag(λ1, . . . ,λk).

If p− k 6= 0, then the eigenvalue decomposition of K is

K=
�

W∗ 0
�

�

Λ∗ 0
0 0

��

(W∗)>

0

�

=WΛW>;

if X is of full rank, then W∗ =W and Λ∗ = Λ.

The eigenvectors of K (the w j) are the singular vectors of
X: there exist UN×N and ΣN×p such that

X= UΣW>,

where

U=
�

U∗ 0
�

and Σ=
�

diag(si)
0

�

.

If X is of full rank, then W is orthonormal and so represents
a rotation matrix. As W−1 = W>, we must then have
XW = UΣ, the principal component decomposition of X:

TN×p = XW,
�

t1 · · · tp

�

=
�

x1 · · · xN

�> �
w1 · · · wp

�

.

The link between the principal components and the eigen-
vectors can be made explicit: the first principal component
PC1 is the loading w1 (with ‖w1‖2 = 1) which maximizes
the variance of the first column of T:

w1 = argmax
‖w‖2=1

{Var(t1)}= argmax
‖w‖2=1

¨

1
N − 1

N
∑

i=1

(t1,i − t1)
2

«

.

Since

t1 =
1
N

N
∑

j=1

E[x>j w1] =
1
N

N
∑

j=1

E

� p
∑

i=1

x j,iwi,1

�

=
1
N

N
∑

j=1

p
∑

i=1

wi,1 E[x j,i]
︸ ︷︷ ︸

= 0 as X
is cent.

= 0,

then Var(t1) =
1

N−1 (t
2
1,1 + · · · + t2

n,1) and the problem is
equivalent to

w1 = argmax
‖w‖2=1

{t2
1,1 + · · ·+ t2

n,1},

By construction, t2
i,1 = (x

>
i w1)2 for all i, so

t2
1,1+· · ·+t2

n,1 = (x
>
1w1)

2+· · ·+(x>N w1)
2 = ‖Xw1‖2 =w1X>Xw1.

Hence,

w1 = argmax
‖w‖2=1

{wX>Xw}= argmax
‖w‖2=1

{w>Kw};

this is equivalent to finding the maximizer of F(w) =w>Kw
subject to the the constrain G(w) = 1−w>w = 0. We solve
this problem by using the method of Lagarange multipliers;
any optimizer w∗ must be either:

1. a critical point of F , or
2. a solution of ∇F(w) +λ∇G(w) = 0, λ 6= 0.

But ∇F(w) = 2Kw and ∇G(w) = −2w; either w∗ ∈ ker(K)
(case 1) or 2Kw∗ − 2λ∗w∗ = 0 (case 2); either

Kw∗ = 0 or (K−λ∗ I)w∗ = 0, λ∗ 6= 0.

In either case, λ∗ ≥ 0 is an eigenvalue of K , with associated
eigenvector w∗. There are at most p distinct possibilities
{(λ j ,w j)}

p
j=1, and for each of them

w>j Kw j =w>j λ jw j = λ jw
>
j w j = λ j ,

since w>j w j = 1. Thus,

argmax
‖w‖2=1

{Var(t1)}= argmax
‖w‖2=1

{λ j}=w1 = PC1,

since λ1 ≥ λ≥ 0 for all eigenvalues λ of K.

A similar argument shows that w j , j = 2, . . . , p, is the
direction along which the variance is the jth highest, as-
suming that w j is orthonormal to all the preceding w`,
` = 1, . . . , j − 1, and that the variance is proportional to λ j .

The process is repeated at most p times, yielding r non-
trivial principal components PC1, . . . , PCr , where r ≤ p is
the rank(X).

Thus, we see that the rotation matrix W that maximizes
the variance sequentially in the columns of T= XW is the
matrix of eigenvectors of K= X>X.
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5.4.2 Principal Components Regression
Let us assume that M principal components {Z1, . . . , ZM}
have been retained, where

Zi =w>i (X1, . . . , Zp),

assuming that the eigenvectors wi are ordered according to
the corresponding eigenvalues (λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0):

the first principal component is the normalized (cen-
tered and scaled) linear combination of variables with
the largest variance;
the second principal component is the normalized lin-
ear combination of variables with the largest variance,
subject to having no correlation with all previous com-
ponents (the first);
...
the M th principal component is the normalized linear
combination of variables with the largest variance,
subject to having no correlation with all previous
components.

The regression function f (~x) = E[Y | ~X = ~x] is hopefully
well approximated by the function g(~z) = E[Y | ~Z = ~z],
i.e.,

ŷz = g(z) = γ0 + γ1z1 + · · ·+ γM zM

should compare acceptably to

ŷz = f (z) = β0 + β1 x1 + · · ·+ βp xp.

The main challenge is to determine the optimal M . If M
is too small, we run the risk of having a model with high
squared bias and low variance (underfitting); if M is too
large, not only we we not achieve much in the way of
dimension reduction, but we might produce a model with
low squared bias and high variance (overfitting).

Any method that allows for the estimation of MSETe
(such as cross-validation) could be used to select M , but
there are other approaches as well (see p.34).

5.4.3 Partial Least Squares
In principal component regression (PCR), the identified
directions (linear combinations) that best represent the
predictors {X1, . . . , X p} are determined in an unsupervised
manner: the response Y plays no role in determining the
principal components.

As such, there is no guarantee that the directions that
best explain the predictors are also the best directions to
use to predict the response.

The framework for partial least squares is the same as
that for PCR, except that the directions Zi are selected both
to explain the predictors and to be related to the response Y .

As in PCR, we start by normalizing (centering and scal-
ing) the training set

X=
�

1 x1 · · · xp

�

.

The first direction Z1 is computed using the OLS coefficient
estimates of

Yi = φ
1
0, j +φ1, jX i, j + γi , j = 1, . . . , p, i = 1, . . . , N .

Note that each φ1, j is proportional to ρX j ,Y and that the
direction

Z1 =
p
∑

j=1

φ1, jX j = φ
>
1
~X

places the highest weights on the predictors that are most
strongly linked to the response.

Now, we run an OLS regression of Y using Z1 as a pre-
dictor:

Yi =ψ0 +ψ1z1,i + εi , i = 1, . . . , N

and let εi = Yi −ψ0 −ψ1z1,i be the component of the data
not “explained” by Z1.

THe second direction Z2 is computed using the OLS co-
efficient estimates of

εi = φ
2
0, j +φ2, jX i, j + γi , j = 1, . . . , p, i = 1, . . . , N .

Note that each φ2, j is proportional to ρX j ,ε and that the
direction

Z2 =
p
∑

j=1

φ2, jX j = φ
>
2
~X

places higher weights on the predictors that are most strongly
linked to the first residual (which is to say, the component
that does not explain Z1).

The process continues in the same way, building directions
Z3, . . . , Zp that are strongly linked, in sequence, to the pre-
ceding residuals; as the chain starts with the response Y , the
directions do take into account both the related response
and the predictor structure.50

Let us summarize the main take-aways from this section:

in the bias-variance trade-off, we must strike the right
balance when it comes to model complexity, which is
usually measured in terms of the number of parame-
ters that must be estimated from tTr;
while this allows us to compare completely different
models with one another, it also suggests that models
that use fewer predictors as inputs are not as complex
as those that use the full set of predictors;
the full models are not necessarily the ones that per-
form best (in terms of MSETe), due , in parts, to the
curse of dimensionality;
predictor subset selection methods can be used to se-
lect the best model, but the cross-validation approach
is preferred;
other approaches (shrinkage, feature selection, di-
mension reduction) could also prove competitive.

50The problem of selecting M is tackled as it is in PCR.
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6. Nonlinear Models and Curve Fitting

In practice the linearity assumption is almost never met
and the regression function

y = f (~x) = E[Y | ~X = ~x]

has to be approximated by some other technique. Or does
it?

The linearity assumption is often “good enough” in spite
of it not being met, and, coupled with its convenience of
use and its multiple extensions, it is rarely a waste of time
to give that approach a try.

When heavier machinery is required, it pays to con-
sider the following OLS generalizations, which offer a lot
of flexibility without sacrificing ease of interpretability, be-
fore jumping to so-called black box models (SVM, ANN,
ensemble learning, etc. see Section 7):

curve fitting (polynomial regression, step functions,
splines, etc.);
local regression methods, or
generalized additive models.

6.1 Basis Function Models
If we have reason to suspect that the response Y is not a
linear combination of the predictors, we might benefit from
using a derived set of predictors (see [15, Section 7.3]).

6.1.1 Polynomial Regression
We can extend the simple linear model yi = β0 + β1 x i + εi ,
i = 1, . . . , N , by allowing for polynomial basis terms in
the regression function:

yi = β0 + β1 x i + β2 x2
i + · · ·+ βd xd

i + εi , i = 1, . . . , N .

The regression function is non-linear in terms of the obser-
vations x i , but it is linear in terms of the coefficients β j (or
in terms of the predictors {x , x2, . . . , xd}).

The solution is to create new variables X1 = X , X2 = X 2,
and so on, and estimate the regression function y = f (x)
via f̂ (x) = x>β̂ , where the β̂ are learned using the training
set Tr.

Typically, the coefficient values are of little interest – it
is the predictions f̂ (x̃) that are sought.

It is easy to obtain and estimate for Var( f̂ (x̃)) since f̂ (x̃) is
linear in the coefficients β̂i , i = 0, . . . , d:

Var( f̂ (x̃)) = Var(x̃>β̂) =
d
∑

i, j=0

Cov(β̂i x̃ i , β̂ j x̃ j)

=
d
∑

i, j=0

x̃ i x̃ jCov(β̂i , β̂ j) = x̃>Cov(β̂)x̃

= σ2x̃>(X>X)−1x̃.

The estimated variance of the approximation at x̃ is thus

V̂ar( f̂ (x̃)) =
SSRes

n− d − 1
x̃>(X>X)−1x̃=

‖Y−Xβ̂‖2
2

n− d − 1
x̃>(X>X)−1x̃,

and se( f̂ (x̃)) =
q

V̂ar( f̂ (x̃)) and

f̂ (x̃)± 2 se( f̂ (x̃))

constitutes a 95% C. I. for f̂ (x̃), assuming normality of the
error terms.51

Example The charts in Figure 15 show polynomial regres-
sions (d = 4) and confidence intervals for life expectancy
against 4 different predictors in the 2011 Gapminder data.

