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Abstract
Supervised learning methods can be presented in a formalism which generalizes statistical and regression
analysis, and their performance are easy to evaluate; consequently, they have been studied extensively
and often form the backbone of machine learning training. On the other hand, apart from a select few
classical models, unsupervised learning tasks are not usually presented with quite the same depth,
primarily due to the vagueness which infect their core – a number of the important concepts are
ambiguously defined; the validation of the results is sometimes elusive, and the actionable applications of
the outcomes are not always clear. The interest in such methods and tasks (clustering and segmentation,
association rules mining, link profiling, etc.) is mounting, however, with the increased focus on artificial
intelligence and machine learning research. In this document, we describe some of the most commonly-
used clustering algorithms, and discuss related issues and challenges.
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1. Overview

We introduced some of the basic notions of unsupervised
learning in Machine Learning 101 [10]; here, we review
some of these concepts in the context of clustering, discuss
the problems of validation and model selection, and present
some simple and sophisticated clustering algorithms.

1.1 Unsupervised Learning
In supervised learning, we differentiate between a dataset’s
response variables Y1, . . . , Ym and its predictor variables
X1, . . . , X p. Which variables are predictors and which are
responses depend on the context – for some questions, a
given variable could be a predictor, for others, a response.

Unsupervised learning tasks do away with the responses
altogether, which means that prediction is off the table;
note that variables that would have been deemed response
variables in a supervised learning framework are not neces-
sarily removed from the dataset during the analysis – they
are simply not viewed as an outcome to predict, and the
predictor variables are just observation features.
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In unsupervised learning, the objective is to identify and
uncover interesting insights about the dataset and the
system that it represents [11,25], such as:

informative ways of visualizing the dataset (often
associated with dimension reduction [31]);
highlighting subgroups among the dataset’s variables
or observations (clustering), or
finding links between variables (association rules min-
ing, link profiling, etc.), say.

1.2 Clustering in General
Clustering consists of a large family of algorithms and meth-
ods used to discover so-called latent groups in the datasets
– natural groups that exist but have not been identified or
labeled as such.

Clustering is a subjective analytical task; unlike classi-
fication and regression, clustering analysis does not have
as “simple” a goal as predicting a response for a new ob-
servation based on historical data patterns, and there is no
“solution key” against which to compare analysis results.

Applications:

finding subgroups of breast and/or prostate cancer pa-
tients based on their gene expression measurements
or their socio-demographic characteristics in order to
better understand the disease and potential treatment
side-effects;
grouping products in an online shop based on ratings
and reviews assigned by customers, or grouping cus-
tomers based on their purchasing history, in order to
make product recommendations;
finding documents that apply to search queries, and
finding similar queries to those entered by a user to
increase the odds of finding the documents they are
really looking for;
identifying population segments to test various incen-
tives for vaccination;
etc.

In each of these cases, the number of these latent groups
is unknown (and can in fact be taken as a true unknown of
the problem).

The subjectivity of unsupervised learning tasks may seem
to be an insurmountable flaw: analysts attempting to find
latent groups in a dataset, say, may obtain a different num-
ber of such groups, or assign different observations to their
groups if their numbers are identical, without one of them
being necessarily “wrong” (although it is conceivable that
some of them could produce sub-optimal groups, see Sec-
tion 3 for a detailed discussion on this topic).

In spite of this, clustering is a popular analytical task,
in part because it is much easier (and cheaper), typically,
to obtain unlabeled data than it is to obtain labeled data
(against which supervised methods could be evaluated).

A cluster is a subset of observations that all have something
in common – they are similar, according to some measure
of similarity. Furthermore, a cluster’s observations should
be dissimilar to other clusters’ observations.

Clusters do not necessarily need to be distinct (as in
so-called hard clustering) – in some cases, it might be suffi-
cient to quantify the likelihood or the degree to which an
observation belongs to a cluster (soft clustering).

The choice of a similarity/dissimilarity measure is en-
tirely subjective; there are contexts for which proximity
could be used as a decent proxy for similarity, and others
where it could not. Even in the former case, a distance
measure (metric) has to be selected, and infinitely many
choices are available to analysts.

Without domain-specific considerations (this requires
thorough data and context understanding), the choice of
measure is arbitrary; but understanding the data and the
context does not guarantee that all reasonable analysts
would agree on such a measure.

For instance, in any group of human beings, which of

age, ethnic background, gender, postal code,
sexual orientation, linguistic abilities, mathe-
matical skills, career, social class, political af-
filiation, operating system preferences, educa-
tional achievements, hockey club fandom, etc.

is responsible for separating its members into “us” vs. “them”
groups? Is it some combination of these characteristics?
Are the groups fixed? Is everybody in the “us” group based
on age also in the “us” group based on “gender”?

We could bypass the problem by creating more groups;
given an age group and gender, we could create the clusters:
“same age group and gender” (us), “same age group, dif-
ferent gender” (them1), “different age group, same gender’
(them2)’, “different age group and gender” (them3).

It is clear how the process can be expanded to include
more combinations of feature levels, but at the price of
introducing an ever increasing number of clusters – how
many “them” groups are too many for analysts or human
brains to process?

Clustering algorithms are designed to try to model various
aspects of this problem, but the latter’s complexity gives
rise to an enormous number of algorithms: at least 100
have been published, as of January 2022 [53]. Most of
these belong to one of six main families [2]:

partitional (k−means and variants, CLARA, etc.);
hierarchical (AGNES, DIANA, BIRCH, etc.);
density-based (DBSCAN, DENCLUE, OPTICS, etc.);
connectivity-based (spectral and variants, etc.);
grid-based (GRIDCLUS, STING and variants, etc.);
model-based (mixture models, latent Dirichlet allo-
cation, expectation-maximization, etc.).
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As is the case for all analytical methods, some modifications
are required when dealing with “Big Datasets”, for high-
dimensional data, or for specific types of datasets, such
as stream data, network data, categorical data, text and
multimedia data, time series data, and so on. Ensemble
methods, which combine various clustering results, can
also prove useful.

Distance, Similarity, and Dissimilarity Measures Although
the choice of how to interpret and compute similarity be-
tween observations is, to all intents and purposes, com-
pletely up to the analysts, all such measures must satisfy
certain properties: they must take on

large values for similar objects, and
small (or even negative) values for dissimilar objects.

Dissimilarity measures function in the opposite manner.

The kernel functions1 of machine learning [9] are exam-
ples of similarity (or dissimilarity) measures, most notably
the Gaussian (or radial) kernel

Kγ(x,y) = exp(−γ∥x− y∥2
2),

for a given γ > 0, for which points near one another (in the
∥·∥2 sense) have a similarity measure w = K(x,y)≈ 1 (and
thus are similar), and points far from one another have a
similarity measure near 0 (and thus are dissimilar).

Some similarity measures are derived from distance (met-
rics) d : Rp ×Rp → R+0 , which are functions with special
properties:

1. d(x,y) = 0 ⇐⇒ x= y;
2. d(x,y)≥ 0 for all x,y ∈ Rp;
3. d(x,y) = d(y,x) for all x,y ∈ Rp;
4. d(x,y)≤ d(x,z) + d(z,y) for all x,y ∈ Rp.

In effect, distances are positive-definite symmetric func-
tions Rp × Rp → R+0 satisfying the Triangle Inequality.
Commonly used distances include the:

Euclidean distance d2(x,y) = ∥x− y∥2;
Manhattan distance d1(x,y) = ∥x− y∥1;
supremum distance d∞(x,y) = ∥x− y∥∞;
more general Minkowski distance dp(x,y) = ∥x−y∥p,
for p ≥ 1, of which the first three examples are special
cases;
and more esoteric distances such as the Jaccard dis-
tance for binary vectors, the Hamming distance for
categorical vectors, the Canberra distance for ranked
lists, the cosine distance for text data, mixed dis-
tances for mixed variables, and so on [10,12,18,21].

1Formally, a kernel is a symmetric (semi-)positive definite operator
K : Rp ×Rp → R+0 . By analogy with positive definite square matrices, this

means that
∑N

i, j=1 ci c j K(xi ,x j) ≥ 0 for all xi ∈ Rp and all c j ∈ R+, and
K(x,w) = K(w,x) for all x,w ∈ Rp .

Given a distance d, a common construction is to define the
associated similarity measures

w= ℓ− d, w= exp(−kd2), or w=
1

1+ d
.

Note that there are similarity measures that cannot be de-
rived from distance measures, however.

Data Transformations Prior to Clustering Prior to cluster-
ing, it is crucial that the data be scaled (and potentially
centered) so that none of the variables unduly influence the
outcomes, or, as the expression prosaically puts it, so that
we do not have to compare apples with oranges – if age
in years and height in cm are dataset variables, a 10-unit
difference in age is likely to be more significant (in real
terms) than a 10-unit difference in height.

Putting everything on a (min, max) scale, for instance,
guarantees that relative differences (relative to the distribu-
tions of each variables), and not absolute distances, play the
important role. However, there are many ways to scale the
data, and the scaling approach may have an effect on the
clustering results (as we are sure you will not be surprised
to find out, by this point – that is the way, with clustering:
out of the frying pan and into the fire).

Common Difficulties There are issues related to clustering
other than the vagueness we have already discussed:

in many instances, the underlying assumption is that
nearness of observations (in whatever metric) is
linked with object similarity, and that large dis-
tances are linked with dissimilarity;
the lack of a clear-cut definition of what a cluster
actually is makes it difficult to validate clustering
results;
various clustering algorithms are non-deterministic;
the number of clusters cannot usually be known be-
fore the analysis;
even when a cluster scheme has been accepted as
valid, a cluster description might be difficult to come
by;
most methods will find clusters in the data even if
there are none;
once clusters have been found, it is tempting to try to
“explain” them, but that is a job for domain experts.

1.3 A Philosophical Approach to Clustering
In the context of artificial general intelligence,2 clustering
provides a basic way for intelligences to structure their
experience of the world.

Clustering techniques can allow such machines to iden-
tify object instances in the world around them and then,
on the basis of this identification, to identify or define types
of objects by grouping together the object instances they
have discovered.

2Think free-ranging robots, roughly speaking.
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With this in mind, we can view creating concepts as the
fundamental purpose of identifying groupings of similar dat-
apoints; these concepts allow an intelligent agent (whether
machine or person) to:

work in shorthand when dealing with objects (i.e.,
it is easier to deal with 10 ‘cats’ than with 10 unique
objects), and
make assumptions about the object instances in a
cluster associated with the concept (if an object is a
cat, then that object probably likes fish).

If the existence of some "ground truth" about what should
be clustered together (and by extension what should be
counted as a concept) can be presupposed, then regardless
of what is currently known about that truth, neither the
choice of algorithms nor of clustering algorithm parameters
is wholly subjective:3 choosing one algorithm over an-
other (or one set of parameters over another) may lead to a
"better" or "worse" reflection of the underlying ground truth.

But what counts as a ground truth? There are, of course,
debates about this in philosophical circles. Suppose that
natural kinds exist, that is to say, suppose that there is a
privileged and objectively essential way in which objects
are properly grouped in nature.

This assumption is very commonly made in the sciences,
where uncovering or discovering universal truths about
natural kinds of objects is a major objective. In such a case,
natural kinds can count as a ground truth, with some clus-
terings more closely reflecting this reality than others.

The fact that the ground truth is not known by the cluster-
ing agent does not mean that it does not exist, or that it
cannot be sought out using various techniques.

This is arguably what scientists do when they are using
the scientific method; they do not know, a priori, which
of their hypotheses are true or which are false, but they
nonetheless engage in various techniques to try to get a
better sense of what is true and false.

Even if the existence of natural kinds is rejected, it can
still be the case that, relative to a particular circumstance,
some clustering results are of higher quality than others.
Or, stated in terms of goals, some clustering results could
achieve a stated goal to a greater or lesser extent than
others.

This does appear to be more subjective, in the sense
that the goal, and the success of the outcome relative to
the goal, are both defined by an individual or individuals,
rather than being independent of them.

3In the psychological sense of the term, where it has the connotation of
"coming from a person’s experience"; philosophically it tends to indicate
that whatever it is that is being talked about does not exist separate from
such an experience.

Outside of clustering, it is not unusual for people to create
contextual definitions of what counts as ‘good’. Consider
as an example the concept of a ‘good meal’. What qualifies
as a good meal when camping in the backcountry is not
the same as what counts as a good meal when staying at a
four-star resort. Context matters.

But this does not mean that it is impossible to have a
bad meal under either of these circumstances, or that just
anything counts as a good meal – recall that we do not use
subjective in the stultifying post-modernist sense that there
are no constraints whatsoever and everything is a social
construct.4

Nonetheless, such situations are difficult to pin down or
define in a rigorous fashion. Even if there were some more
abstract or subjective sense in which something could be
said to be common to all types of good meals – or to all
types of good clustering results, in this analogy – it is diffi-
cult to imagine how this could be stated with any precision.
This is, frustratingly, a typically human approach to dealing
with the world.

However, since the underlying objective of machine
learning and artificial intelligence is to create machines
with abilities similar to those of humans, perhaps it is worth
trying to capture this less than rigorous approach within
the context of machine learning.

Given this inherent lack of rigour, are there applied situa-
tions where clustering is useful? More concretely, suppose
we desire to cluster furniture, based on data about the fur-
niture. We could make measurements of various kinds on
physical objects, either selected randomly or haphazardly;
perhaps, rather than working with the furniture itself, we
could use a website catalogue in which each page showcases
a particular type of furniture available for sale.

In this scenario, there may be one grouping (created
by tagging and linking pages, for instance) of the furniture
pages that allows users to visit the website with maximum
efficiency, and another that helps the store maximize its
sales.

Moreover, if we believe that natural kinds exist (which,
as noted, is debated by philosophers but is a common as-
sumption in science), there might also be one grouping of
the furniture that best matches the underlying furniture
natural kinds..

When considering outcomes relative to a particular situ-
ation, the most appropriate strategy for a particular cluster-
ing will depend, broadly speaking, on two considerations:

the chosen goal it is intended to support, and
the underlying structure of the data itself.

4This might be a smidgen of a straw-man definition of "post-modernist
subjectivity", but not that much of one; all things being equal, we lean
more toward the objective side of things, in nature and in thoughts.

4 J.Schellinck, P.Boily (2022)
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The first can be explicitly known and stated, but the second
will likely not be known in advance, which leads to numer-
ous technical issues when applying clustering algorithms.

A multitude of clustering algorithms can be applied to prob-
lems like the website furniture problems described above,
and for each of those, many different parameter settings
exist. Suppose six different clustering process are carried
out in the case of the furniture website example and they
generate six different clustering outcomes.

Presumably, some will be more effective than others, if
the objective is to get people to spend a maximum amount
of money on the online store. If the objective is to allow
customers to make their purchases most quickly, the "opti-
mal" clustering might not be the one that leads customers
to spend the most money.

It is difficult to say ahead of time which of the six group-
ings will be the most effective one, in each of these cases.
However, it might be possible to carry out A/B testing to
determine which one is the most effective, once they have
been generated. But can the A/B testing step be avoided?

If the applied goal (e.g. the goal to group furniture
pages in order to maximize profits) can be operationalized
more directly in terms of similarity and difference, then it
can be more directly tied to clustering approaches.

If we think that the best way to increase sales is to have
loose clusters where people are forced to browse a certain
amount, while being exposed to somewhat similar (but still
interesting) pieces of furniture to find what they want, it
might be possible to select a clustering approach to gener-
ate clusters with this desirable property.

Returning for a moment to the less applied general artificial
intelligence scenario introduced earlier, if the fundamental
functionality of clustering is viewed as creating concepts,
then it would seem to make sense to operationalize this
goal in terms of creating groupings where the observations
in a group are similar to each other and different from those
in other groups.

In this context, a poor grouping would de facto be one
where multiple observations are similar to those in other
clusters, or very different from those in their own cluster.

This could happen if a clustering process runs into tech-
nical difficulties, but it can also happen if there is no such
strongly grouped structure in the data itself.

To eliminate the possibility that the problem is not linked
with the chosen clustering procedure, one strategy is to
use multiple clustering techniques, as well as multiple
parameter settings for each technique.

If the issue remains, then we could conclude that it is
likely that there is no good clustering structure in the data
and by extension, in the objects being represented by the
data.

1.4 Case Studies
Interested readers can get more information on clustering,
as well as examples of applications, in [1, 2, 5, 10, 13, 15,
20,22,24–26,28,33,35–37,39,41–44,46,52,53]. In the
rest of this section, we will present a few case studies that
showcase the range of possible clustering applications.

Case Study 1: Environmental Studies. In this case study
[44] ,an affinity propagation (AP) algorithm was applied to
find similar characteristics in emissions among 30 provinces
in China. The clustering results of CO2 emissions showed
that the 30 provinces were divided into five clusters in 1997
and seven clusters in 2012 based on four indicators (genera-
tion structure, energy intensity, GDP per capita and electric-
ity intensity). The conclusion was that provincial emissions
reduction target and supporting policies for power industry
should be customised and consistent with the actual situa-
tions considering the similarity and differences in emission
characteristics.

Case Study 2: Medical Diagnosis. In this study [52], a
semi-supervised affinity propagation algorithm was used
to cluster ECG beats in order to detect arrhythmias. The
authors found that the resulting clusters exhibited a high de-
gree of precision with respect to grouping ECGs displaying
arrhythmias.

Case Study 3: Object Recognition. When working to de-
tect moving objects in videos, it can prove difficult to sepa-
rate objects of interest from background images and noise
(e.g., separate an imaging of a moving car from a park
scene with leaves rustling in the background) because the
lighting and other video parameters tends to vary from
video to video. As a result of these challenges, the process
is difficult to automate – typically, a person must tune the
object identification algorithm (e.g. MSRM) before it can be
applied. In this study [35], researchers used a combination
of clustering algorithms, including EM clustering (which
they refer to as collaborative clustering) to bypass this step.
The collaborative clustering strategy successfully identified
‘rough’ segments, which could then be used to bootstrap
MSRM without human intervention.

Case Study 4: Medical Diagnosis. Mild cognitive impair-
ments (MCI) are a known to be a risk for factor for devel-
opment of Alzheimer’s Disease. MCI are accompanied by
changes in brain structure. But which changes indicate that
people will go on to develop Alzheimer’s? In this study [39],
a number of different data science techniques were applied
to MRI data to investigate this question: Support Vector
Machines, Bayesian Statistics, Voting Feature Intervals, Fea-
ture Extraction and (last but not least) DBSCAN. DBSCAN
was used once voxels that provide high information about
the classification of the image were identified using entropy
based measures. DBSCAN then grouped pixels with similar
spatial and information levels to determine which parts of
the brain are the most important for the diagnosis.

J.Schellinck, P.Boily (2022) 5
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Case Study 5: Disaster Relief. This research paper [43]
presented a hybrid fuzzy clustering-optimization approach
to emergency logistics distribution during disasters. The
approach was grounded using an existing emergency logis-
tics co-distribution conceptual framework. The proposed
methodology involved two mechanisms: disaster-affected
area grouping, and relief co-distribution. The approach was
validated using numerical studies based on data collected
during a large-scale earthquake occurring in Taiwan.

Case Study 6: Urban Planning. This study [24] used a
fuzzy c−means (FCM) algorithm to identify housing sub-
markets in the Buffalo-Niagara Falls region. The study
focused on refining approaches to selecting appropriate
parameters of fuzzy clustering and characterizing the rela-
tionship between the clusters produced. Clustering results
were validated in terms of hedonic prediction accuracy
(prediction of the demand for houses by house purchasers).

Case Study 7: Food Science. In this study [46], clustering
was used to investigate coffee preferences. First, a group
of taste testers (a panel) were divided into four preference
clusters, based on their ratings of 12 regular coffee (RC)
samples with various blend ratios of coffee beans. Then, the
taste testers tried 88 additional RC samples. Models were
created to predict the preference scores of the new samples
for each clustered group, using a fuzzy neural network. At
the same time a genetic algorithm was used to predict the
optimum blends for each cluster. These predicted optimum
blends were then also tested on each cluster. The results of
this were consistent with what the models predicted and
with how the tasters in each cluster rated the new blends.
The researchers thus suggest that this approach could be
used for the development of coffee products.

Case Study 8: Traffic Safety. This study [33] investigated
analysis strategies for identifying black spots – locations
where traffic accidents frequently occur – using a dataset of
accidents occurring in Denizli, Türkiye. First, fuzzy cluster-
ing methods were used to identify and define black spots
based on accident density. Then, the safety levels of black
spots were determined using a Shannon Entropy approach
based on accident types and effective factors related to
accident occurrence. Finally, the safety levels of accident
locations were classified using both fuzzy logic and crisp ap-
proaches to classification, based on the calculated entropy
values. The results of the analysis were used to create a
series of recommendations to improve traffic safety.

Case Study 9: The Livehoods Project. When we think of
similarity at the urban level, we typically think in terms
of neighbourhoods. Is there some other way to identify
similar parts of a city? In this study [13], the authors study
the social dynamics of urban living spaces with the help of
clustering algorithms. The researchers aims to draw the
boundaries of livehoods, areas of similar character within
a city, by using spectral clustering. Unlike static admin-

istrative neighborhoods, the livehoods are defined based
on the habits of people who live there (Pittsburgh, PA). In
total, 9 livehoods have been identified and validated by 27
Pittsburgh residents.

Case Study 10: Comparative Mythology. Studying myths
from different cultures can help us understand their sim-
ilarities and possibly shared origins, as many myths have
splintered off and evolved from common sources. In this
study [15], the author uses hierarchical clustering to trace
the evolution of myths, which are broken down into com-
mon story elements. They are then categorized based on the
presence/absence of these elements, and clustered based
on this categorization. The results show certain myths clus-
tering together – could this suggest a possible common
origin for these myths?

Case Study 11: Speech Separation. In this study [5], the
authors combined prior relevant knowledge and spectral
clustering to separate two different speakers (each giving
their speech and voice signal) from a one-microphone blind
source. The result is an optimized segmenter for spectro-
grams of speech mixtures.

Case Study 12: Sensor Validation. In practice, the current
status and environment factors may affect sensors’ perfor-
mance. If the sensors are widely distributed, it is impractical
to bring a calibrating device to test each sensor individually.
In this study [28], researchers use peer sensors to detect
badly performing sensors.

Other Possible Domain-Specific Use Cases

Geography/Interdisciplinary: detect hotspots (clus-
ters) on maps, revealing multiple events occurring
in the same location over time (e.g., earthquakes,
crimes, etc.);
Business: detect similar business cycles across coun-
tries, decades, etc.;
Tourism: add fuzzy clustering to recommender en-
gine algorithms to improve trip recommendations;
Tourism: use fuzzy clustering to detect types of tourists,
relative to a particular destination;
Construction/Quality Control: use unsupervised
learning to detect patterns in audio feedback indicat-
ing damage;
etc.

1.5 Outline
We start by describing two simple clustering algorithms
in Section 2 (k−means and its variants, and hierarchical
clustering); we will then discuss the problems of valida-
tion and model selection in a general clustering setting
in Section 3. Finally, we provide details for some sophis-
ticated clustering algorithms in Section 4, which have
been selected to provide analysts with a decent idea of the
technicalities involved in applications.