In this example, we picked d = 4. How do we select d,
in general? We can either pick a reasonable small d (often
below 4) or use cross-validation to select a d that minimizes
the estimated MSETe.

Note that it is easy to incorporate more than one pre-
dictor and interaction terms into the model.

The nature of polynomials (| f (x)| →∞ when ‖x‖ →∞)
is such that tail behaviour is usually quite horrible. Poly-
nomial regression should be used very carefully, staying
within the domain and making sure to centre the predictors
to reduce variance inflation.

6.1.2 Step Functions
Polynomial regression is an attractive approach because of
the ease with which we can use the apparatus of OLS, but
the elephant in the room is that we are imposing a global
structure on the non-linear function y = f (x).

Step functions can be used to keep things “local”.

Let ci , i = 1, . . . , K lie in range(X ) and consider the fol-
lowing K + 1 new predictors:

C0(X ) = I (X < c1)
Ci(X ) = I (ci ≤ X < ci+1), i = 1, . . . , K − 1

CK(X ) = I (ck ≤ X ),

where I is the indicator function

I (α) =

¨

0, α is false

1, α is true

For any X , C0(X ) + C1(X ) + · · ·+ CK(X ) = 1, since X lies in
exactly one of the intervals

(−∞, c1), [c1, c2), · · · , [cK−1, CK), [CK ,∞).
51Polynomial logistic regression can be used for 2−group classification,

by modeling

π1(x) = P(Y = C1 | X = x) =
exp(β0 + β1 x + · · ·+ βd xd )

1+ exp(β0 + β1 x + · · ·+ βd xd )
.
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Figure 15. Polynomial regression (d = 4) for life expectancy against fertility (top left), infant mortality (top right), log of
GDP per capita (bottom left), and GDP (bottom right). Note the extreme behaviour of the polynomial in the fourth case.

The step function regression model is

Yi = β0 + β1C1(X i) + · · ·+ βK CK(X i) + εi , i = 1, . . . , N ;

it can also be solved using the OLS framework.52

For a given X , at most one of C1(X ), . . . , CK(X ) is 6= 0; thus,
when X < c1, C j(X ) = 0 for all j = 1, . . . , K , and so

β0 = Avg[Y | X < c1].

For X ∈ [c j , c j+1), ŷ = β0+β j , so β j represents the average
increase in Y for [c j , c j+1) relative to (−∞, c1).

The only major challenge with step function regression
is that there is no easy way to find the number K and select
the position of the breakpoints c1, . . . , cK unless there are
natural gaps in the predictors.53

We did not discuss how how step function regression or poly-
nomial regression could be achieved in higher dimensions,
but the principle remains the same (except that the number
of parameters increases drastically, which can create some
overfitting issues).

Example The charts in Figure 16 show step function re-
gression for life expectancy against different predictors in
the 2011 Gapminder data.

52Thus a 95% C. I. can be built just as with polynomial regression.
53Although see Section 7.1.1.

6.2 Splines
We can combine polynomial regression and step functions
to obtain a more flexible curve fitting approach.

6.2.1 Regression Splines
Instead of fitting a polynomial over the entire range of
the predictor X , we use different polynomials (of degree
up to 3, usually) in regions Rk (defined by knots in the
1-dimensional case), such as:

Yi =

¨

β0,1 + β1,1X i + β2,1X 2
i + β3,1X 3

i + εi , if X i ∈ R1

β0,2 + β1,2X i + β2,2X 2
i + β3,2X 3

i +δi , if X i ∈ R2

Various constraints can be imposed on the polynomials:

none;
continuity at each region’s borders;
C1 (continuously differentiable) at each region’s bor-
ders;
etc.

In a sense (to be defined shortly), splines have the “maxi-
mum” amount of continuity (see image on the next page, at
the bottom of the first column, modified from [15]). Note
that using more regions leads to a more flexible fit.

In what follows, we assume that the domain is split into
K + 1 regions, bounded by knots (there are thus K such
knots).
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Figure 16. Step function regression for life expectancy against fertility with K = 3 (top left), infant mortality with K = 4
(top right), log of GDP per capita with K = 3 (bottom left), and log of GDP per capita with K = 6 (bottom right).

If we impose no restriction on the functions, we are trying
to fit K + 1 piecewise cubic functions to the data; each
polynomial has 4 parameters to be estimated, leading to
4(K + 1) effective parameters.

If we impose a continuous fit (the polynomials must
agree at the knots), we reduce the number of effective
parameters. We can also require a continuously differ-
entiable fit (the derivatives must also agree at the knots),
further reducing the number of effective parameters.

A cubic spline (with only K + 4 parameters to fit) is a
regression spine which is C2 on its domain.

Let ξ be a knot and x be a predictor value. The positive
part function is defined by

w+ =

¨

w if w> 0

0 else

Formally, the linear spline requires ξ1, . . . ,ξK knots and
has K+1 effective parameters. The model can be expressed
simply using positive parts:

yi = β0 + β1 x i

+ β2(x i − ξ1)+ + · · ·+ βK+1(x i − ξK)+ + εi;

the cubic spline is:

yi = β0 + β1 x i + β2 x2
i + β3 x3

i

+ β4(x i − ξ1)
3
+ + · · ·+ βK+3(x i − ξK)

3
+ + εi ,

and the natural cubic spline is a cubic spline between ξ1
and ξK and is extrapolated linearly beyond ξ1 and ξK ; this
adds 4 extra constraints to the cubic spline and allows for
more knots while keeping the number of effective parame-
ters identical to that of the linear spline.

In all instances, the machinery of OLS is available: predic-
tions, diagnostics, remedial measures, confidence intervals,
and extension to logistic regression, as needed.

Example The charts in Figure 17 show 4 cubic splines and
4 natural cubic splines for life expectancy against fertility
in the 2011 Gapminder data.
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Figure 17. Top 2 rows: cubic splines for life expectancy against fertility with 0 knot (top left), 1 knot (top right), 2 knots
(bottom left), and 10 knots (bottom right), at equally-spaced quantiles. Bottom two rows: natural cubic splines for life
expectancy against fertility with 0 knot (top left), 1 knot (top right), 5 knots (bottm left), and 10 knots (bottom right), at
equally-spaced quantiles. The knots are not equally-spaced values; their position depend on the quantiles of the fertility
variable. They are shown as blue squares.
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In theory, we place more knots in locations where the spline
functions is believed to vary more rapidly, and fewer knots
where it is more stable. In practice, the knots are placed
uniformly at quantiles of the predictor variable X .

Cross-validation (again!) can be used to determine K:
compute the estimated SSRes for various K (10-fold CV),
and pick the K∗ that minimizes the error.

Regression splines often give better results than polynomial
regression because they induce flexibility via a large num-
ber of parameters K with low polynomial degree d ≤ 3,
rather than through high d of the latter (and the wild
variability that such polynomials have, especially near the
boundaries of the predictor’s range, as can be observed in
Figure 15).

6.2.2 Multivariate Adaptive Regression Splines
We can reduce the polynomial degree to d ≤ 2 without
losing too much curve fitting accuracy by considering bases
consisting of functions of the forms:

1, (x − ξk)±, (x − ξk1
)±(x − ξk2

)±,

where (x − t)± is one of the two hinge functions

(x − t)+ =

¨

x − t if x > t
0 else

(x − t)− =

¨

t − x if x < t
0 else

For instance, (x−1)±, (x−1)+(x−5)+, and (x−1)+(x−8)−
are shown below:

A multivariate adaptive regression spline (MARS) model
is expressed as

yi =
K
∑

k=1

βkhk(x i) + εi , i = 1, . . . , N ,

where hk is either a constant function, a hinge function, or
a product of hinge functions.

MARS iteratively adds terms to its model; once a stopping
criterion is met, unwanted terms are removed. The model
growth’s parallels the growth of tree-based models, which
we will discuss in Section 7.1. One advantage: the knots
are selected automatically.

Example The chart below shows the MARS for life ex-
pectancy against fertility in the 2011 Gapminder data.

6.2.3 Smoothing Splines
Regression splines use the following approach:

1. identify K knots ξ1, . . . ,ξK ;
2. produce some basis functions {b1(x), . . . , bK(x)}, and
3. use OLS to estimate the coefficients of

Yi = β0+β1 b1(X i)+· · ·+βK bk(X i)+εi , i = 1, . . . , N .

We can use a mathematical approach in order to produce
a spline. We need to first find a function g that provides
a good fit for the available data; in other words, we are
looking for a function g such that

SSRes=
N
∑

i=1

(yi − g(x i))
2 is “small”.

But we also need to g to be constrained otherwise any
smooth function interpolating (x y , yi), i = 1, . . . , N would
yield SSRes= 0, at the cost of severe overfitting and loss
of interpretability. Keep in mind, however, that too many
constraints can result in underfitting the data.

The smoothing spline approach seeks to solve the follow-
ing problem:

gλ = argmin
h

� N
∑

i=1

(yi − h(x i))
2

︸ ︷︷ ︸

SSRes loss

+λ

∫

Ω(X )

�

h′′(t)
�2

d t

︸ ︷︷ ︸

penalty term

�

,

where λ ≥ 0 is a tuning parameter and Ω(X ) represents
the range of the predictor X .

The penalty term measures the roughness of the spline
function h; if h is quite “wiggly”, the penalty will be (rela-
tively) large, and vice-versa (and similarly for g).54

54If h represents a straight line, say, the penalty term would be zero.
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Figure 18. Smoothing splines for life expectancy against fertility with parameter values 0 (top left), 0.5 (top right), 1
(bottom left), and 1.5 (bottom right). Note that the parameter values do not correspond to the tuning parameter (read
the smooth.spline() documentation for details). See the evolution from “wiggly” model to OLS.

When λ→ 0, the penalty term has no effect, so we expect
gλ to be “jumpy” and to interpolate the observations exactly
(overfitting). When λ→∞, the penalty term dominates
and gλ is a function for which

∫

[g ′′
λ
(t)]2d t → 0 over Ω(X ),

so g → linear OLS solution (underfitting).
As we have seen over and over again, the tuning param-

eter λ controls the bias-variance trade-off, expressed, in
this case, as a battle between rigidity and model complexity.

The optimal smoothing spline gλ is a natural cubic spline
with a knot at every data point ξi = x i , i = 1, . . . , N , with
continuous 0th, 1st, 2nd derivatives throughout the range
Ω(X ) = [minξi , maxξi] and linear outside Ω(X ), but it is
not the one that would be obtained from a regression
spline as it depends on the turning parameter λ.