6 J.Schellinck, P.Boily (2022)
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2. Simple Clustering Algorithms

We start with two of the simplest clustering algorithms:
k−means and hierarchical clustering.5

2.1 k-Means and Variants
One potential objective is to achieve minimal within-cluster
variation – observations within a cluster should be very
similar to one another, and the total variation over all clus-
ters should also be small.

Assume that there are k clusters in the (scaled) dataset

Xn×p =





x1
...

xn



 .

Let C1, . . . , Ck denote the set of indices in each cluster, so
that

{1, . . . , n}= C1 ⊔ · · · ⊔ Ck (hard clustering);

we use the notation xi ∈ Cℓ to indicate that observation
i lies in cluster ℓ. The within cluster variation WCV(Cℓ)
measures the amount by which the observations in Cℓ differ
from one another.

The approach is partition-based; we look for a partition
{C∗
ℓ
}k
ℓ=1 such that the total within cluster variation is mini-

mized:

{C∗ℓ }= argmin
{Cℓ}

¨

k
∑

ℓ=1

WCV(Cℓ)

«

.

The first challenge is that there are numerous ways to de-
fine WCV(Cℓ), and that they do not necessarily lead to the
same results (as one would expect from clustering); most
definitions, however, fall in line with expressions such as

WCV(Cℓ) =
1

(|Cℓ| − g)µ
∑

xi ,x j∈Cℓ

variation(xi ,x j),

where variation(x,x) = 0.

Common choices for the variation include

variation(xi ,x j) = ∥xi − x j∥2
2 =

p
∑

m=1

(x i,m − x j,m)
2

or

variation(xi ,x j) = ∥xi − x j∥1 =
p
∑

m=1

|x i,m − x j,m|;

these are used because of the ease of vectorizing the dis-
tance measurements, and not necessarily because they
make the most sense in context. With these choices, if
all observations x within a cluster C are near one another,
we would expect WCV(C) to be small. The values of the
parameter µ can be adjusted to influence the cluster sizes.

5In this section, we borrow heavily from [25].

Traditionally, we use µ= 0 (or µ= 1) and g = 0, and the
partition problem reduces to

{C∗ℓ }= argmin
{Cℓ}

(

k
∑

ℓ=1

1
|Cℓ|µ
∑

xi ,x j∈Cℓ

variation(xi ,x j)

)

.

As an optimization problem, obtaining {C∗
ℓ
}k
ℓ=1 is NP-difficult

due to the combinatorial explosion of possible partitions
{Cℓ}kℓ=1 when n is large.6

Algorithm There is a way to obtain a reasonably close par-
tition (hopefully) without having to go through all possible
partitions:

1. randomly assign a cluster number {1, . . . , k} to each
observation in the dataset;

2. for each Cℓ, compute the cluster centroid;
3. assign each observation to the cluster whose centroid

is nearest to the observation;
4. repeat steps 2-3 until the clusters are stable.

Three choices need to be made in order for the algorithm
to run:

the number of clusters k in step 1;
the centroid computation measure in step 2;
the distance metric used in step 3.

The most common choice of centroid measure for numerical
data is to use the vector of means along each feature of
the observations in each cluster (hence, k−means); using
other centrality measures yield different methods (such as
k−medians). For categorical data, the algorithm becomes
k−modes.

The distance used in step 3 is usually aligned with
the centroid measure of step 2 (and with the choice of
a variation function in the problem statement): Euclidean
for k−means, Manhattan for k−medians, Hamming for
k−modes.

Variants of these approaches may use a different random
initialization step: the first iteration centroids may be se-
lected randomly from the list of observations, say.7 Other
variants indicate how to process computations in parallel
(for Big Data) or for data streams (with an updating rule).

The algorithm can be shown to converge to a stable cluster
assignment, but there is no guarantee that this assignment
is the global minimizer of the objective function; indeed,
different initial conditions can find different local minima,
which is to say, different clustering schemes.

6Computing the number of such partitions in general cannot be done
by elementary means, but it can be shown that the number is bounded
above by nk .

7Unfortunately, the clustering results depend very strongly on the initial
randomization – a “poor” selection can yield arbitrarily “bad” (sub-optimal)
results; k−means++ selects the initial centroids so as to maximize the
chance that they will be well-spread in the dataset (which also speeds up
the run-time).

J.Schellinck, P.Boily (2022) 7
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Figure 1. A scatter plot matrix of the original Gapminder 2011 data (top, left), with two outliers in the population charts
(India and China); the same, but with the logarithm of the population and of the GDP per capita (top, right). Realizations
of 2−means (middle, left), 3−means (middle, right; bottom, right), and 4−means (bottom, left) are also displayed.

Example We have worked with the Gapminder dataset
in [9]; we will use it again to illustrate some of the notions
in this module. The 2011 data contains observations on
n= 184 countries, for the following variables:

life expectancy (in years);
infant mortality rate (per 1000 births);
fertility rate (in children per woman);
population (we use the logarithm for clustering), and
GDP per capita (same).

A scatter plot of the original dataset is shown in Figure 1
(top row). Due to outlying observations in the population
variable, we will be working instead with the logarithm of
the population (and the logarithm of GDP per capita).

We run k−means for k = 2,3,4 and obtain the results
shown in Figure 1:

2−means: there are 64 observations in cluster 1
(red), and 120 observations in cluster 2 (blue);
3−means: there are 53, 84, and 47 observations in
clusters 1, 2, and 3, respectively;
4−means: there are 26, 47, 61, and 50 observations
in clusters 1, 2, 3, and 4, respectively.

The colours (cluster labels) are not used by the clustering
algorithm – they are its outputs (the value is irrelevant).

The last chart shows the result of a different initialization
for k = 3, leading to a different cluster assignment.

8 J.Schellinck, P.Boily (2022)
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Figure 2. Illustration of AGNES and DIANA (top);
corresponding hierarchical structure and dendrogram
(bottom).

2.2 Hierarchical Clustering
One of the issues surrounding the use of k−means (and its
variants) is that nothing in the result of a single run of the
algorithm indicates if the choice of k was a good one.8

This can only be achieved by repeatedly running the
algorithm over a range of “reasonable” values of k (to ac-
count for initialization variability), and by comparing the
outputs using some of the methods discussed in Section 3.
This process can be memory-extensive.

Hierarchical clustering (HC) can sidestep this difficulty
altogether by building a deterministic (for a choice of pa-
rameters) global clustering structure from which we can
select a specific number of clusters after the algorithm has
converged; the advantage of this approach is that if we
want to use a different number of clusters, we do not need
to re-run the clustering algorithm – we simply read off the
new clusters from the global clustering structure.

There are two main conceptual approaches:

bottom-up/agglomerative (AGNES) – initially, each
observation sits in its own separate cluster, which are
then merged (in pairs) as the hierarchy is climbed,
leading (after the last merge) to a large cluster con-
taining all observations;
top-down/divisive (DIANA) – initially, all observa-
tions lie in the same cluster, which is split (and re-
split) in pairs as the hierarchy is traversed downward,
leading (after the last split) to each observation siting
in its own separate cluster.

They are illustrated in Figure 2.
8The results might look good on a 2-dimensional representation of the

data, but could it look better?

In theory, the two approaches are equivalent (they produce
the same hierarchical structure given a similarity metric
and a linkage strategy (more on this later); in practice, we
use AGNES over DIANA for anything but small datasets as
the former approach runs in polynomial time (with respect
to the number of observations), whereas the latter runs in
exponential time.

With AGNES, the clustering dendrogram is built start-
ing from the leaves, and combining clusters by pairs, up to
the root, as in Figure 3.

Algorithm We build the global structure as follows:

1. each observation is assigned to its own cluster (there
are n clusters, initially);

2. the two clusters that are the least dissimilar are merged
into a supra-cluster;

3. repeat step 2 until all of the observations belong to
a single large merged clusters (with n observations).

Three parameters need to be made in the order for the
algorithm to run:

the choice of a linkage strategy in steps 2 and 3;
the dissimilarity measure used in step 2;
the dissimilarity threshold required to “cut” the den-
drogram into clusters.

If Figure 3, the dataset is split into n = 50 clusters; ob-
servations 13 and 34 are then found to be most similar,
and merged into a single cluster, and the 50 observations
are grouped into 49 clusters. The next two observations
which are most similar are 14 and 37, which are themselves
merged, so that there are 48 clusters at that level.

The process is continued until all observations are merged
into a single cluster, leading to the global clustering struc-
ture (clustering dendrogram) for the dataset.

In order to obtain actual clusters (as opposed to the global
structure), we cut the dendrogram at the selected dissimilar-
ity level, with the resulting groups of observations yielding
the dataset clusters (5, in the example of Figure 3). In-
creasing the dissimilarity threshold decreases the number
of clusters, and vice-versa.

Linkage Strategy In the first AGNES stage, we compare
all pairs of observations to determine which two are least
dissimilar, and how these are merged into a cluster.9

In the second stage, we must also compare each of the
non-merged observations with a cluster of two observations
to determine their dissimilarity (the other dissimilarities
have been computed in the first stage and do not need to
be computed anew).

In subsequent steps, we might also need to compare
two clusters with any number of observations for overall
similarity. How can this be achieved?

9With n observations, there are 1+ · · ·+ (n− 1) = (n−1)n
2 such pairs.

J.Schellinck, P.Boily (2022) 9
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Figure 3. Cluster dendrogram for the hiearchical cluster structure of a dataset with 50 observations and 3 variables, with
average linkage (UPGMA) and using the Euclidean distance as the dissimilarity measure [author unknown]. The
dendrogram is cut at a dissimilarity level ≈ 0.6 so that 5 clusters emerge (ordered and coloured in red, magenta, blue,
green, and red); the observations profiles are shown in the stacked bar chart and provide potential descriptions of the
clusters (magenta = small total height, with mostly dominant 3rd components, say). Based on the profiles, we might also
have elected to cut a slightly lower dissimilarity level (≈ 0.55), so that the yellow and green clusters would have been
further split into two clusters apiece (between observations 35 and 13, and 30 and 10, perhaps?).

Let A and B be clusters in the data, with |A|= nA, |B|= nB.
The dissimilarity between A and B can be computed in
multiple ways:

complete linkage – the largest dissimilarity among
all pairwise dissimilarities between the observations
in A and those in B (nAnB computations);
single linkage – the smallest dissimilarity among all
pairwise dissimilarities as in complete linkage;
average linkage – the average dissimilarity among
all pairwise dissimilarities as in complete (or single)
linkage;
centroid linkage – the dissimilarity between the cen-
troids of A and B (found using whatever method is
appropriate for the context);
Ward’s method (and its variants) uses any reasonable
objective function which reflects domain knowledge
[4,54];
etc.

The choice of a linkage strategy (and of a dissimilarity
measure) affects not only how clusters are compared and
merged, but also the topology (shape) of the resulting
dendrogram (are the clusters tight, loose, blob-like, etc.).

The various linkage strategies are illustrated below, for
Euclidean dissimilarity.

Example We show the results of hierarchical clustering
on the Gapminder 2011 data, using complete linkage and
Eulidean dissimilarity (see Figure 4) and Ward D linkage
and Manhattan dissimilarity (see Figure 5). In each case,
we consider k = 2,3, 4 clusters.

10 J.Schellinck, P.Boily (2022)
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Figure 4. Gapminder 2011 data; hierarchical clustering with complete linkage and Euclidean dissimilarity. Global
clustering structure (top); 2 clusters with 66 and 118 observations apiece (2nd row); 3 clusters with 66, 24, and 94
observations apiece (3rd row); 4 clusters with 35, 31, 24, and 94 observations apiece (4th row).

J.Schellinck, P.Boily (2022) 11
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Figure 5. Gapminder 2011 data; hierarchical clustering with Ward D linkage and Manhattan dissimilarity. Global
clustering structure (top); 2 clusters with 72 and 112 observations apiece (2nd row); 3 clusters with 72, 80, and 32
observations apiece (3rd row); 4 clusters with 47, 25, 80, and 32 observations apiece (4th row).
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3. Evaluation
Hierarchical clustering (HC) and k−means (and its variants)
both attempt to separate the data into natural groups,
using different conceptual approaches; k−means tries to
minimize within-cluster variation while HC builds a global
clustering structure.

We have discussed some of their shortcomings in Sec-
tion 2; the fact that they may yield different clustering
outcomes depending on the choices made along the way
(initialization, similarity/dissimilarity measures, linkage
strategy, number of clusters, etc.) reinforces the notion that
unsupervised learning is difficult.

We will discuss advanced algorithms that sidestep some
of these issues in Section 4, but we make an important
observation in the meantime: a hallmark of clustering is
that whenever a new approach manages to overcome a
previously-identified difficulty, it usually does so at the cost
of introducing holes in hitherto sound aspects.

We may thus not be able to ever find a “best” clustering
approach/outcome (an updated take on the No Free Lunch
theorem, perhaps? [55]), but is it possible to identify which
of several clustering scheme is “optimal” (or best-suited for
an eventual task)?

3.1 Clustering Assessment
In machine learning, clustering is defined as grouping ob-
jects based on their over-all similarity (or dissimilarity) to
each other.10 It can be tempting to focus on just one or
two attributes (especially for visual or “eyeball” clustering),
but keep in mind that even if we were to focus on one or
two particular attribute, all of the other attributes must still
come along for the ride. For instance, consider the objects
shown below.

What is the same about these objects? What is different?
Do they belong in the same group? If so, how many?

10Note that each object has multiple dimensions, or attributes available
for comparison.

As a start, they are all pictorial representations of apples;11

they all possess stems, and appear to be of similar size.
On the other hand, two of them are (mostly) red while

the other is green(ish); one of the stem has a leaf while the
other two do not, and one of them is spherical, while the
other two are “tapered” at the bottom.

We do recognize them all as apples, but we could make
an argument that each of them is unlike the other two (and
thus also that each of them is similar to exactly one of the
other two).

Fruit Image Dataset In order to appreciate the challenges
presented by clustering validation, it will be helpful to relate
the concepts to something tangible. We will explore some
of these notions through an artificial dataset of 20 fruit
images (see Figure 6):

are there right or wrong groupings of this dataset?
are there multiple possible ‘natural’ clusterings?
could different clusterings be used differently?
will some clusterings be of (objectively) higher quality
than others?

Key Notions At a fundamental level, clustering relies on
the notion of representativeness; ideally, the essence of
instances (observations) in a cluster would be faithfully
captured by the cluster concept (examplar, representative),
and differentiated from those of other clusters by the same
token.

For instance, the image below is a concept for “apples”:

as is the Mirriam-Webster definition:

“The fleshy, usually rounded red, yellow, or
green edible pome fruit of a usually cultivated
tree (genus Malus) of the rose family.”

Of course, this is not all that an apple is, but most people
who have seen or eaten an apple at some point in the past
will have no trouble recognizing what is being alluded to by
the concept, even if the corresponding mental image differs
from one person to the next.

11While we cannot forget that they are not actual apples, we will assume
that this is understood and simply refer to the objects as fruit, or apples.
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Figure 6. Toy dataset with which the key concepts of clustering validation are illustrated.

The cluster concepts offer a generalized representation –
they capture “something” of their corresponding cluster’s
instances. For a given cluster, then, can we clearly identify
a concept capturing its (and solely its) essence? If so, does
that make the entire clustering scheme a good one?

For machine learning purposes, we use signature vectors
to represent instance properties. Each vector element rep-
resents an instance attribute; the element’s value is the
measured value of the corresponding object’s property (for
instance, the colour of the apple).

The apple below, as an example,

could perhaps be described by the signature vector

(12,9.12, tapered, golden delicious),

where the components are the instance’s colour (ordinal),
height (continuous), shape and variety (both categorical).12

Signature vectors are used to compare objects (instance-
to-instance relationships); such comparisons could yield,
among others, a measure of similarity between instances.

While similarity can be measured against a single di-
mension (component), the comparisons of interest for clus-
tering task require an overall similarity measure, across all
dimensions. We would compare the two apples below, say,

12An important consideration, from a general data science perspective,
is whether the signature vector provides a sufficient description of the
associated object or whether it is too crude to be of use. This is usually
difficult to ascertain prior to obtaining analysis results, and comparing
them to the “reality” of the underling system (see [8,11] for details).

14 J.Schellinck, P.Boily (2022)
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by comparing their signature vectors

v1 = (12, 9.12, tapered, golden delicious)
v2 = (2, 10.43, spherical, macintosh)

with the help of some similarity measure w(v1,v2).13 As we
have discussed in Section 1, the use of a distance measure
(or metric) is a popular strategy for defining how similar
(or dissimilar) two objects are to each other.14

In the clustering framework, we are often interested in
all pairwise similarities between objects, not just in the
similarity between two objects, which is to say that pairs of
objects are not solely interesting in and of themselves, but
also in relation to other pairs of objects.

In a dataset with 4 objects, for instance, we might re-
quire the computation of (up to) 6 pairwise similarities (as
shown below).

As is the case with objects, clusters have properties. These
could include:

the number of instances in a cluster;
the similarity measures across instances within a clus-
ter (minimum, maximum, average, median, standard
deviation, mean absolute deviation, variance, etc.);
the cluster representative, which may be an actual
instance, or an amalgamation of multiple instances
(exemplar).

13Various similarity measures may yield various results, in some cases
showing the two apples to be similar, in others to be dissimilar.

14Importantly, a distance takes into account all of the properties of the
objects in question, not just a few of them. Traditionally, only numeric
attributes are allowed as input (see [12] for an in-depth discussion of
distance metrics), but it is technically possible to convert categorical
attributes to numeric ones, or to define mixed distances.

While the moniker “distance” harkens back to the notion of Eulidean
(physical) distance between points in space, it is important to remember
that the measurements refer to the distance between the associated sig-
nature vectors, which do not necessarily correspond to their respective
physical locations.

How many instances are there in the cluster below, for in-
stance? What pair of observations is most similar? The least
similar? What are the similarity values? Which instance is
most representative?

We can also define cluster-to-instance relationships. A
specific instance can be:

compared to a cluster representative;
compared to specific instances in a cluster (as in
instance-to-instance relationships), such as the most
similar instance or the most distant instance.

This allows for membership questions: is the green apple
similar to the cluster below? Does it belong in the cluster,
or is it most likely to belong to another cluster? Or perhaps
to no cluster in particular?

Finally, we might be interested in cluster-to-cluster rela-
tionships, where we compare cluster-level properties, such
as:

number of instances;
within-cluster similarities;
cluster representatives.

To this, we can also add between-cluster (or across-cluster)
similarities, as a way to determine if the instances are no-
tably different from one cluster to the next.

J.Schellinck, P.Boily (2022) 15
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Figure 7. Two clusters in a subset of the toy dataset.

This allows for validity questions: are the two clusters
below significantly different? Should they be joined into a
mega-cluster? Does it make sense to have them as separate
clusters in the dataset?

How would we qualify the clustering outcome of Figure 7,
for instance, as it relates to colour, height, and shape? Could
there be clusterings of higher quality? Of lower quality?
How could this be quantified?

Cluster and instance comparisons can be combined in many
different ways, which can then be used to generate a vast
number of clustering validation functions.

The central cluster validation question becomes: what
can these tell us about the quality of a particular clustering
outcome relative to some objective criteria about “good”
clustering schemes (internal validation), to another clus-
tering option (relative validation), or to external informa-
tion (external validation)?

Clustering Quality Measures In general, clustering in-
volves two main activities:

creating/building the clusters, and
assessing their quality, individually and as a whole.

From a practical perspective, clustering requires two func-
tions: one which assigns each instance to a cluster,15, and
one which assigns each clustering scheme to a cluster qual-
ity measurement.16

An illustration is provided below, on an artificial dataset con-
taining two variables, with dissimilarity between instances
given by the corresponding Euclidean distance:

15Or in the case of soft clustering, assign each instance a “probability”
of belonging to each cluster.

16The similarity matrix is typically required at both stages.

16 J.Schellinck, P.Boily (2022)
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Figure 8. Schematic illustrations of various instance/cluster properties and relationships.

Three different clustering schemes are obtained, and their
quality is assessed with the help of some clustering valida-
tion function:17

top – two clusters are found in the data (with out-
liers), and the quality of the clustering is assessed as
0.61;
middle – three clusters are found (no outliers), with
quality assessment at 0.41;
bottom – two clusters are found (no outliers), with
quality assessment at 0.53.

With this choice of clustering validation function, the top
scheme would be prefered, followed by the bottom scheme;
the middle one brings up the rear.

We have already mentioned the abundance of clustering
algorithms [53]; it will come as no surprise that a tremen-
dous number of clustering validation function in practice
as well (for much the same reasons as those discussed in
Section 1.2).

They are, however, all built out of the basic measures
relating to instance or cluster properties we have already
reviewed, as illustrated schematically in Figure 8:

instance properties;
cluster properties;
instance-to-instance relationship properties;
cluster-to-instance relationship properties, and
cluster-to-cluster relationship properties,

Internal Validation Context is quite relevant to the quality
of a given clustering result. But what if no context is readily
available? Internal validation methods attempt to measure
cluster quality objectively, without context.18

We could elect to validate the clustering outcome using
only the properties of the obtained clusters, such as, say,
the distance between all clusters: if the average between-
cluster distance is large, we might feel that there is some
evidence to suggest that the resulting clusters provide a
good segmentation of the data into natural groups (as at
the top of the column on the right).

17The specifics of that function are not germane to the discussion.
18“Clustering validation” suggests that there is an ideal clustering result

against which to compare the various algorithmic outcomes, and all that is
needed is for analysts to determine how much the outcomes depart from
the ideal result. “Cluster quality” is a better way to refer to the process.

Alternatively, we might validate cluster quality by tempering
the average between-cluster distance against the average
within-cluster distance between the instances, which would
reward “tight” and “isolated clusters”, as opposed to simply
“isolated” cones.

There are multiple ways of including both between-cluster
and within-cluster similarities in a cluster quality metric
(CQM): both the Davies-Bouldin index and Dunn’s index
do so, to name but two examples.

The broad objectives of clustering remain universal: in-
stances within a cluster should be similar; instances in
different clusters should be dissimilar. The problem is that
there are many ways for clusters to deviate from this ideal:
in specific clustering cases, how do we weigh the “good”
aspects (such as high within-cluster similarity) relative to
the “bad” ones (such as low between-cluster separation)?
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Other internal properties and relationships can also be used
and combined in various ways, leading to an embarrassment
of riches when it comes to CQMs. The following indices
are all available in the R package clusterCrit, for
instance [14]:

Ball-Hall
Banfeld-Raftery
C
Calinski-Harabasz
Davies-Bouldin
Det Ratio and LogDetRatio
Dunn
Baker-Hubert Gamma
GDI
Gplus
KsqDetW
McClain-Rao
PBM
Point-Biserial
Ratkowsky-Lance
Ray-Turi
Scott-Symons
SD
SDbw
Silhouette
Tau
TraceW and TraceWiB
Wemmert-Gancarski
WSS and LogSSRatio
Xie-Beni

While it is useful to have access to so many CQMs, we
should remain aware that the No-Free Lunch theorem is
still in play: none of them is universally superior to any of
the others.19

In practice, certain approaches (weightings) may prove
more relevant given the eventual specific analysis goals, but
what these could prove to be is not always evident from the
context; consequently, we recommend assessing the quality
of the clustering outcomes using a variety of CQMs.