What is the best choice for λ? At first glance, this would
seem to be another job for cross-validation, but there is an-
other option: we can specify the smoothing spline through
the effective degrees of freedom, which vary from n to 2
as λ goes from 0 to∞ (R’s smooth.spline() uses a
different parameter), as in Figure 18.

Example The charts in Figure 18 show the smoothing
spline for life expectancy against fertility in the 2011 Gap-
minder data, for 4 smoothing parameter values.

Note the evolution of a flexible but non-interpretable
model to a rigid but highly interpretable model as the pa-
rameter values increase.

6.3 Generalized Additive Models
While polynomial regression and splines can be applied to
predictor sets, they are best-suited to predicting a response
Y on the basis of a single predictor X (model complexity
increases quickly if more than one predictor is present).

Generalized additive models (GAM) allow for flexible
non-linearities in several variables while retaining the ad-
ditive structure of linear models:

yi = β0 + f1(x i,1) + · · ·+ fp(x i,p) + εi , i = 1, . . . , N

where each of the f j can be derived using any of the methods
previously discussed; if

f1(x i) = β1,1 b1,1(x i,1) + · · ·+ β1,L1
b1,L1
(x i,1)

...

fp(x i) = βp,1 bp,1(x i,p) + · · ·+ βp,Lp
bp,Lp

(x i,p),

say, we would solve the model above using OLS (this cannot
be done if one of the components is a smoothing spline, for
instance, or if it is non-linear in some other way).

In practice, using natural cubic splines for the quantita-
tive components seem to work as well as smoothing spline,
when it comes to making predictions.

GAM can also be used for classification via log-odds:

ln
�

p1(x)
1− p1(x)

�

= β0 + f1(x1) + · · ·+ fp(xp).
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Figure 19. Generalized additive model for life expectancy, with contributions from fertility (top left), infant mortality
(top right), GDP (bottom left), and continent (bottom right). The model intercept is 68.1186.

GAM are implemented in R using the gam() function; a
typical call might look like:

gam(y~s(x1,df=5) + lo(x2,spar=0.5)+
bs(x3,df=4) +
ns(x4,df=5):ns(x5,df=5) +
+ x6, data=dat)

which would indicate that the contribution of:

X1 is computed using a smoothing spline with 5 de-
grees of freedom,
X2 by a local regression with spar=0.5,
X3 by a cubic spline with 4 degrees of freedom,
the fourth component by an interaction term based
on natural splines for X4 and X5 (each with 5 degrees
of freedom), and
X6 is direct.

GAM provide a useful compromise between linear models
and fully non-parametric models.

Advantages:

GAM can fit a non-liner f j to each predictor X j , so
that they could capture trends that linear regression
would miss;
GAM can reduce the number of data transformations
to try out manually on each predictor X j;
non-linear fits may improve accuracy of predictions
for the response Y ;

GAM are useful for inference due to their additivity –
the effect of X j on Y (while keeping other predictors
fixed) can be analyzed separately;
the overall smoothness of the model can be summa-
rized via effective degrees of freedom/parameters.

Disadvantages:

GAM still suffer from the curse of dimensionality;
GAM are restricted to additive models – interaction
terms can be added manually by introducing new pre-
dictors X j×Xk, as can interaction functions f j,k(X j , Xk)
(using local regression or MARS), but they quickly
get out of hand (due to CoD issues).

Example The charts in Figure 19 show the individual con-
tributions of fertility, infant mortality, GDP, and continental
membership to life expectancy in the 2011 Gapminder data.
The intercept is β0 = 68.1186:

life expectancy≈ β0 + f1(fertility) + f2(infant mortality)
+ f3(gdp) + βcontinent.

For instance, the life expectancy for an American country
with fertility= 3, infant mortality= 1, GDP= 6×1012 would
be approximately

68.1+ 0+ 10+ 2+ 4.5= 84.6.

The rest of the document will focus on non-parametric
methods.
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7. Other Supervised Approaches

In this section, we present a number of non-parametric ap-
proaches, with a focus on classification methods (although
we will also discuss regression problems):

classification and regression trees (CART);
support vector machines (SVW);
naïve Bayes classification (NBC);
artificial neural networks (ANN), and
ensemble learning.

7.1 Tree-Based Methods
This family of methods involves stratifying or segmenting
the predictor space into a small number of “simple” regions.

The set of splitting rules used to segment the space can
be summarized using a tree, whence their name.

On the one hand, tree-based methods are simple and easy
to interpret; on the other, they are not competitive with
the best supervised learning methods when it comes to
predictive accuracy.

Nevertheless, there are instances where the ease of in-
terpretability overrules the lessened accuracy.

Tree-based methods are applicable both to regression and
to classification problems.

7.1.1 Regression Trees
We will introduce the important concepts via the 2011 Gap-
minder dataset, where the response Y is once again the life
expectancy of nations, and the predictors X1 and X2 are the
fertility rates and infant mortality rates per nation.

In Figure 6, we see that when X1 and X2 are both high,
Y is low, and when X1 and X2 are both low, Y is high. But
what is the pattern “in the middle”?

Below, we see a possible regression tree for the (full)
dataset (N = 166 observations).

This can also be re-written as:

1) root (166) 70.82349
2) infant_mortality>=35.65 (54) 60.85370

4) infant_mortality>=52.9 (28) 58.30714 *
5) infant_mortality< 52.9 (26) 63.59615 *

3) infant_mortality< 35.65 (112) 75.63036
6) infant_mortality>=9.35 (62) 72.89516
12) infant_mortality>=22.85 (18) 69.50000 *
13) infant_mortality< 22.85 (44) 74.28409 *

7) infant_mortality< 9.35 (50) 79.02200
14) infant_mortality>=4.25 (23) 76.86087 *
15) infant_mortality< 4.25 (27) 80.86296 *

Node 1 is the tree’s root (initial node) with 166 (100%) observa-
tions; the average life expectancy for these observations is 70.82.

The root is also the tree’s first branching point, separating
the observations into two groups: node 2 with 54 observations
(33%), given by infant mortality ≥ 35.65, for which the average
life expectancy is 60.85, and node 3 with 112 observations (67%),
given by infant mortality < 35.65, for which the average life
expectancy is 75.63. Note that 54+ 112= 166 and that

54(60.81) + 112(75.63)
54+ 112

= 70.82.

Node 2 is an internal node – it is further split into two groups:
node 4 with 28 observations (17%), given with the additional rule
infant mortality ≥ 52.9, for which the average life expectancy is
58.31, and node 5 with 26 observations (16%), given with the
additional rule infant mortality < 52.9, for which the average life
expectancy is 63.60. Note that 28+ 26= 54 and that

28(58.31) + 26(63.60)
28+ 26

= 60.85.

Both nodes 4 and 5 are leaves (final nodes, terminal nodes); the
tree does not grow any further on that branch.

The tree continues to grow from node 3, eventually leading
to 4 leaves on that branch (there is an intermediate branching
point). There are 6 leaves in total, 5 branching points (including
the root) and the tree’s depth is 3 (excluding the root).

Note that only one feature is used in the regression tree in this
example: to make a prediction for a new observation, only infant
mortality is needed. If it was 21, say, the observation’s leaf would
be node 13 and we would predict that the life expectancy of that
nation would be 74.28.

The tree diagram is a useful heuristic, especially as it allows the
display results without resorting to a multi-dimensional chart, but
it does obscure the predictor space’s stratification.

In our example, let

R4 = {(infant mortality, fertility) | infant mortality≥ 52.9}
R5 = {(infant mortality, fertility) | 36.65≤ infant mortality< 52.9}

R12 = {(infant mortality, fertility) | 22.85≤ infant mortality< 35.65}
R13 = {(infant mortality, fertility) | 9.35≤ infant mortality< 22.85}
R14 = {(infant mortality, fertility) | 4.25≤ infant mortality< 9.35}
R15 = {(infant mortality, fertility) | infant mortality< 4.25}

Note that only infant mortality is involved in the definition of the
tree’s terminal nodes.
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The regions are shown below:

The regression tree model for life expectancy would thus be

ŷRi
= Avg{y | (x1, x2) ∈ Ri}=



































58.3, i = 4

63.6, i = 5

69.5, i = 12

74.3, i = 13

76.9, i = 14

80.9, i = 15

The regression tree tells us that infant mortality is the most im-
portant factor in determining life expectancy, with a negative
correlation. This interpretation is, of course, a coarse oversimpli-
fication, but it highlights the advantage of using a regression tree
when it comes to displaying, interpreting, and explaining the
results.

This tree is not the only way to stratify the data: in what way is it
optimal,55 as opposed to some other tree?

Building A Regression Tree The process is quite simple:

1. Divide the predictor space X ⊆ Rp into a distinct union J
regions R j , j = 1, . . . , J :

X = R1 t · · · t RJ ;

2. for any x ∈ R j ,

ŷ(x) = Avg{y(z) | z ∈ R j ∈ Tr}.

The second step tells us that trees are locally constant (although
it does not necessarily have to be so, that is also the assumption
we will follow).

In theory, the R j could have any shape as long as they form a
disjoint cover ofX ; in practice, we use hyperboxes whose bound-
aries p− 1 affine spaces that are perpendicular/parallel to the p
hyperplanes X1 . . . X̂k . . . X p, k = 1, . . . , p.

We find the optimal (R1, . . . , RJ ) by minimizing

SSRes=
J
∑

j=1

∑

xi∈R j

(yi − ŷR j
)2,

where ŷR j
is the mean response y in R j ∩ Tr.

55Recall that all supervised learning tasks are optimization problems.

In an ideal world, we would compute SSRes for all partitions of
X into hyperboxes, and pick the one that minimizes SSRes, but
that is not computationally feasible, in general.

Instead, we use a growth algorithmic approach known as
recursive binary splitting, which is both top-down (starts at
the root and successively splits X via 2 new branches down the
tree) and greedy (at each step of the splitting process, the best
choice is made there and now, rather than by looking at long-term
consequences).

Regression Tree Algorithm The algorithm has 10 steps, but it
is fairly straightforward.

1. Let ŷ0 = Avg{y | (x, y) ∈ Tr}.

2. Set the baseline SSRes0 =
∑N

i=1(yi − ŷ0)2.