Studies have been performed to compare a large number of
internal validation measures, relative to one another and
against human evaluation; generally speaking, variants of
the silhouette index performed reasonably well (but see
previous NFL comment) [32,48].

One possible interpretation of these results is that in-
ternal validation via CQMs may be providing information
about clustering across all contexts, and that it is usually
easier to identify clustering outcomes that clearly miss the
mark than it is to objectively differentiate amongst “good”
outcomes, for reasons that are not fully understood yet.

19Given that all of them are supposedly provide context-free assess-
ments of clustering quality, that is problematic (although emblematic of
unsupervised endeavours).

Details on the CQMs are readily available from a multitude
of sources (see [2,32,48], among others); we provide more
information for 4 commonly-used CQMs:

(within) sum of squared error;
Davies-Bouldin;
Dunn, and
silhouette;

Let C = {C1, . . . , CK} be the K clusters obtained from a
dataset X via some algorithmA . Denote the centroid (or
some other central representative) of cluster Ck by ck. The
(within) sum of error for C is

WSE=
K
∑

k=1

∑

x∈Ck

dissimilarity(x,ck).

The dissimilarity is often selected to be the square of the
Euclidean distance (thence “sum of squared error”), but
the choice of the Euclidean distance (and of the square ex-
ponent) is arbitrary – it would make more sense, in practice,
to use a distance metric related to the similarity measure
used byA .

Note that WSS decreases with the number of clusters K ,
and optimality is obtained at points of diminishing returns
(see Section 3.2 for details); from a validation perspective,
it might be easier to interpret the (within) average error:

WAE=
K

avg
k=1

�

avg
x∈Ck

{dissimilarity(x,ck)}
�

:=
K

avg
k=1
{sk} .

With sk, k = 1, . . . , K as above, the Davies-Bouldin index
(DBI) is defined as

DBI=
1
K

K
∑

k=1

max
ℓ̸=k

§

sk + sℓ
dissimilarity(ck,cℓ)

ª

.

If the clusters {Ck} are tight and dissimilar to one another,
we expect the numerators sk + sℓ to be small and the de-
nominators dissimilarity(ck,cℓ) to be large, so that the DBI
would be small.

Conversely, with clusters that are loose or somewhat
similar to one another, we expect the DBI to be large.

There are other ways to assess separation and tightness;
Dunn’s index is the ratio of the smallest between-cluster
dissimilarity (for pairs of observations not in the same
cluster) to the largest cluster diameter (within-cluster
dissimilarity).

18 J.Schellinck, P.Boily (2022)
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If the clusters {Ck} are tight and dissimilar to one another,
we expect the smallest between-cluster dissimilarity to be
large and the largest cluster diameter to be small, leasing
to a large Dunn ratio.

Conversely, with clusters that are loose or somewhat
similar to one another, the Dunn ratio will be small.

As is the case with the sum of errors and the DBI, the
choice of the dissimilarity (or distance) measure leads to
different variants of the Dunn index, but all of them take
non-negative values.

The three previous CQMs provide examples of validation
metrics that are computed for the entire clustering outcome,
the silhouette metric instead assigns a score to each ob-
servation, and aggregates the scores at a cluster level and
at the dataset level: for a dissimilarity d and a point x in a
cluster C , set

b(x) = min
C ′ ̸=C

�

avg
y∈C ′
{d(x,y)}
�

, a(x) = avg
w∈C
w̸=x

{d(x,w)} .

Small values of a(x) imply that x is similar to the instances
in its cluster, large values of b(x) imply that it is dissimilar
to instances in other clusters.

The silhouette metric at x is

silhouette(x) =
b(x)− a(x)

max{a(x), b(x)}

=







1− a(x)/b(x) if a(x)< b(x)
0 if a(x) = b(x)
b(x)/a(x)− 1 if a(x)> b(x)

Consequently, −1≤ silhouette(x)≤ 1 for all x. Thus, when
silhouette(x) is large (≈ 1), the ratio a(x)/b(x) is small
and we interpret x to be correctly assigned to cluster C
(and conversely, when silhouette(x) is small (≈ −1), we
interpret x’s assignment to C to be “incorrect”).

The silhouette diagram corresponding to the clustering
results displays the silhouette scores for each observations,
and averages out the scores in each cluster. The mean over
all observations (and the number of instances that have
been poorly assigned to a cluster) gives an indication of the
appropriateness of the clustering outcome.

In the example below, 65 observations are separated into 5
clusters: 6 observations are poorly assigned (those with
negative silhouette scores) and the average silhouette
score over the entire dataset is 0.2, which suggests that the
clustering is more successful than unsuccessful, overall.

Note, however that it could prove difficult to associate
intrinsic meaning to a lone numerical score, in general –
there could be clustering contexts where 0.2 is considered
to be a fantastic silhouette score, and others where it is
viewed as an abject failure.

It is in comparison to the scores obtained by different
clustering schemes that this score (and those of the other
CQMs) can best serve as an indicator of a strong (or a poor)
clustering outcome.

Relative Validation Obtaining a single validation mea-
sure for a single clustering outcome is not always that
useful – how would we really characterize the silhouette
score of 0.2 in the previous example? Could the results be
better? Is this the best that can be achieved?

One approach to this problem is to compare clustering
outcomes across multiple runs to take advantage of non-
deterministic algorithms or various parameters’ values (see
image below, and schematics in Figure 9): if the outcome
of different clustering algorithms on the same dataset are
“similar”, this provides evidence in favour of the resulting
clusters being efficient, natural, or valid, in some sense.

Consider, for instance, a dataset with 6 instances, which
is clustered in two different manners (A and B , with
|A | = 3 and |B| = 2), as shown below. The clusterings are
clearly not identical; how similar are they?
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Figure 9. Schematics of relative clustering validation.

One way to approach relative validation for two outcomes
is by computing “correlations” between cluster outcomes.
Intuitively, we would expect the similarity between both
clustering schemes to be high, seeing as the two outcomes
are not that different from one another.20

How can this be quantified? Correlation measures in-
clude the Rand, Jaccard (see [12]), and Gamma (see [57])
indices.

20InB , the two smallest clusters have been merged into a larger cluster.

LetA = {A1, . . . , Ak} andB = {B1, . . . , Bℓ} be two cluster-
ings of a dataset X. If X consists of n instances, there are
thus

�

n
2

�

=
n(n− 1)

2

pairs of observations in the data.

Denote the number of pairs of observations that are in:

the same cluster inA and in the same cluster inB
by ss,
different clusters inA and different clusters inB by
dd;
the same cluster inA but in different clusters inB
by sd, and
different clusters inA but in the same cluster inB
by ds.

Thus,
�

n
2

�

= ss+ dd+ sd+ ds,

and we define the Rand index ofA andB as

RI(A ,B) =
ss+ dd

ss+ dd+ sd+ ds
=

ss+ dd
�n

2

� .

Large values of the index are indicative of similarty of clus-
tering outcomes.21

Unfortunately, the Rand index does not satisfy the con-
stant baseline property.22 The adjusted Rand index (as
well as several other pair-counting, set-matching, and infor-
mation theoretic measures) relies on the contingency table
betweenA andB , a method to summarize the outcomes
of two clustering results on the same dataset:

B1 · · · Bℓ Total
A1 n1,1 · · · n1,ℓ µ1
...

...
. . .

...
...

Ak nk,1 · · · nk,ℓ µk

Total ν1 · · · νℓ n

In this array, ni, j = |Ai ∩ B j | represents the number of in-
stances that are found in both the cluster Ai ∈ A and
B j ∈B . The adjusted Rand index (∈ [−1, 1]) is given by

ARI(A ,B) =

∑

i j

�ni j

2

�

−
�

∑

i

�

µi
2

�∑

j

�ν j

2

�

�À

�n
2

�

1
2

�

∑

i

�

µi
2

�

+
∑

j

�ν j

2

�

�

−
�

∑

i

�

µi
2

�∑

j

�ν j

2

�

�À

�n
2

�

,

which can also be re-written as

ARI(A ,B) =
2(ss · dd− sd · ds)

(ss+ sd)(ds+ dd) + (ss+ ds)(sd+ dd)
.

21The formula for RI(A ,B) is not unlike the one used in the definition
of accuracy, a performance evaluation measure for (binary) classifiers.

22In a nutshell, the expected value of RI(A ,B) for independent, ran-
dom clusteringsA andB is not 0 [49].
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It is straightforward to compute RI and ARI for the two
clusterings of the artificial example with 6 instances. Since
n = 6, there are 6 · 5/2 = 15 pairs of observations in the
data, and we have:

ss = 4 (x1 and x3; x1 and x4; x3 and x4; x2 and x5);
ds= 2 (x2 and x6; x5 and x6);
sd= 0 (none);
dd= 9 (all remaining pairs).

Thus,

RI(A ,B) =
4+ 9

4+ 9+ 0+ 2
=

13
15
= 0.87

ARI(A ,B) =
2(4 · 9− 0 · 2)

(4+ 0)(2+ 9) + (4+ 2)(0+ 9)
= 0.73.

Both of these values are indicative of high similarity be-
tween the clustering outcomesA andB .

Cluster stability can also be used to assess the appropriate-
ness of the choice of algorithm for the data. Assume that
we apply a clustering algorithm G to a dataset X, resulting
in a clustering scheme C = {C1, . . . , CK}.

In general, a dataset X is a realization of a (potentially
unknown) underlying data generating mechanism related
to the situation of interest; a different realization X′, which
could arise from the collection of new data, may yield a
distinct clustering scheme C ′. How stable is the clustering
outcome of G , relative to the realization of X?

We can get a sense for the underlying stability by sam-
pling multiple row subsets from X. Alternatively, we could
also sample from X’s columns, or sample columns from a
variety of sampled rows of X; however this is achieved, we
have obtained ℓ subsets X1, . . . , Xℓ ⊆ X, on which we apply
the algorithm G , with parameters selection P , yielding the
corresponding clustering schemes C1, . . . ,Cℓ, as below.

Let W be the similarity matrix for the various clustering
schemes:

W =





w(C1,C1) · · · (C1,Cℓ)
...

. . .
...

w(Cℓ,C1) · · · (Cℓ,Cℓ)



 ;

thisW can be used as the basis of a meta-clustering scheme
in whichC1, . . . ,Cℓ play the role of instances, using a graph-
based meta-clustering method such as DBSCAN (which we
will discuss in Section 4.1).

If the clustering results obtained from X by applying G
are stable, we might expect the meta-clustering results to
yield a single meta-cluster.

If multiple meta-clusters are found from W , this sup-
ports the position that G does not produce stable clusters
in X, although this does not necessarily imply instability as
the number of meta-clusters could be an artefact related to
the choice of the meta clustering method.

This approach seems simple in theory, but in practice it
often simply pushes the issues and challenges of cluster-
ing to the meta-clustering activity; a more sophisticated
treatment of the problem of cluster stability assessment is
presented in [51].

External Validation In everyday applications, we tend to
gauge clustering results against some (often implicit) exter-
nal expectation (or standard): we cannot help but bring
in outside information to evaluate the clusters.

The outside information is typically what is deemed
to be the ‘correct’ groups to which the instances belong,
which is starting to look an awful lot like classification, a
supervised learning approach.

In the example below, for instance, we might be interested
in finding natural groups in the dataset of shapes, but we
might hold the pre-conceived notion that the natural groups
are linked to the underlying shape (square, triangle, circle).
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If the outcome agrees with this (external) notion, we would
naturally feel that the clustering was successful; if, instead
the outcome seems to pick up something about the sharp-
ness of the shapes’ vertices, say (as in the image below),

we might conclude that the algorithm does not a good job
of capturing the essential nature of the objects, or, more
rarely, that we need to revisit our pre-conceived notions
about the dataset and its natural groups.

This validation strategy is often used to build confi-
dence in the overall approach, based on preliminary or
sample results, but it rests on a huge assumption (which
often conflicts with the unsupervised learning framework),
namely, that the natural groups in the data are identifiable,
explicitly or implicitly.

Due to the conceptual similarity to classification,23, ex-
ternal validation measures often resemble classification
performance measures.

Case in point, the purity metric. In the presence of an
external classification variable, this metric assign a label to
a cluster C according to the most frequent classes of the
instances in C , and

purity(C) =
# correctly assigned points in C

|C |
,

as in the example below:

23Which it is emphatically not, it bears repeating.

The clustering purity score for C = {C1, . . . , CK} is ob-
tained as the average of the cluster purity scores, or as a
weighted average of purity scores:

weighted purity(C ) =
1
n

K
∑

ℓ=1

|Cℓ| · purity(Cℓ),

where n represents the number of instances in the data.
In the previous example, the green cluster is labeled as

the square cluster (since 4 of its 6 instances are classified as
squares), and the blue cluster is labeled as the circle cluster
(since 5 of its 7 instances are classified as circles). At the
cluster level, the purity scores are thus:

purity(C□) =
2
3

, purity(C⃝) =
5
7

;

the average and weighted purity scores are

average purity(C ) =
1
2

�

2
3
+

5
7

�

= 69.0%

weighted purity(C ) =
1

6+ 7

�

6 ·
2
3
+ 7 ·

5
7

�

= 69.2%.

These two numbers are very nearly identical because the
clusters have roughly the same size; if the size variance is
large, the two measurements would be quite different.

The purity is an obvious analogue to accuracy; other mea-
sures based on precision and recall are also popular [3].

Useful external quality metrics take advantage of the
natural classes (if they are aligned with the clustering re-
sults), and take into account cluster homogeneity (first row,
below), completeness, (second row), noisy and outlying
data (third row), and size vs. quantity considerations (last
row): the preferred behaviour is shown on the right [3].
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Example Let us illustrate some of these notions using
various k−means and hierarchical clusters of the Gapmin-
der data used in Section 2. In all instances, we use the
Euclidean distance on a scaled dataset.

Internal Validation: we use the R packages cluster,
fpc, and clusterCrit to compute 3 CQMs: the
Dunn index, the average silhouette width, and the
Calinski-Harabasz index.24

We start by clustering the data using 4−means; we
then use hierarchical clustering with complete linkage
and 3 clusters. The results are shown below:

method Dunn Avg. Sil. C.-H.
4−means 0.097 0.315 139.0

HC(comp; 3) 0.091 0.274 125.4

Both of the Dunn values are low, although the 4−means
result is marginally superior; while the average sil-
houette widths are also low, they are least positive
in both cases, with a slight advantage in favour of
4−means; the Calinski-Harabasz values are not very
indicative on their own, but once again, 4−means
comes out ahead of HC.

The average silhouette width is an interesting metric.
On the one hand, we attempt to gauge the quality of
the entire clustering with a single number, but the
average is a fickle summary measurement and poten-
tially affected by outlying values; on the other, we
do have access to a silhouette score for each obser-
vation, and can thus get a better idea of the perfor-
mance by studying the silhouette profile. We show
the silhouette results for hierarchical clustering with
complete linkage for 4 (average width= 0.23) and 6
clusters (average width= 0.22).

24Ratio of the sum of between-clusters dispersion to the inter-cluster
dispersion for all clusters; higher is better.

While the average silhouette width would seem to favour
the 4-cluster result, the profile for the 6-cluster result seems
more in-line with desirable properties: in both instances,
some observations are “mis-clustered” (negative silhouette
scores), but these seem to be more broadly distributed in
the latter case.25

Relative Validation: we compute the Rand index (RI)
and the adjusted Rand index (ARI) to compare the
outcomes of a single run of 2−means (A2), 3−means
(A3), and 4−means (A4), respectively.

There are
�184

2

�

= 16836 pairs of distinct observations
in the dataset; the pair types and indices are shown
below.

schemes ss dd sd ds RI ARI
A2,A3 5304 7032 3852 648 0.73 0.52
A2,A4 4395 6392 4761 1288 0.64 0.33
A3,A4 3754 8955 2198 1929 0.75 0.46

A2,A3 are relatively similar according to RI, as areA3,A4,
but the ARI suggests thatA2,A3 are more similar to one
another than A3,A4 are; A2,A4 are not as similar, ac-
cording to both indices, which is not that surprising as the
number of clusters in this case jumps from 2 to 4.

External Validation: finally, we will compare the clus-
tering results of hierarchical clustering, for 4 and 8
clusters, with a variety of external grouping: 6 world
regions, as determined by the Gapminder Foundation,
and OECD/G77 membership (see Figure 10).

Are there any reasons to suspect that the clusters
would be aligned with these external classes?

25in the 4-cluster case, half a cluster seems to have been mis-assigned,
for instance..
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Figure 10. 6 world regions (left): America (yellow, 33 countries), East Asia Pacific (red, 26), Europe Central Asia
(orange, 49), Middle East North Africa (green, 20), South Asia (turquoise, 8), Sub Saharan Africa (blue, 48);
memberships (right): OECD (green, 30), G77 (purple, 128), other (red, 26); bubble size represents population [40].

For the 6 world regions classes, the clusters labels
(the most frequent class per cluster) for HC(4) are

Cluster Label Size Frequency
1 Sub Saharan Africa 35 31
2 East Asia Pacific 24 9
3 Europe Central Asia 94 42
4 Sub Saharan Africa 31 14

yielding a purity of 0.54 and a weighted purity of 0.52
– the overall score is not great, but the Sub Saharan
countries are well captured by clusters 1 and 4.

The clusters labels for HC(8), on the other hand, are

Cluster Label Size Frequency
1 Sub Saharan Africa 35 31
2 America 17 6
3 Europe Central Asia 65 34
4 East Asia Pacific 7 3
5 america 29 10
6 Sub Saharan Africa 18 7
7 East Asia Pacific 10 5
8 Sub Saharan Africa 3 3

yielding a purity of 0.55 and a weighted purity of
0.54; which is still not that great? Perhaps the clusters
have little to do with geography, in the end.

Are they aligned with OECD/G77/other membership?
The labels for HC(8) are

Cluster Label Size Frequency
1 G77 27 27
2 G77 29 22
3 OECD 28 17
4 G77 20 18
5 G77 12 11
6 OECD 23 11
7 G77 25 24
8 G77 20 10

The purity values are 0.77 and 0.76, respectively:
these are better values than the previous external val-
idation attempts, but they might not really be mean-
ingful given the preponderance of G77 countries in
the data.

Neither of the external classifications seems to be a
good gauge of cluster validity.

For the most part, the cluster validation yields middling
results. The few algorithms we have tried with the data
suggest that there is some low-level grouping at play, but
nothing we have seen so far would suggest that the data
segments are all that “natural.”

While this result is somewhat disappointing, we should
note that this is often the case with real-world data: there
is no guarantee that natural groups even exist in the data.

However, we have not been directing our choices of algo-
rithms and parameters – everything has been fairly arbitrary.
Can anything be done to help with model selection?

3.2 Model Selection
How do we pick the number of clusters and the various
other parameters (including choice of to use for “optimal”
results?

A common approach is to look at all the outcomes obtained
from various parameter runs and replicates (for a given al-
gorithm), and to select the parameter values that optimize
a set of QCMs, such as Davies-Bouldin, Dunn, CH, etc.

Optimization is, of course, dependent on each QCM’s
properties: in some cases, we are searching for parame-
ters that maximizes the index, in other cases, those that
minimize it, and yet in other cases, for “knees” or “change
points” in various associated plots.26

26The parameter values that optimize a QCM may not optimize others;
when they coincide, this reinforces the support for the existence of natural
groups; when they do not, they provide a smaller collection of models
from which to select, removing some of the arbitrariness discussed above.
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Figure 11. One realization of k−means on the (scaled) Gapminder dataset, for k = 2, . . . , 15. The clusters are displayed
on the first 2 principal components of the dataset, which explain 88% of the variation in the data. The average within
sum of squares curve and the average Davies-Bouldin curves are also provided, with 95% confidence intervals. The
Davies-Bouldin curve suggests that k = 3 or k = 9 would be good choices in this case.

This can also be done for clustering outcomes arising from
different algorithms, although in this case we are not se-
lecting parameter values so much as identifying the model
that best describes the natural groups in the data among
all results, according to some metric(s).27

It is important to remember that there is a lot of diversity
in clustering validation techniques. The various types of
validation methods do not always give concordant results;
this variation within the types can be demoralizing at times,
but it can also be leveraged to extract useful information
about the data’s underlying structure.

In general, we should avoid using a single assessment
method; it is preferable to seek “signals of agreement”

27The metrics presented in Section 3.1 all provide frameworks to achieve
this. There are additional approaches, such as: seeking the clustering
C = {C1, . . . , Ck}, among a list of such outcomes, which minimizes the
quadratic cost

ΛW(C ) = −trace
�

Z⊤(C )WZ(C )
�

,

where zi,ℓ = 1 is xi ∈ Cℓ and 0 otherwise, associated with a similarity
matrix W; or methods relying on stability assessment [30, 51]. Model
assessment and selection remains a popular research topic.

across a variety of strategies (both in the choices of clus-
tering algorithms and evaluation methods).

Finally, remember that clustering results may just be ‘ok’...
and that is ok too! We can study the situation and decide
what is important and what can safely be ignored – as
always, a lot depends on context.

Example How many clusters k should we seek when clus-
tering the (scaled) Gapminder dataset using Euclidean dis-
tance? For each k = 2, . . . , 15, we compute the outcome
of m= 40 runs of k−means, and average the within sum
of squares (WSS) and a (modified) Davies-Bouldin index
(DBI) over the runs. The optimal number of parameters is
obtained at a DBI maximum or a WSS “knee”; the results
are shown in Figure 11.

The WSS curve does not yield much information, but
the DBI curve suggests that both k = 3 and k = 9 could be
good parameter choices. With parsimony considerations in
mind, we might elect to use k = 3, but if the results are too
simple or if there are signs of instability appear (recall that
k−means is a stochastic algorithm), k = 9 might prove to
be a better choice in the end.
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4. Advanced Topics

We present representative clustering algorithms from the
remaining families. More information is available in [2,23,
53].

4.1 Density-Based Clustering
The assumptions of the k−means algorithm imply that the
clusters that it finds are usually Gaussian (blob-like). But
this is not always a desired outcome.

In density-based clustering, it is the density of observa-
tions and the connectivity of the accompanying clustering
network (which we will discuss further in the next section)
that determine the number and location of clusters. Pop-
ular density-based clustering algorithms include DBSCAN,
DENCLUE, OPTICS, CHAMELEON, etc.

Once density has been defined in a meaningful way
(which depends on a number of contextual factors), density-
based algorithms are fairly straightforward to apply and
understand (see [2,22,38,41,42] for details).

Density How do we measure density? Intuitively, we can
recognize areas of low density and high density in the
(artificial) dataset below.

As the saying goes, "birds of a feather flock together"; it
should not come as a surprise that areas of higher density
could be viewed as clusters in the data.

In that context, ifΨ ⊆ Rn is an n−dimensional sub-manifold
of Rn, we could define the density of Ψ around x by, say,

densityΨ(x; d) = lim
ϵ→0+

Voln(Bd(x,ϵ)∩Ψ)
Voln(Bd(x,ϵ))

,

where
Bd(x,ϵ) = {y ∈ Rn | d(x,y)< ϵ}

and
Voln(A) = "volume" of A in Rn.