3. For each 1≤ k ≤ p, order the predictor values of Xk in Tr:
vk,1 ≤ vk,2 ≤ · · · ≤ vk,N .

4. For each Xk, set sk,` =
1
2 (vk,` + vk,`+1), `= 1, . . . , N − 1.

5. For each k = 1, . . . , p, `= 1, . . . , N − 1, define

R1(k,`) = { ~X ∈ Rp | Xk < sk,`} and R2(k,`) = { ~X ∈ Rp | Xk ≥ sk,`}.

Note that X = R1(k,`)t R2(k,`) for all k,`.

6. For each k = 1, . . . , p, `= 1, . . . , N − 1, set

SSResk,`
1 =

2
∑

m=1

∑

~X i∈Rm(k,`)

(yi − ŷRm(k,`))
2,

where ŷRm(k,`) = Avg{y(x) | x ∈ Tr∩ Rk(k,`)}.

7. Find k∗,`∗ for which SSResk,`
1 is minimized.

8. Define the children sets RL
1 = R1(k∗,`∗) and RR

1 = R2(k∗,`∗).

9. While some children sets Rν
µ

still do not meet a stopping cri-
terion, repeat steps 3 to 8, searching and minimizing SSRes
over X ∩ Rν

µ
, and producing a binary split RL

µ+1, RR
µ+1.56

10. Once the stopping criterion is met for all children sets, the
tree’s growth ceases, and X has been partitioned into J
regions (renumbering as necessary)

X = R1 t · · · t RJ ,

on which the regression tree predicts the J responses { ŷ1, . . . , ŷJ},
according to ŷ j = Avg{y(x) | x ∈ R j}.

For instance, if the training set was Tr = {(x1,i , x2,i , yi)}Ni=1, the
algorithm might provide the regression tree in Figure 20.

Tree Pruning Regression trees grown with the algorithm are
prone to overfitting; they can provide good predictions on Tr, but
they usually make shoddy predictions on Te, because the resulting
tree might be too complex (it fits the noise as well as the signal).

A smaller tree with fewer splits might lead to lower variance
and better interpretability, at the cost of a little bias.

Instead of simply growing a tree T0 until each leaf contains at
most M observations, say (or whatever other stopping criterion),
it could be beneficial to prune it in order to obtain some optimal
subtree.

56Multiple splitting criteria are used in practice, such as insisting that
all final nodes contain 10 or fewer observations, etc.
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Figure 20. Generic recursive binary partition regression tree for a two-dimensional predictor space, with 5 leaves.

Figure 21. Complexity pruning parmeter (top left), with pruned tree for cp= 0.028 (top right) in the Gapminder 2011
example. Other pruned trees, corresponding to cp= 0.06 (bottom left) and cp= 0.02 (bottom right), are also shown. Note
that the tree’s complexity increases when cp decreases.
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Figure 22. Different tree topologies with small changes in the training set (data modified from [16]).

We use cost complexity pruning (CCP) to build a sequence of
candidate subtrees indexed by the complexity parameter α ≥ 0.
For each such α, find a subtree Tα ⊆ T0 which minimizes

SSRes+ complexity penalty=
|T |
∑

m=1

∑

xi∈Rm

(yi − ŷRm
)2 +α|T |,

where |T | represents the number of final nodes in T ; when α is
large, it is costly to have a complex tree.57

Pruning Algorithm Assume that a recursive binary splitting re-
gression tree T0 has been grown on Tr, using a stopping criterion:

1. apply CCP to T0 to obtain a “sequence” Tα of subtrees of T0;

2. divide Tr into K folds;

3. for all k = 1, . . . , K, build a regression tree on Tr \ Foldk

and evaluate

ˆMSE(α) = Avg
1≤k≤K

{MSEk(α) | on Foldk};

4. return Tα∗ from step 1, where α∗ = argminα{ ˆMSE(α)}.
The Gapminder 2011 tree is pruned in Figure 21.

7.1.2 Classification Trees
The approach for classification is much the same, with a few
appropriate substitutions:

1. prediction in a terminal node is either the class label mode
or the relative frequency of the class labels;

2. SSRes must be replaced by some other fit measure:

the classification error rate:

E =
J
∑

j=1

(1−max
k
{p̂ j,k}),

where p̂ j,k is the proportion of Tr observations in R j of
class k (this measure is not a recommended choice);
the Gini index, which measures the total variance
across classes

G =
J
∑

j=1

∑

k

p̂ j,k(1− p̂ j,k),

57This is similar to the bias-variance trade-off or the regularization
framework: a good tree balances considerations of fit and complexity.

which should be small when the nodes are pure
(p̂ j,k ≈ 0 or 1 throughout the regions), and
the cross-entropy deviance

D = −
J
∑

j=1

∑

k

p̂ j,k ln p̂ j,k,

which behaves like the Gini index, numerically.

One thing to note is that classification and regression trees
(jointly known as CART) suffer from high variance and their struc-
ture is unstable – using different training sets typically gives rise
to wildly varying trees.

Sometimes, simply modifying the level of only one of the
predictors in only one of the observations can yield a tree with a
completely different topology (see Figure 22).

This lack of robustness is a definite strike against the use
of CART; despite this, the relative ease of their implementation
makes them a popular classification tool.

Example A classification tree for the Gapminder 2011 dataset
is shown below:

1) root (166) high/low (0.5 0.5)
2) infant_mortality< 23 (94) high (0.862 0.138)
3) infant_mortality>=23 (72) low (0.028 0.972)

Note that this tree should not be used for predictions as it was not
built on a training subset of the data.
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Figure 23. Two-class artificial dataset (top left), with classification tree (top middle) and separating hyperplane (top
right); linearly separable subset (bottom left), separating hyperplanes (bottom middle), maximal margin hyperplane with
support vectors (bottom right), based on [21].

7.2 Support Vector Machines
The next classifier is more sophisticated, from a mathematical
perspective. It was invented by computer scientists in the 1990s.

Support vector machines (SVM) attempt to find hyperplanes
that separate the classes in the feature space.

In Figure 23, we see an artificial data with 3 features: X1 and X2

(numerical), Y (categorical, represented by different symbols).

We grow a classification tree (perhaps the one shown above):
two of the leaves are pure, but the risk of misclassification is fairly
large in the other 2 (at least for that tree).58 Without access to
more features, that tree is as good as it gets.59

But it is easy to draw a decision curve which improves on the
effectiveness of the decision tree (see image on the right): a single
observation is misclassified by this rule.60

Separating hyperplanes do not always exist; we may need to:

extend our notion of separability, and/or

extend the feature space so separation becomes possible.

A hyperplane Hβ ,β0
⊆ Rp is an affine (flat) subset of Rp, with

dim
�

Hβ ,β0

�

= p− 1;

in other words,

Hβ ,β0
: β0 +β

>x= β0 + β1 x1 + · · ·+ βp xp = 0.

58The tree is not unique, obviously, but any other tree with separators
parallel to the axes will only be marginally better, at best.

59To be sure, we could create an intricate decision tree with > 22 = 4
separating lines, but that is undesirable for a well-fitted tree.

60Perfect separation would lead to overfitting.

The vector β is normal to Hβ ,β0
; if β0 = 0, Hβ ,β0

goes through the
origin in Rp.

Set F(x) = β0 + β>x; then F(x) > 0 for points on one “side”
of Hβ ,β0

and F(x)< 0 for points on the other.61

In a binary classification problem C = {C1, C2}= {±1}. If

yi F(xi)> 0, for all (xi , yi) ∈ Tr

(or, yi F(xi)< 0 for all (xi , yi) ∈ Tr), then F(xi) = 0 determines a
separating hyperplane for Tr (which does not need to be unique,
see Figure 23), and we say that Tr is linearly separable.

Among all separating hyperplanes, the one which provides the
widest separation between the two classes is the maximal margin
hyperplane (MMH); training observations on the boundary of
the separating strip are called the support vectors (see boxed
observations in Figure 23).

The classification problem simplifies, as always, to a constrained
optimization problem:

(β∗,β∗0 ) = argmax
(β ,β0)

{M(β ,β0)} s.t. yi(β0 +βxi)≥ M(β ,β0)

for all (xi , yi) ∈ Tr, with MMH given by F(x) = β∗0 +β
∗x= 0.

Any hyperplane can be expressed in an uncountable number of
ways; the MMH for which |F(x∗)| = 1 for all support vectors x
provides a canonical representation).

61F(x) for points on Hβ ,β0
.
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Figure 24. Hard margin for a linearly separable classifier (left); soft margin for a linearly separable classifier (middle);
soft margin for a non-linearly separable classifier (right).

From geometry, we know that the distance from the canonical
maximal margin hyperplane Hβ ,β0

to any point z can be com-
puted using vector projections. Let x0 be a point on MMH, i.e.,
F(x0) = β0 +β>x0 = 0, as shown below:

In particular, note that β0 = −β>x0. Then,

M
2
= dist

�

z, Hβ ,β0

�

=


projβ (z− x0)


=









β>(z− x0)
‖β‖2

β









=
|β>(z− x0)|
‖β‖2

‖β‖=
|β>z−β>x0|
‖β‖

=
|F(z)|
‖β‖

.

If z is a support vector, then F(z) = 1, then

M
2
= dist

�

z, Hβ ,β0

�

=
1
‖β‖

.

Maximizing the margin M is thus equivalent to minimizing to
minimizing ‖β‖

2 , and, since the square function is monotonic,

argmax
(β ,β0)

{M | yi(β0 + β
>xi), ∀xi ∈ Tr}

is equivalent to

argmin
(β ,β0)

�

1
2
‖β‖2

�

�

�

�

yi(β0 + β
>xi), ∀xi ∈ Tr

�

.

This constrained quadratic problem (QP) can be solved by La-
grange multipliers (in implementations, it is solved numerically),
but a key observation is that it is possible to rewrite

β =
N
∑

i=1

αi yixi , with
N
∑

i=1

αi yi = 0

thanks to the representer theorem.62

62Technically speaking we do not need to invoke the representer theorem
in the linear separable case. At any rate, the result is out-of-scope for this
document.

The original QP becomes

argmin
(β ,β0)

¨

1
2

N
∑

i, j=1

αiα jx
>
i x j −

N
∑

i=1

αi

�

�

�

�

�

N
∑

i=1

αi yi = 0, ∀xi ,x j ∈ Tr

«

.

Ultimately, it can be shown that all but L of the coefficients αi

are 0, typically, L � N . The support vectors are those training
observations xik , k = 1, . . . , L, for which αik 6= 0.