DBSCAN In practice, the dataset X is usually a discrete
subset of Rn, and the limit definition above cannot apply.

Density-based spatial clustering of applications with
noise (DBSCAN) estimates the density at an observations
x ∈ X as follows: we pick a "reasonable" value of ϵ∗ > 0
and set

densityX(x; d) = |Bd(x,ϵ∗)∩X| .
The outcome depends, of course, on the choice of both ϵ∗

and the distance d.

DBSCAN also requires a connectivity parameter: the mini-
mum number of points minPts in

Vx = Bd(x,ϵ∗)∩ [X \ {x}]

(excluding x). If |Vx| ≥ minPts, the observations in Vx are
said to be within reach of (or reachable from) x.

In other words, for a given choice of d, ϵ∗, and minPts,
there are three types of observations in X:

outliers are observations that are not within reach
of any of the other observations, such as x1 below:

reachable (non-core) observations are observations
that are within reach of fewer than minPts other obser-
vations, such as x2 and x3 below (with minPts= 3):
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core observations are within reach of at least minPts
other observations, such as x4 below (with minPts=
3):

There are other such points: x5, x6, x7, x8, and x9.

Reachability is not a symmetric relation: no observation
is reachable from a non-core point (a non-core point may
be reachable, but nothing can be reached from it).

We can build a new symmetric relation on non-outlying
observations on the basis of reachability, however:

p,q ∈ X \ {outliers(X)}

are said to be density-connected for ϵ∗ > 0 and d if there is
an observation o ∈ X such that p,q ∈ Vo, with |Vo| ≥minPts.

The same p,q are said to be density-connected in a
path if either they are density-connected or if there is a
sequence of observations

p= r0, r1, . . . , rk−1, rk = q

such that ri−1, ri is density-connected for all i = 1, . . . , k.

That the latter is a relation on X \ {outliers(X)} is clear:

it is reflexive as every x ∈ X \ {outliers(X)} is ei-
ther reachable or a core observation, so that ∃ox ∈ X
with x ∈ Vox

and |Vox
| ≥minPts, and so x is density-

connected to itself;
it is symmetric and transitive by construction.

DBSCAN clusters are, essentially, composed of observations
that are density-connected in a path.

In the image above, arrows represent density-connection.28

Algorithm DBSCAN clusters are grown according to the
following algorithms:

1. Select an observation at random, from the list of not
previously selected observations that have not been
assigned to a cluster yet.

2. Determine the selected observation’s type (outlier,
non-core, core).

3. If the observation is an outlier or a non-core point,
assign it to the noise cluster.

4. Else, build its network of density-connected paths.
5. Assign all observations in the network to a stand-

alone cluster.
6. Repeat steps 1 to 5 until all points have assigned to a

cluster.

All points within a cluster are mutually density-connected
in a path. If a point is reachable from any point of the
cluster, it is part of the cluster as well. An illustration of the
DBSCAN algorithm is provided in Figure 12.

The observations in the noise cluster are typically identi-
fied as outliers, making DBSCAN a reasonable unsupervised
learning approach for anomaly detection [12].

Note that clusters, by definition, must contain at least
one core point. Small groups of observations that are not
density-connected to any core points will then also be as-
signed to the noise cluster.

A non-core point that has been assigned to the noise
cluster may end up being assigned to a stand-alone cluster
at a later stage (but the opposite cannot occur).

It is possible for two clusters to share non-core points,
in which case the points in question are randomly assigned
(the random order of selection in step 1 may affect the
results); consequently, some clusters may end up containing
fewer than minPts observations.

28Each orange observation is within reach of a red one, but no observa-
tion can be reached from the orange points.
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Figure 12. Illustration of DBSCAN on an artificial dataset (top, left). The parameters ϵ and minPts are shown in each
display. We select a point at random (second image, top row); it is not a core point as its ϵ−neighbourhood does not
contain more than minPts observations (excluding the selected point itself); it is assigned to the noise cluster. We select
another point at random (top, right); that one is core point, as its ϵ−neighbourhood contains 4 observations. All its
density-connected observations are shown in green (bottom, left). Its network of density-connected paths is shown in
green, for the core observations, and in light green, for the reachable observations (bottom row, second image); they
make up cluster 1 (bottom row, third image). Continuing on this way, we obtain 2 clusters and noisy observations
(bottom, right).

Advantages and Limitations The main advantages of DB-
SCAN are that:

there is no need to specify the number of clusters to
find in the data;
clusters of arbitrary shapes can be discovered;
observations that are "noisy"/outlying are not forced
into a cluster;
the clusters are robust with respect to outliers, and
it only requires two parameters (ϵ∗ > 0 and minPts)
to run properly, which can be set by domain experts
if the data is well understood.

In general, it is suggested to use minPts≥ p+1, with larger
values being preferable for noisy data sets, or minPts≥ 2p
for large datasets or sets with duplicates.

The choice of ϵ∗ > 0 should take into account that
if it is too small, a large portion of the observations will
be assigned to the noise cluster; but if it is too large, a
majority of observations will be found in the same clus-
ter. Small values are preferable, but how small is too small?

The parameter choices have a large impact on the DBSCAN
results, as does the choice of the distance function, which
should take place before ϵ∗ is selected to avoid data dredg-
ing and "begging the question".

Given that DBSCAN can handle globular clusters as well as
non-globular clusters, why would we not always use it?

One important reason relates to computational effi-
ciency. For a dataset X with n observations, the basic
k−means algorithm has order O(nk), whereas the most ef-
ficient versions of DBSCAN algorithm has order O(n log n).
Thus, when n increases, the DBSCAN run time increases
faster than the k−means run time.

Another reason is that DBSCAN works well when the
density of clusters is assumed to be constant.

Most of us would agree that there are two clusters in the
image above (a loose one in the bottom/left corner, and a
tight one in the top/right corner), as well as some outliers
(around the tight cluster), but no combination of ϵ∗ > 0 and
minPts can allow DBSCAN to discover this structure: either
it finds no outliers, or it only finds the one tight cluster.
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Figure 13. A scatter plot matrix of the realizations of DBSCAN on the 2011 Gapminder dataset. We select parameters
from ϵ∗ ∈ {0.75, 1, 1.25} (left, centre, right columns) and minPoints ∈ {6, 10, 15} (top, middle, bottom row). All clustering
outcomes are obtained on a scaled dataset, using Euclidean distance. The noisy observations are always shown in red.

Example We show the results of DBSCAN on the Gapmin-
der 2011 data, using Euclidean similarity (see Figure 13)
for 9 combinations of parameters

ϵ∗ = {0.75,1, 1.25} × {6, 10,15}=minPts.

The noisy observations are shown in red: one immediate in-
sight is that the number of outlying observations decreases
as ϵ∗ increases, which is as expected. Another insight is
that the number of noisy observations increases as minPts
increases, which is again not surprising.

If we compare the shape of the DBSCAN clusters with
those of the k−means and HC clusters, we notice that the
option of identifying observations as noisy – coupled with
the "right" combination of parameters – creates "reasonable"
clusters, that is to say, clusters for which do not have to

stretch our ideas about what clusters ought to look like: the
problematic observations (like China and India) are simply
explained away as outliers.

The various runs find either 1 or 2 stand-alone clusters
(as well as noisy observations), but that can change if we
use different parameter values.

We can also determine if the cluster observations are
core or non-core observations. For instance, in the realiza-
tion with ϵ∗ = 1 and minPts= 6, we have

noise cluster 1 cluster 2
outlier 34 – –

reachable – 10 17
core – 20 103
total 34 30 120
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Figure 14. Schematics of spectral clustering. We extract the similarity graph of a dataset, which gives rise to an
eigenvalue problem (left). The eigenenvalue problem is then solved, which suggests an ‘optimal’ graph cut, which in
turns leads to data clusters (right).

4.2 Spectral Clustering
At a fairly coarse level, clustering algorithms are divided
among those focusing on compactness and those focusing
on connectivity.

Compactness methods are usually variants of k Nearest
Neighbours (kNN) methods [9], and are effective when
there are distinct clumps in the data. We can make specific
assumptions about the distribution of the different clusters
ahead of time (see the next two sections), but compact
methods struggle to achieve meaningful results in scenarios
where groups are not linearly separable.

In cases where we have little to no knowledge of the
dataset, making assumptions about the distributions of clus-
ters can lead to invalid clustering schemes; in such cases,
connectivity-based methods have been shown to work rea-
sonably well [23,34].

Connectivity methods, such as DBSCAN, focus on dividing
observations into groups based on their similarity graphs;
observations that are quite different in their features (and
as such would be differentiated using compactness meth-
ods) may end up in the same cluster if there is a chain of
sufficiently similar observations linking them.

Connectivity methods require fewer initial assumptions,
but their use can be harder to justify mathematically. The
validity of such methods can only be determined post hoc.

Spectral clustering is a connectivity method that has be-
come quite popular in practice; in a nutshell, we transform
the dataset into its similarity graph and convert the latter
into an eigenvalue problem. We then solve the eigenvalue
problem, convert the solution into a graph cut, and then
translate the cut back into dataset clusters (see Figure 14).

Before we start delving into the spectral clustering al-
gorithm, we must discuss a few concepts relating to graphs
and linear algebra.29

29These concepts are covered in just enough depth to provide an intu-
ition about the algorithm.

Graphs and Cuts A graph is an object which connects
nodes (or vertices) together through edges. 30 The edges
have weights and can also be directed.31 In certain cases,
we may assume that all edge weights are identical and bidi-
rectional, which is equivalent to saying that the edges just
represent that a relationship exist.

The link with clustering is that once a similarity measure w
has been selected, a dataset can be represented by a simi-
larity graph G = (V, E, W ):

1. observations x correspond to vertices v ∈ V ;
2. if i ̸= j, vertices vi , v j ∈ V are connected by an edge

ei, j = 1 if the similarity weight wi, j = w(xi ,x j)> τ
for a predetermined threshold τ ∈ [0, 1), and by no
edge (ei, j = 0) otherwise;

3. the edges (ei, j) m the adjacency matrix E;
4. the weights (wi, j) form the similarity matrix W ;
5. the (diagonal) degree matrix D provides informa-

tion about the number of edges attached to a vertex:
di,i =
∑n

j=1 ei, j .

Note that, by convention, wi,i = 0 for all i. For instance, we
could use the Gower similarity measure

w(xi ,x j) = 1−
1
p

p
∑

k=1

|x i,k − x j,k|
range of kth feature in X

for the dataset found in Figure 14; the ranges of X1 and X2
are both r1 = r2 = 3, so that

w3,4 = w4,3 = w(x3,x4) = 1−
1
2

�

|x3,1 − x4,1|
r1

+
|x3,2 − x4,2|

r2

�

= 1−
1
2

�

|2− 2|
3

+
|0− 2|

3

�

= 1−
1
2
·

2
3
=

2
3

;

30Airports (vertices) and flight paths (edges) form a graph in transporta-
tion networks, as do people (vertices) and relationships (edges) in social
networks.

31In the transportation network example, the edges can be weighted
according to flight frequency and/or directed according to their origin and
destination, say; in the social network example, they could be weighted
according to frequency of communication and/or directed according to
who follows who on some app.
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the similarity matrix as a whole is

W =















0 5/6 1/2 1/2 5/6 1/6
5/6 0 2/3 1/3 2/3 0
1/2 2/3 0 2/3 1/3 1/3
1/2 1/3 2/3 0 2/3 2/3
5/6 2/3 1/3 2/3 0 1/3
1/6 0 1/3 2/3 1/3 0















.