The decision function is defined by

T (x;α) =
L
∑

k=1

αik yik x>ik x+ β0,

scaled so that T (xik ;α) = yik = ±1 for each support vector xik .

The class assignment for any x ∈ Te is thus

class(x) =

¨

+1 if T (x;α)≥ 0

−1 if T (x;α)< 0

In practice (especially when N < p), the data is rarely linearly
separable into distinct classes (as below, for instance).

Additionally, even when the classes are linearly separable, the data
may be noisy, which could lead to overfitting, with technically
optimal but practically sub-optimal maximal margin solutions
(see [21] for examples).

In applications, support vector classifiers optimize instead a
soft margin, one for which some misclassifications are permitted
(as in Figure 24).
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Figure 25. Plot of LE against fertility and log GDP per capita (left), with SVM decision boundary (right).

The soft margin problem can be written as

argmin
(β ,β0)

�

1
2
β>β

�

�

�

�

yi(β0 +βxi)≥ 1− εi , εi ≥ 0,∀xi ∈ Tr, ‖ε‖< C

�

,

where C is a (budget) tuning parameter, ε is a vector of slack
variables, canonically scaled so that |F(x∗)|= |β0 +β>x∗|= 1 for
any eventual support vector x∗.

Such a model offers greater robustness against unusual obser-
vations, while still classifying most training observations correctly:

if εi = 0, then xi ∈ Tr is correctly classified – it falls on the
correct side of the hyperplane, and outside the maximum
margin;
if 0< εi < 1, then xi ∈ Tr is still correctly classified (falling
on the correct side of the hyperplane), but it falls within
the margin;
if εi ≥ 1, it is incorrectly classified.

If C = 0, then no violations are allowed (‖ε‖ = 0) and the problem
reduces to the hard margin SVM classifier; a solution may not
even exist if the data is not linearly separable.

If C > 0 is an integer, no more than C training observations can
be misclassified; indeed, if i1, . . . , iC are the misclassified indices,
then εi1 , . . . ,εiC ≥ 1 and

C ≥
N
∑

i=1

εi ≥
C
∑

i=1

εi ≥ C .

As C increases, tolerance for violations also increases, as does
the width of the soft margin; C plays the role of a regularization
parameter, and is usually selected via cross-validation.

Low values of C are associated with harder margins, which
leads to low bias but high variance (a small change in the data
could create qualitatively different margins); large values of C are
associated with wider (softer) margins, leading to more potential
misclassifications and higher bias, but also lower variance as small
changes in the data are unlikely to change the margin significantly.

We can build a classifier through the representer theorem for-
mulation as before, the only difference being that the decision
function TC(x;α) is scaled so that |T(xik ;α)| ≥ 1− εik for every
support vector xik .

It is difficult to determine what the value of the regularization
parameter C should be at first glance; an optimal value can be
obtained via a tuning process, which tries out various values and
identifies the one that produces an optimal model.

Example We train a SVM with C = 0.1 (obtained via a tuning
procedure for C) for the 2011 Gapminder dataset to predict the
life expectancy class in terms of the fertility rate and the logarithm
of GDP per capita; N = 116 observations are used in the training
set, the rest were set aside as the test set. The training plot and
the SVM decision boundary are shown in Figure 25; the confusion
matrix of the model on the test set is

LE
prediction
high low

actual
high 17 1
low 10 22

It is not a perfectly accurate model, but it is certainly acceptable
given the class overlap in Tr.

7.2.1 Nonlinear Boundaries
If the boundaries between two classes is linear, the SVM classifier
of the previous section is a natural way to attempt to separate the
classes. In practice, however, the classes are rarely so separated.
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In both the hard and the soft margin support vector classifiers, the
function to optimize thakes the form

1
2

N
∑

i, j=1

αiα jx
>
i x j −

N
∑

i=1

αi ,

and the decision function, the form

T (x;α) =
L
∑

k=1

αik yik x>ik x+ β0.

In practice, however, we do not actually need to know the support
vectors xik (or even the observations xi , for that matter) in order to
compute the decision function values – it is sufficient to have access
to the inner products x>i x j or x>ik x, which are usually denoted by

〈xik ,x〉 or 〈xi ,x j〉.

The objective function and the decision function can thus be writ-
ten as

1
2

N
∑

i, j=1

αiα j〈xi ,x j〉 −
N
∑

i=1

αi , T (x;α) =
L
∑

k=1

αik yik 〈xik ,x〉+ β0.

This seemingly innocuous remark opens the door to the kernel
approach; we could conceivable replace the inner products 〈x,w〉
by generalized inner products K(x,w), which provide a measure
of similarity between the observations x and w.

Formally, a kernel is a symmetric positive (semi-)definite operator
K : Rp ×Rp → R+0 .63 Common statistical learning kernels include:

linear – K(x,w) = x>w;
polynomial of degree d – Kd(x,w) = (1+ x>w)d ;
Gaussian (or radial) – Kγ(x,w) = exp(−γ‖x−w‖2

2), γ > 0;
sigmoid – Kκ,δ(x,w) = tanh(κx>w−δ), for allowable κ,δ.

For instance, a radial kernel SVM with γ= 1, C = 0.5 yields the
following classification on the datasets from the previous page.

63By analogy with positive definite square matrices, this means that
∑N

i, j=1 ci c j K(xi ,x j)≥ 0 for xi ∈ Rp , c j ∈ N.

The principle is the same: the objective function and the decision
function are

1
2

N
∑

i, j=1

αiα j K(xi ,x j)−
N
∑

i=1

αi , T (x;α) =
L
∑

k=1

αik yik K(xik ,x) + β0.

For the radial kernel, for instance, if a test observation x is near
a training observation xi , then ‖x− xi‖2

2 is small and Kγ(x,xi)≈
1; if they are far from one another, then ‖x − xi‖2

2 is large and
Kγ(x,xi)≈ 0.

In other words, in the radial kernel framework, only those
observations close to a test observation play a role in class predic-
tion.

7.2.2 Kernel Trick
But why even use kernels in the first place?

The linear kernel is easier to interpret and implement, but as
we have seen, not all data sets are linearly separable.

Consider the following classification problem (adapted from an
unknown online source).

The optimal margin separating “strip” is obviously not linear.

One way out of this problem is to introduce a transformation Φ
from the original X−feature space to a higher-dimensional (or at
least, of the same dimension) Z−feature space in which the data
is linearly separable, and to build a linear SVM on the transformed
training observations zi = Φ(x)i .64

In this example, we have Φ : R2 → R3; the projection of the
transformation into the Z1Z3−plane could be as below.

64This might seem to go against reduction strategies used to counter
the curse of dimensionality; the added dimensions are needed to “unfurl”
the data, so to speak.
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The objective function and the decision function take on the form

1
2

N
∑

i, j=1

αiα jΦ(xi)
>Φ(x j)−

N
∑

i=1

αi , T (x;α) =
L
∑

k=1

αik yikΦ(xik )
>Φ(x)+β0,

and the linear SVM is built as before (but in Z−space, not in
X−space).

It sounds straightforward, but it takes a fair amount of experience
to recognize that one way to separate the data is to use

z= Φ(x) = (x2
1 ,
p

2x1 x2, x2
2).

And what transformation should be used for the case below?

The kernel trick simply states that Φ can remain unspecified if we
replace Φ(x)>Φ(w) by a “reasonable” (often radial) kernel K(x,w).

General Classification What do we do if the response variable
has K > 2 classes?

In the one-versus-all (OVA) approach, we fit K different 2−class
SVM decision functions Tk(x;α), k = 1, . . . , K; in each, one class
versus the rest. The test observation x∗ is assigned to the class for
which Tk(x∗;α) is largest.

In the one-versus-one (OVO) approach, we fit all
�K

2

�

pairwise
2−class SVM classifiers classk,`(x), for training observations with
levels k,`, where k > `= 1, . . . , K − 1. The test observation x∗ is
assigned to the class that wins the most pairwise “competitions”.

If K is large,
�K

2

�

might be too large to make OVO computation-
ally efficient; when it is small enough, OVO is the recommended
approach.

In practice, it is not always obvious whether one should use SVM,
logistic regression, linear discriminant analysis (LDA), decision
trees, etc:65

if classes are (nearly) separable, SVM and LDA are usually
preferable to logistic regression;
otherwise, using logistic regression together with a ridge
penalty is roughly equivalent to using SVM;
if the aim is to estimate class membership probabilities,
it is preferable to use logistic regression as SVM is not
calibrated;66

it is possible to use kernels in the logistic regression and
LDA frameworks, but at the cost of increased computational
complexity.

All in all, it remains crucial to understand that the No Free Lunch
theorem remains in effect. There is no magical recipe.

65In Section 7.5, we will argue that it is usually preferable to train a
variety of models, rather than just the one.

66The actual values of T(x;α) have no intrinsic meaning, other than
their relative ordering.

Figure 26. Conceptual timeline of the interest and optimism
regarding artificial intelligence (A.I.); important milestones are
indicated below the dates.

7.3 Artificial Neural Networks
When practitioners discuss using Artificial Intelligence techniques
to solve a problem, the implicit assumption is often (but not al-
ways) that a neural (or some other variant of deep learning)
network will be used, and for good reason: “neural networks
blow all previous techniques out of the water in terms of per-
formance” [7]. But there are some skeletons in the closet: “[...]
given the existence of adversarial examples, it shows we really
don’t understand what’s going on” [7].

At various times since Alan Turing’s seminal 1950 paper (in which
he proposed the celebrated Imitation Game [29]), complete ar-
tificial intelligence has been announced to be “just around the
corner” (see A.I winters, Figure 26). With the advent of deep
learning and Big Data processing, optimism is as high as it’s ever
been. At the very least, it seems to be the topic du jour. Case in
point, consider the following four recent headlines:

“AlphaGo vanquishes world’s top Go player, marking A.I.’s
superiority over human mind” [South China Morning Post,
May 27, 2017]
“A Japanese A.I. program just wrote a short novel, and
it almost won a literary prize” [Digital Trends, March 23,
2016]
“Elon Musk: Artificial intelligence may spark World War III”
[CNET, September 4, 2017]
“A.I. hype has peaked so what’s next?” [TechCrunch, Septem-
ber 30, 2017]

Opinions on the topic are varied – to some commentators, A.I. is
a brilliant success, while to others it is a spectacular failure. So
what is really going on?

It is far from trivial to identify the essential qualities and skills of
an intelligence. There have been multiple attempts to solve the
problem by building on Turing’s original effort. An early argument
by Hofstadter [12] is that any intelligence ought to:

provide flexible responses in various scenarios;
take advantage of lucky circumstances;
make sense out of contradictory messages;
recognize the relative importance of a situation’s elements;
find similarities between different situations;
draw distinctions between similar situations, and
come up with new ideas from scratch or by re-arranging
previous known concepts.
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Figure 27. Artificial neural network topology – conceptual example. The number of hidden layers is arbitrary, as is the
size of the signal and output vectors.

A.I. research is defined as the study of intelligent agents – any de-
vice that perceives its environment and takes actions to maximize
its chance of success at some task/goal [30]. Examples include

expert systems – TurboTax, WebMD, technical support,
insurance claim processing, air traffic control, etc.;
decision-making – Deep Blue, auto-pilot systems, “smart”
meters, etc.;
natural Language Processing – machine translation, Siri,
named-entity recognition, etc.;
recommenders – Google, Expedia, Facebook, LinkedIn,
Netflix, Amazon, etc.;
content generators – music composer, novel writer, ani-
mation creator, etc.;
classifiers – facial recognition, object identification, fraud
detection, etc.

A trained artificial neural network (ANN) is a function that maps
inputs to outputs in a useful way: it uses a Swiss-army-knife
approach to providing outputs – plenty of options are available in
the architecture, but it’s not always clear which ones should be
used. One of the reasons that ANNs are so popular is that the user
does not need to decide much about the function or know much
about the problem space in advance – ANNs are quiet models.

Algorithms allow ANNs to learn (i.e. to generate the function
and its internal values) automatically; technically, the only re-
quirement is the user’s ability to minimize a cost function (which
is to say, to be able to solve optimization problems).

The presentation of material in the rest of this section follows [20],
which borrows heavily from [5,9].

Overview The simplest definition of an artificial neural net-
work is provided by the inventor of one of the first neuro-computers,
Robert Hecht-Nielsen, as:

“[...] a computing system made up of a number of
simple, highly interconnected processing elements,
which process information by their dynamic state
response to external inputs. [4]”

An artificial neural network is an interconnected group of nodes,
inspired by a simplification of neurons in a brain but on much
smaller scales.

Neural networks are typically organized in layers. Layers are
made up of a number of interconnected nodes which contain
an activation function. A pattern x (input, signal) is presented
to the network via the input layer, which communicates with
one or more hidden layers, where the actual processing is done
via a system of weighted connections W (edges). The hidden
layers then link to an output layer, which outputs the predicted
response ŷ (see Figure 27).

Neural Networks Architecture In order to train a neural network,
we need the following objects [5]:

some input data,
a number of layers,
a model, and
a learning process (loss function and optimizer).

The object interactions is visualized in Figure 28: a network
(model), which is composed of layers that are chained together,
maps the input data into predictions.67

The loss function then compares these predictions to the tar-
gets, producing a loss value: a measure of how well the network’s
predictions match what was expected. The optimizer uses this
loss value to update the network’s weights.

Input Data Neural networks start with the input training data
(and corresponding targets) in the form of a tensor. Generally
speaking, most modern machine learning systems use tensors as
their basic data structure. At its core, a tensor is a container for
data – and it is almost always numerical.

A tensor is defined by three key attributes: its

1. rank (number of axes) – for instance, a 3D tensor has three
axes, while a matrix (2D tensor) has two axes;

67In essence, a neural network is a function.
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Figure 28. Relationship between the network, layers, loss
function, and optimizer [5].

Figure 29. A 3D time series data tensor [5].

2. shape, a tuple of integers that describes how many dimen-
sions the tensor has along each axis – for instance, a matrix’s
shape is described using two elements, such as (3, 5), a 3D
tensor’s shape has three elements, such as (3,5,5), a vector
(1D tensor)’s shape is given by a single element, such as
(5), whereas a scalar has an empty shape, ( );

3. its data type – for instance, a tensor’s type could befloat32,
uint8, float64, etc.

Data tensors almost always fall into one of the following cate-
gories:

the most common case is vector data; in such datasets,
each single data point can be encoded as a vector, and a
batch of data will be encoded as a matrix or 2D tensor of
shape (#samples, #features), or more simply, as
an array of vectors where the first axis is the samples axis
and the second axis is the features axis;
time series or sequence data, whenever the passage of
time is crucial to the observations in the dataset (or the
notion of sequence order), can be stored in a 3D tensor
with an explicit time axis; each sample can be encoded as
a sequence of vectors (a 2D tensor), and a batch of data
will be encoded as a 3D tensor of shape (#samples,
#timesteps, #features), as in Figure 29;
images typically have three dimensions: height, width,
and colour depth;68 a batch of image data could thus be

68Although grayscale images have only a single colour channel and could

Figure 30. A 4D image data tensor [5].

stored in a 4D tensor of shape (#samples, #height,
#width, #channels), as in Figure 30;
video data is one of the few types of real-world data for
which 5D tensors are needed – a video can be understood as
a sequence of frames, each frame being a colour image; a se-
quence of frames can be stored in a 4D tensor (#frames,
#height, #width, #channels), and so a batch
of different videos can be stored in a 5D tensor of shape
(#samples, #frames,#height,#width,#channels).

Layers The core building block of neural networks is the layer,
a data-processing module that is, in a sense, a filter for data: some
data goes into the layer and comes out in a more useful form.

Specifically, layers extract representations out of the data fed
into them – hopefully, representations that are more meaningful
for the problem at hand. A layer takes as input 1+ tensors and
outputs 1+ tensors.

Different layers are appropriate for different tensor formats and
different types of data processing. For instance, simple vector data,
stored in 2D tensors, is often processed by densely connected
layers, also called fully connected or dense layers (the Dense
class in Keras).

Sequence data, stored in 3D tensors, is typically processed
by recurrent layers such as an LSTM layer. Image data, stored
in 4D tensors, is usually processed by 2D convolution layers
(Conv2D).

Most of deep learning consists of chaining together simple lay-
ers that will implement a form of progressive data distillation.
However, to build deep learning models in tensor-based modules
like Keras, it is important to clip together compatible layers to
form useful data-transformation pipelines.

The notion of layer compatibility refers specifically to the fact
that every layer can only accept input tensors of a certain shape
and return output tensors of a certain shape.

thus be stored in 2D tensors, by convention image tensors are always 3D,
with a one-dimensional colour channel for grayscale images.
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Model: Networks of Layers A deep learning model is essentially
a data processing sieve, made of a succession of increasingly
refined data filters – the layers. The most common example of
a model is a linear stack of layers, mapping a single input to a
single output. Other network topologies include: two-branch
networks, multihead networks, and inception blocks.

The topology of a network defines a hypothesis space. Since
machine learning is basically

“[...] searching for useful representations of some
input data, within a predefined space of possibilities,
using guidance from a feedback signal [5],”

by choosing a network topology, we constrain the space of possi-
bilities (hypothesis space) to a specific series of tensor operations,
mapping input data to output data. From a deep learning per-
spective, what we are searching for is a good set of values for the
weight tensors involved in these tensor operations.

Picking the right network architecture is more an art than a sci-
ence; and although there are some best practices and principles
we can rely on, practical experience is the main factor in becoming
a proper neural network architect.

Learning Process: Loss Function and Optimizer After a net-
work architecture has been selected, two other objects need to be
chosen:

the (objective) loss function is the quantity that is mini-
mized during training – it represents a measure of success
for the task at hand, and
the optimizer determines how the network is updated
based on the loss function.

In this context, learning means finding a combination of model
parameters that minimizes the loss function for a given set of
training data observations and their corresponding targets. Learn-
ing happens by drawing random batches of data samples and their
targets, and computing the gradient of the network parameters
with respect to the loss on the batch. The network parameters
are then updated by a small amount (the magnitude of the move
is defined by the learning rate) in the opposite direction from the
gradient.

The entire learning process is made possible by the fact that
under a network disguise, neural networks are chains of differen-
tiable tensor operations, to which it is possible to apply the chain
rule of differentiation to find the gradient function mapping the
current parameters and current batch of data to a gradient value.

Choosing the right objective function for a given problem is
extremely important: the network is ruthless when it comes to
lowering its loss function, and it will take any shortcut it can to
achieve that objective. If the latter does not fully correlate with
success for the task at hand, the network may face unintended
side effects.

Simple guidelines exist to help analysts select an appropriate loss
function for common problems such as classification, regression,
and sequence prediction: use

binary cross entropy for a binary classification;
categorical cross entropy for a n−ary classification;
mean squared error for a regression;
connectionist temporal classification (CTC) for sequence-
learning, etc.

In most cases, one of these will do the trick – only when analysts
are working on truly new research problems do they have to de-
velop their own objective functions.

Let us first illustrate the principles underlying ANNs with a simple
example.

We have seen that ANNs are formed from an input layer from
which the signal vector x is inputted, an output layer which
produces an output vector ŷ, and any number of hidden layers;
each layer consists of a number of nodes which are connected
to the nodes of other layers via directed edges with associated
weights w (see Figure 27). Nodes from the hidden and output
layers are typically activation nodes – the output a(z) is some
function of the input z. Signals propagate through the ANN using
simple arithmetic, once a set of weights w and activation functions
a(·) have been selected (see Figure 31). In a nutshell, at each
node, the neural net computes a weighted sum of inputs, applies
an activation function, and sends a signal. This is repeated until
the various signals reach the final output nodes.

That part is easy – given a signal, an ANN can produce an
output, as long as the weights are specified. Matrix notation can
simplify the expression for the output ŷ in terms of the signal x ,
weights w, and activation function a(·).

For instance, consider the network of Figure 27; if a(z) = (1+
exp(−z))−1, the network topology can be re-written as:

input layer with p nodes

XN×p = Xn×2 =







xA,1 xB,1
...

...
xA,N xB,N






;

weights from input layer to hidden layer with M nodes

W(1)
p×M =W(1)

2×2 =
�

wAC wAD

wBC wBD

�

;

hidden layer with M nodes

Z(2)N×M = Z(2)N×2 =







zC ,1 zD,1
...

...
zC ,N zD,N






= XW(1);

activation function on hidden layer

a(2) =







(1+ exp(−zC ,1))−1 (1+ exp(−zD,1))−1

...
...

(1+ exp(−zC ,N ))−1 (1+ exp(−zD,N ))−1






= g(Z(2));

weights from hidden layer with M nodes to output layer
with K nodes

W(2)
M×K =W(2)

2×1 =
�

wC E

wDE

�

;

output layer with K nodes

Z(3)N×K = Z(3)N×1 =







zE,1
...

zE,N






= a(2)W(2);
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Figure 31. Signal propagating forward through an ANN; weights (in blue) and activation functions (in yellow) are given;
inputs (in green), output (in black).

activation function on output layer

ŷ= a(3) =







(1+ exp(−zE,1))−1

...
(1+ exp(−zE,N ))−1






= g(Z(3));

The problem is that unless the weights are judiciously selected,
the output that is produced is unlikely to have anything to do with
the desired output. For supervised learning tasks (i.e. when an
ANN attempts to emulate the results of training examples), there
has got to be some method to optimise the choice of the weights
against an error function

R(W) =
N
∑

i=1

K
∑

k=1

( ŷik(W)− yik)
2 or R(W ) = −

N
∑

i=1

K
∑

k=1

yik ln ŷik(W)

(for value estimation and classification, respectively), where N is
the number of observations in the training set, K is the number of
output nodes in the ANN, yik is the known value or class label for
the kth output of the ith observation in the training set.

Enter backpropagation, which is simply an application of the
chain rule to R(W).Under reasonable regularity condition, the
desired minimizer W∗ satisfies ∇R(W∗) = 0 and is found using
numerical gradient descent.

Gradient-Based Optimization Initially, the weight matrix W is
filled with small random values (a step called random initializa-
tion). The weights are then gradually trained (or learned), based
on a feedback signal. This occurs within a training loop, which
works as follows:

1. draw a batch of training samples x and corresponding tar-
gets y;

2. run the network on x (the forward pass) to obtain predic-
tions ŷ;

3. compute the loss of the network on the batch, a measure
of the mismatch between ŷ and y;

4. update all weights of the network in a way that slightly
reduces the loss on this batch.

Repeat these steps in a loop, as often as necessary. Hopefully,
the process will eventually converge on a network with a very
low loss on the training data, which is to say that there will be a
low mismatch between the predictions ŷ and the target y . In the
vernacular, we say that the ANN has learned to map its inputs to
correct targets.

Step 1 is easy enough. Steps 2 and 3 are simply the applica-
tion of a handful of tensor operations (or matrix multiplication, as
above). Step 4 is more difficult: how do we update the network’s
weights? Given an individual weight coefficient in the network,
how can we compute whether the coefficient should be increased
or decreased, and by how much?

One solution would be to successively minimize the objective
function along coordinate directions to find the minimum of a
function. This algorithm is called coordinate descent and at
each iteration determines a coordinate, then minimizes over the
corresponding hyperplane while fixing all other coordinates [5].

It is based on the idea that minimization can be achieved by
minimizing along one direction at a time. Coordinate descent
is useful in situations where the objective function is not differ-
entiable, as is the case for most regularized regression models, say.

But this approach would be inefficient in deep learning networks,
where there is a large collection of individual weights to update.
A smarter approach is use the fact that all operations used to
propagate a signal in the network are differentiable, and com-
pute the gradient of the objective function (loss) with regard to
the network’s coefficients. Following a long-standing principle of
calculus, we can decrease the objective function by updating the
coefficients in the opposite direction to the gradient.69

For an input vector X, a weight matrix W, a target Y, and a loss
function L, we predict a target candidate Ŷ(W), and compute the
loss when approximating Y by Ŷ(W). If X and Y are fixed, the loss
function maps weights W to loss values: f (W) = L(Ŷ(W),Y).

69The gradient is the derivative of a tensor operation; it generalizes the
notion of the derivative to functions of multidimensional inputs.
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Figure 32. SGD with one parameter [5].

In much the same way that the derivative of a function f (x) of
a single variable at a point x0 is the slope of the tangent at f at
x0, the gradient ∇ f (W0) is the tensor describing the curvature
of f (W) around W0. As is the case with the derivative, we can
reduce f (W) by moving W0 to

W1 =W0 − s∇ f (W0),

where s is the learning rate, a small scalar needed to approximate
the curvature of the hypersurface close to W0.

Stochastic Gradient Descent When dealing with ANNs, we can
take advantage of the differentiability of the gradient by finding
its critical points ∇ f (W) = 0 analytically.

If the neural network contains Q edges, this requires solving
a polynomial equation in Q variables. However, real-world ANNs
often have over a few thousand such connections (if not more),
the analytical approach is not reasonable.

Instead, we modify the parameters slightly based on the cur-
rent loss value on a random batch of data. Since we are dealing
with a differentiable function, we can use a mini-batch stochastic
gradient descent (minibatch SGD) to update the weights, simply
by modifying Step 4 of the gradient descent algorithm as follows:

4a. compute the gradient of the loss with regard to the weights
(the backward pass);

4b. update the weights “a little” in the direction opposite the
gradient.

Figure 32 illustrates how SGD works when the network only has
the one parameter to learn, with a single training sample. We
automatically see why it is important to choose a reasonable learn-
ing rate (the step size); too small a value leads to either slow
convergence or running the risk of staying stuck at some local
minimum; too large a value may send the descent to essentially
random locations on the curve and overshooting the global mini-
mum altogether.

SGD Challenges The main issue with minibatch SGD is that
“good” convergence rates are not guaranteed, but there are other
challenges as well:

selecting a reasonable learning rate can be difficult. Too
small a rate leads to painfully slow convergence, too large
a rate can hinder convergence and cause the loss function
to fluctuate around the minimum or even to diverge [5];
the same learning rate applies to all parameter updates,
which might not be ideal when the data is sparse;
a key challenge is in minimizing highly non-convex loss
functions that commonly occur in ANNs and avoiding get-
ting trapped in suboptimal local minima or saddle points.
It is hard for SGD to escape these suboptimal local minima
and even wors for the saddle points [6].

SGD Variants There are several SGD variants that are commonly
used by the deep learning community to overcome the aforemen-
tioned challenges. They take into account the previous weight
updates when computing the next weight update, rather than
simply considering the current value of the gradients. Popular
optimzers include SGD with momentum, Nesterov accelerated
gradient, Adagrad, Adadelta, RMSProp, and many more [25,28].70

ANNs can be quite accurate when making predictions – more
than other algorithms, if given a proper set up (but this can be
hard to achieve). They degrade gracefully, and they often work
when other things fail:

when the relationship between attributes is complex;
when there are a lot of dependencies/nonlinear relation-
ships;
when the inputs are messy and highly-connected (images,
text and speech), and
when dealing with non-linear classification.

But they are relatively slow and prone to overfitting (unless they
have access to large and diverse training sets), they are notoriously
hard to interpret due to their blackbox nature, and there is no
algorithm in place to select the optimal network topology.

Finally, even when they do perform better than other options,
ANNs may not perform that much better due to the No Free-Lunch
theorems; and they always remain susceptible to various forms of
adversarial attacks, so they should be used with caution.

7.4 Naïve Bayes Classification
In classical statistics, model parameters such asµ andσ are treated
as constants; Bayesian statistics, on the other hand assume that
model parameters are random variables.

Bayes’ Theorem lies at the foundation of such statistics:

P(H | D) =
P(D | H)× P(H)

P(D)
,

where H represents the hypothesis and D denotes the observed
data, which is sometimes written in shorthand as P(H | D)∝
P(D | H)× P(H); in other words, our degree of belief in a hy-
pothesis should be updated by the evidence provided by the
data.71 More details are provided in [8].

70A beautiful animation (created by A. Radford) compares the perfor-
mance of different optimization algorithms and shows that the methods
usually take different paths to reach the minimum.

71Nobody disputes the validity of Bayes’ Theorem, and it has proven to
be a useful component in various models and algorithms, such as email
spam filters, and the following example, but the use of Bayesian statistics
is controversial in many quarters.

P.Boily (2021) 57

https://imgur.com/a/Hqolp


STATISTICAL METHODS FOR SUPERVISED LEARNING DATA SCIENCE REPORT SERIES

Figure 33. Boxplot visualisation of measurements for benign and malignant tumours.

Suppose we are interested in diagnosing whether a tumour is
begin or malignant, based on several measurements obtained
from video imaging. Bayes’ Theorem can be recast as:

posterior: P(H | D) = based on collected data, how likely
is a given tumour to be benign (or malignant)?
prior: P(H) = in what proportion are tumours benign (or
malignant) in general?
likelihood: P(D | H) = knowing a tumour is benign (or
malignant), how likely is it that these particular measure-
ments would have been observed?
evidence: P(D) = regardless of a tumour being benign
or malignant, what is the chance that a tumour has the
observed characteristics?

To answer the above question (that is, to compute the posterior),
we will use a naïve Bayes classifier (NBC).

7.4.1 Naïve Bayes Classification for Tumour Diagnoses
The NBC procedure is straightforward.

1. Objective function: a simple way to determine whether
a tumour is benign or malignant is to compare posterior
probabilities and choose the one with highest probability.
That is, we diagnose a tumour as malignant if

P(malignant | D)
P(benign | D)

=
P(D |malignant)× P(malignant)

P(D | benign)× P(benign)
> 1,

and as benign otherwise.

2. Dataset: the classifier is built on a sample of N = 458
tumours with nine measurements, each scored on a scale
of 1 to 10. The measurements include items such as clump
thickness and bare nuclei; boxplots of these measurements
are shown in Figure 33. We also have undiagnosed cases
– an example of an explanatory signature scores is given
in Figure 34; this is an observation for which a prediction
is required.

3. Assumptions: we assume that the scores of the measure-
ments in each class are independent of one another (hence
the naive qualifier); this assumption reduces the likelihood
to

P(D | H) = P(x1, x2, · · · , x9 | H)
= P(x1 | H)× · · · P(x9 | H).

4. Prior distribution: we can ask subject matter experts to
provide a rough estimate for the general ratio of benign
to malignant tumours, or use the proportion of benign
tumours in the sample as our prior. In situations where we
have no knowledge about the distribution of priors, we may
simply assume a non-informative prior (in this case, the
prevalence rates would be the same for both responses).

5. Computation of likelihoods: under independence, each
measurement is assumed to follow a multinomial distribu-
tion (since scores are on 1− 10 scale). Multiplying proba-
bilities from each multinomial distribution (one each for
both classes) provides the overall likelihoods for benign
and malignant tumours, respectively. The likelihood of
the undiagnosed case being a benign tumour is seen to be
9.06× 10−4, while the likelihood of being a malignant tu-
mour is 5.85×10−11, based on the multinomial probabilities
given in Figure 35

6. Computation of posterior: Multiplying the prior probabil-
ity and likelihood, we get a quantity that is proportional to
the respective posterior probabilities. Looking at Figure 36,
we conclude that the tumour in the undiagnosed case is
likely benign (note that we have no measurement on how
much more likely it is to be benign than to be malignant –
the classifier is not calibrated).

In practice, various prior distributions or conditional distributions
(for the features) can be used; domain matter expertise can come
in handy during these steps.
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Figure 34. Scores for an undiagnosed tumour.

Figure 35. Multinomial probabilities for benign and malignant tumours.

Class Prior Likelihood Posterior Ratio
Malignant 0.327 5.85× 10−11 1.92× 10−11 3.15× 10−8

Benign 0.673 9.06× 10−4 6.09× 10−4

Figure 36. Computation of posterior probabilities in the undiagnosed case of Figure 34.

We end this section with a few notes and comments:

the naive assumption is made out of convenience, as it
renders the computation of the likelihood much simpler;

the variables in a dataset are not typically independent
of one another, but NBC still works well with test data
(usually) – the method seems to be robust against departure
from the independence assumption;

dependency among variables may change the true posterior
values, but the class with maximum posterior probabilities
is often unchanged;

in the classification context, we typically get more insight
from independent/correlated data than from correlated
data;

NBC works best for independent cases, but optimality can
also be reached when dependency among variables incon-
sistently support one class over another;

the choice of a prior may have a great effect on the classifi-
cation predictions, as can the presence of outlying observa-
tions, especially when |Tr is small), and

a final reminder that, like the SVM models, NBC is not
calibrated and should not be used to estimate probabilities.

It is debatable whether NBC even counts as a Bayesian method,
but it has shown success in various applications.

7.5 Ensemble Learning Methods
In practice, individual learners are often weak – they perform
better than random guessing would, but not necessarily that much
better, or sufficiently so for specific analytical purposes.

In the late 80’s, Kearns and Valiant asked the following ques-
tion: can a set of weak learners be used to create a strong learner?
The answer, as it turn out, is yes – via ensemble learning meth-
ods.

As an example, scientists trained 16 pigeons (weak learners, one
would assume) to identify pictures of magnified biopsies of possi-
ble breast cancers.

On average, each pigeon had an accuracy of about 85%, but
when the most popular answer among the group was selected,
the accuracy jumped to 99% (see [19] for more details).

7.5.1 Bagging
Bootstrap aggregation (also known as bagging) is an extension
of bootstrapping. Originally, bootstrapping was used in situations
where it is nearly impossible to compute the variance of a quantity
of interest by exact means (see Section 4.2).

But it can also be used to improve the performance of various
statistical learners, especially those that exhibit high variance
(such as CART).72

Given a learning method, bagging can be used to reduce the
variance of that method. If Z1, . . . , ZB are independent observa-
tions with

Cov(Zi , Z j) =

¨

σ2 if i = j

0 else

the central limit theorem states that

Var(Z) = Var
�

Z1 + · · ·+ ZB

B

�

=
1
B2

Var(Z1 + · · ·+ ZB)

=
1
B2

B
∑

i, j=1

Cov(Zi , Z j) =
1
B2

B
∑

k=1

Var(Zi) =
σ2

B
.

In other words, averaging a set of observations reduces the vari-
ance as σ2 ≥ σ2

B for all B ∈ N.

72Low variance methods, in comparison, are those for which the results,
structure, predictions, etc. remain roughly similar when using different
training sets, such as OLS when N/p� 1, and are less likely to benefit
from the use of ensemble learning.
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In practice, this conclusion seems, at first, not to be as interesting
as originally intended since we do not usually have access to
multiple training. However, resampling methods can be used to
generate multiple training sets from the original training set Tr.

Let B > 1 be an integer. We generate B bootstrapped training
sets from Tr by sampling N = |Tr| observations from Tr, with
replacement, to yield

Tr1, . . . , TrN ,

and train a model f̂i (for regression) or Ĉi (for classification) on
each Tri , i = 1, . . . , B; for each x∗ ∈ Te, we then have B predictions

f̂1(x
∗), . . . , f̂B(x

∗) (for regression)

or
Ĉ1(x

∗), . . . , ĈB(x
∗) (for classification).

The bagging prediction at x∗ ∈ Te is the average of all predictions

f̂Bag(x
∗) =

1
B

B
∑

i=1

f̂i(x
∗) (for regression)

or the most frequent prediction

ĈBag(x
∗) =Mode{Ĉ1(x

∗), . . . , ĈB(x
∗)} (for classification).

Bagging is particularly helpful in the CART framework; to take
full advantage of bagging, however, the trees should be grown
deep, as their complexity will lead to high variance but low bias
(thanks to the bias-variance trade-off).

In practice, the bagged tree predictions would also have low
bias, but the variance will be reduced by the bagging process; bag-
ging with 100s/1000s of trees typically produces greatly improved
predictions (at the cost of interpretability, however).

Out-of-Bag Error Estimation As is usually the case with super-
vised models, we will need to estimate the test error for a bagged
model. There is an easy way to provide the estimate without
relying on cross-validation, which is computationally expensive
when N is large.

The jth model is fit to the bootstrapped training set Tr j ,
j = 1, . . . , B. We can show that, on average, each of the Tr j con-
tains ≈ 2/3 distinct observations of Tr, which means that ≈ 1/3
of the training observations are not used to build the model (we
refer to those observations are out-of-bag (OOB) observations).

We can then predict the response yi for the ith observation in
Tr using only those models for which xi was OOB; there should
be about B/3 such predictions, and

ŷi = Avg{ f̂ j(xi) | xi ∈ OOB(Tr j) = Tr \ Tr j} (for regression)

or

ŷi =Mode{Ĉ j(xi) | xi ∈ OOB(Tr j)} (for classification).

The OOB MSE (or the OOB misclassification rate) are thus good Te
error estimates since none of the predictions are given by models
that used the test observations in their training.

Variable Importance Measure Bagging improves the accuracy
of stand-alone models, but such an improvement comes at the
cost of reduced interpretability, especially in the case of CART: the
bagged tree predictions cannot, in general, be expressed with the
help of a single tree.

In such a tree, the relative importance of the features is linked to
the hierarchy of splits (namely, the most “important” variables
appear in the earlier splits).

For bagged regression trees, a measure such as the total amount
in decreased SSRes due to splits over a given predictor, in which
we compare SSRes in trees with these splits against SSRes in trees
without these splits, averaged over the B bagged trees provides a
summary of the importance of each variable (large scores indicate
important variables). For bagged classification trees, we would
replace SSRes with the Gini index, instead.

Another approach might be to weigh the importance of a fac-
tor inversely proportionally to the level in which it appears (if
at all) in each bagging tree and to average over all bagging trees.

For instance, if predictor X1 appears in the 1st split level of
bagged tree 1, the 4th split level of bagged tree 2, and the 3rd split
level of bagged tree 5, whereas predictor X2 appears in the 2nd,
2nd, 3rd, and 5th split levels of bagged trees 2, 3, 4, 5 (resp.),
then the relative importance of each predictor over the 5 bagged
trees is

X1 : (1+ 1/4+ 0+ 0+ 1/3) ·
1
5
= 19/60= 0.32

X2 : (0+ 1/2+ 1/2+ 1/3+ 1/5) ·
1
5
= 23/75= 0.31,

and the first variable would be nominally more important than
the second.

7.5.2 Random Forests
In a bagging procedure, we fit models on various training sets,
and we use the central limit theorem, assuming independence of
the models, to reduce the variance.

In practice, however, the independence assumption is rarely
met: if there are a few strong predictors in Tr, each of the bagged
models (built on the bootstrapped training sets Tri) is likely to be
similar to the others, and the various predictions are unlikely to
be un-correlated, so that

Var( ŷi) 6=
σ2

B
;

averaging highly correlated quantities does not reduce the vari-
ance significantly (the central limit theorem assumption of inde-
pendence of observations is necessary).

With a small tweak, however, we can decorrelate the bagged
models, leading to variance reduction when we average the
bagged predictions.

Random forests also build models on B bootstrapped training
samples, but each model is built out of a random subset of m≤ p
predictors.

For decision trees, every time a split is considered, the set
of allowable predictors is selected from a random subset of m
predictors out of the full p predictors.

By selecting predictors randomly for each model, we lose out
on building the best possible model on each training sample, but
we also reduce the chance of them being correlated. For a test
observations x∗, the B predictions are combined as in bagging to
yield the random forest prediction.

If m = p, random forests reduce to bagged models; in prac-
tice we use m≈pp. When the predictors are highly correlated,
however, smaller values of m are recommended.

60 P.Boily (2021)



DATA SCIENCE REPORT SERIES STATISTICAL METHODS FOR SUPERVISED LEARNING

7.5.3 Boosting
Another general approach to improving prediction results for sta-
tistical learners involves creating a sequence of models, each
improving over the previous model in the series. Boosting does
not involve bootstrap sampling; instead, it fits models on a hi-
erarchical sequence of residuals, but it does so in a slow manner.

For regression problems, we proceed as follows:

1. set f̂ (x) = 0 and ri = yi for all xi ∈ Tr;

2. for b = 1,2, . . . , B:

(a) fit a model f̂ b to the training (X, r);

(b) update the regression function f̂ := f̂ +λ f̂ b;

(c) update the residuals ri := ri −λ f̂ b(xi) for all xi ∈ Tr;

3. output the boosted model f̂ (x) = λ( f̂ 1(x) + · · ·+ f̂ B(x)).

In this version of the algorithm, boosting requires three tuning
parameters:

the number of models B, which can be selected through
cross-validation (boosting can overfit if B is too large);
the shrinkage parameter λ (typically, 0< λ� 1), which
controls the boosting learning rate (a small λ needs a
large B, in general); the optimal λ and B can be found via
cross-validation, and
although not explicitly stated, we also need the learning
models to reach some complexity threshold.

Variants of the boosting algorithm allowing for classification and
for varying weights depending on performance regions in predic-
tor space also exist and are quite popular: details on AdaBoost
and Gradient Boosting are available in [17], amongst others
(classification boosting is a slightly more complicated affair).

Finally, note that while the No Free Lunch theorems guarantee
that no supervised learning algorithm is always best regardless
of context/data, the combination of AdaBoost with weak CART
learners is seen by many as the best “out-of-the-box” classifier.
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