If we use a threshold τ= 0.6, then the adjacency matrix is

E =















0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0















,

and the degree matrix is

D =















2 0 0 0 0 0
0 3 0 0 0 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 1















.

The degree matrix can also be read directly from the simi-
larity graph (which depends on the threshold τ):

A graph cut is the process by which we remove edges from
the graph and separate the vertices into into groups (or
sub-graphs).

The clustering task is to separate the nodes into multi-
ple groups by minimizing the total weight of the edges
we have to break in the process (i.e., making sure that the
groups are as dissimilar as possible). This is also known as
the minimum cut problem (Min Cut).32

This task is NP-Hard, meaning there is no theoretically
guaranteed efficient way to do so, in comparison to simply
testing every possible cut and finding the minimum weight.

32This cannot be the whole story, however, as we can minimize the total
weight of the edges by simply not cutting any edges. Indeed, there are
other approaches:

Normalized Cut (actually used in practice)
Ratio Cut
Min-Max Cut

This is problematic: for datasets with n observations, the
number of cuts is bounded below by 2n (when we only
consider 2−cuts); when n is relatively small, the overall
number of cuts to consider remains manageable, but for
nearly all reasonable datasets, this becomes an exercise in
futility.

The spectral clustering approach generalizes the Min Cut
problem (or any of the other problems) by imposing some
properties on the similarity graph to ensure that we can get
approximate the true Min Cut solution in a computation-
ally efficient manner.33

Formally, the Min Cut problem involves finding a parti-
tion {A1, ..., Ak} of G which minimizes the objective function

Cut(A1, ..., Ak) =
1
2

k
∑

i=1

W (Ai , Ai)

where
W (A, B) :=
∑

i∈A, j∈B

wi, j

and A is the complement of A. The factor 1
2 is used to

remove double-counted edges.

Normalized Cut The spectral clustering approach solves
the Normalized Cut (NCut) problem, which is similar to the
Min Cut problem except that we are minimizing the weight
of edges escaping a cluster relative to the total weight of
the cluster.34

In the NCut problem, the objective function is

JNCut(A, B) = Cut(A, B)
�

1
Vol(A)

+
1

Vol(B)

�

,

where
Vol(C) =
∑

i∈C

wi,∗;

in a first pass, we seek to minimize JNCut against the set of
all possible partitions (A, B) of G. The procedure can be
repeated as necessary on the cluster sub-graphs.

Intuitively, JNCut is small when the observations within
each sub-graph are similar to one another (Vol(A), Vol(B)
are large) and the observations across are dissimilar to one
another (Cut(A, B) is small).

On the plus side, NCut takes into consideration the size
of the partitioned groups and intra-group variance, and
tends to avoid isolating vertices, but it is not any easier to
solve than the Min Cut problem. So why do we even bring
it up in the first place?

As it happens, we can provide an approximation to the
NCut solution using purely algebraic means.

33The spectral Min Cut solution is not guaranteed to be the true Min Cut
solution, but it might be close enough to be an acceptable approximation.

34For more information about this abstraction, which actually relates a
variant of Kernel PCA to spectral clustering, consult [7].
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Similarity and Degree Matrices, Revisited There are differ-
ent ways to construct a graph representing the relationships
between the dataset’s observations. We can use:

fully connected graphs, where all vertices having
non-zero similarities are connected to each other;
r−neighbourhood graphs, where each vertex is only
connected to the vertices falling inside a ball of radius
r (according to some distance metric d), where r has
to be tuned in order to catch the local structure of
data;
k nearest neighbours graphs (and variants), where
each vertex is connected to its k nearest neighbours
(again, according to some distance metric d), with k
pre-selected, and
mixtures of r−neighbourhood and kNN graphs, to
better capture sparsity in the data.

The similarity measure w is usually picked from a list that in-
cludes: Gaussian (most common), cosine, fuzzy, Euclidean,
Gower, etc.

The similarity matrix W is symmetric and has zeros along
the diagonal; its non-diagonal entries represent the simi-
larity strength between the corresponding graph vertices
(and so the corresponding observations in the dataset).

We have discussed previously how to build the adjacency
matrix E from W and a threshold τ ∈ [0,1).

The only component of a graph that similarity matrices
do not directly capture are the degrees of each vertex, the
number of edges that enter it (we are viewing the similarity
graph as undirected). The diagonal of the degree matrix
D holds that information for each vertex.

We can combine W and D (or E and D) to create a ma-
trix L known as the Laplacian, which has properties linked
to the topology of the similarity graph.

Laplacian The Laplacian of a graph is defined by

L0 = D−Θ, Θ ∈ {E, W};

The symmetric Laplacian by

LS = D−1/2 LD−1/2 = In − D−1/2ΘD−1/2,

and the asymmetric Laplacian by

LA = D−1 L = In − D−1Θ.

In all cases, the off-diagonal entries are non-positive, and
the diagonal entries contain the degree of each node.

The Laplacians have the following useful properties:

L0, LS are symmetric; LA is not necessarily so;35

all their eigenvalues are real and non-negative;

35The product of symmetric matrices is not necessarily symmetric.

every row and column adds up to 0, which means that
λ0 = 0 is the smallest eigenvalue of each Laplacian
(hence they are singular and cannot be inverted);
the number of connected components in the graph
is the dimension of the nullspace of the Laplacian
associated to λ0 = 0 (which may provide a first ap-
proximation to the number of clusters in X), and
the second smallest eigenvalue gives the graph’s spars-
est cut.36

Spectral Clustering Algorithm In the case of two clusters,
the objective function JNCut is minimized when finding the
eigenvector f corresponding to the smallest positive eigen-
value of LS , also known as the spectral gap.

The clustering in the original data is recovered by send-
ing xi to A when fi > 0 and x j to B otherwise. This determin-
istic algorithm is a special case of the spectral clustering
algorithm [50].

To divide X into k clusters, we follow the steps below:

1. form a similarity matrix W and a degree matrix D,
using a threshold τ ∈ [0,1);

2. construct a Laplacian matrix Lξ, using Θ =W ;
3. compute the first k eigenvectors {u1, ...,uk} of Lξ

corresponding to the k smallest positive eigenvalues
of Lξ;

4. construct the n× k matrix U containing the vectors
{u1, ...,uk} as columns;

5. normalize the rows of U into a matrix Y with rows
{y1, . . . ,yn} having unit length;

6. cluster the rows of Y into k clusters;
7. assign xi to cluster j of X if yi was assigned to cluster j

in the preceding step.

Spectral clusters for the dataset of Figure 14 using the Lapla-
cian and symmetric Laplacian are shown in Figure 15.

From an experimental perspective, spectral clustering pro-
vides an attractive approach because it is easy to implement
and reasonably fast, especially for sparse data sets: it is a
graph partitioning problem that makes no initial assump-
tions on the form of the data clusters.

Spectral clustering has variants, which depend on the many
choices that can be made at various points in the process:

1. pre-processing (choice of: number of cluster k, sim-
ilarity measure w, threshold τ);

2. spectral representation (choice of Laplacian);
3. clustering algorithm (choice of compact based, po-

tentially non-deterministic algorithm to unleash on
the rows of the representation Y).

36This is not the same as the minimum cut which represents the cut
that minimizes the number of edges separating two vertices, but instead
represents the minimum ratio of edges across the cut divided by the
number of vertices in the smaller half of the partition.
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Figure 15. Two clusters for the dataset of Figure 14: simple Laplacian (left); symmetric Laplacian (right).

Figure 16. Comparing 2−means (middle) and spectral clustering with k = 2 (right) on the spirals dataset (left).

The NJW algorithm uses LS for the spectral representation
and k−means as a clustering approach. It can be inter-
preted as kernalized k−means: if we select a kernel which
transforms the points to their mapped value in the Lapla-
cian of the graph, then we (almost directl) obtain spectral
clustering [7].37 In Figure 16, the different outcomes of
k−means and NJW are illustrated on the spirals dataset.

Practical Details and Limitations The most obvious prac-
tical detail in the implementation of spectral clustering
is related to the construction of the similarity graph. In
general, there is virtually no theoretical justification for
determining what type of clustering approach to use; even
when an approach has been selected, it can be quite difficult
to choose appropriate parameter values.

In spectral clustering, there are considerations in favour
of using sparse similarity/adjacency matrix: we seek to
strike a balance between a Laplacian which is too densely
connected, and one for which almost all of the observations
are seen as dissimilar to one another.

37DBSCAN can also fit within that framework, by picking a similarity
method based on the radius that allows the graph separate into different
components. Then the multiplicity of λ0 = 0 in the Laplacian gives the
number of graph components, and these can be further clustered, as above.

Another issue relates to the computational challenge of
finding the eigenvalues of the Laplacian. This can be done
relatively efficiently if the matrix is sparse enough, however,
which suggests using a relatively-high threshold τ; there
are methods which help spectral clustering automatically
tune for the best parameter values (including τ), but they
take up a significant amount of resources [50].

Spectral clustering methods are extremely effective because
they do not require assumptions about distributions and
centers, are fairly easy to implement, and are transparent
and interpretable.

However, they suffer from some of the same drawbacks
as other clustering methods, namely when it comes to:

selecting initial parameter values,
run-times that do not scale with larger datasets, and
determining optimal ways to visualize the results.

As in all clustering scenarios, analysts are faced with deci-
sions at various levels of the process; they must be prepared
to run multiple algorithms, in multiple configurations, in
order to get a sense for the data structure (some strategies
specific to spectral clustering are presented in [50]).
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Figure 17. Comparison of spectral clustering on perfect and noisy data.

Figure 18. Comparison of Kmeans, DBSCAN, and spectral clustering on random shapes.

Examples In a first example, we look at an artificial dataset
(a square within a circle), and a noisy version of the same.
We run the NJW algorithm and look for 4 clusters; the im-
pact of the noise can be seen in Figure 17.

In the second example, we compare the clustering outcome
on a classic dataset containing multiple 2D shapes, using
5−means, DBSCAN, and NJW with k = 5 clusters. The
shapes are relatively disconnected, so both spectral cluster-
ing and DBSCAN perform similarly , as expected – the only
difference is that DBSCAN identifies observations that are
far away from everything as outliers, whereas NJW assigns
all of these points to one of the clusters; the outcomes are
shown in Figure 18.

In the third example, spectral clustering is used to seg-
ment greyscale images into different segments based on
contrasting colours [47]. Figure 19 shows instances with
high contrast, with fairly decent segmentation performance
using NCut, Self-Tuning SC [58], and a proposed SC al-
gorithm [47]; Figure 20 shows other instances with less
contrast (resulting in a poorer segmentation with the same
methods); Figure 21 shows the comparison in segmenta-
tions using the proposed SC algorithm when the same image
is presented at different resolutions.

In the fourth example, consider a dataset of n= 250 times
series, with N = 60 entries each.

The distance d between 2 time series is the average abso-
lute gap between series:

d(xi ,x j) =
1
60

60
∑

ℓ=1

|x i,ℓ − x j,ℓ|.

We build the Gaussian similarity measure

w(xi ,x j) = exp

�

−
d2(xi ,x j)

2σ2

�

.

We use the following parameter values

σ2 = 300, τ= 0.9, k = 5.
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Figure 19. High contrast image segmentation with spectral clustering [47].
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Figure 20. Low contrast image segmentation with spectral clustering [47].

36 J.Schellinck, P.Boily (2022)



DATA SCIENCE REPORT SERIES SPOTLIGHT ON CLUSTERING & UNSUPERVISED LEARNING

Figure 21. Spectral clustering image segmentation of images at different resolutions [47].

The corresponding adjacency, similarity, and degree matri-
ces E (mostly sparse), W, D are shown below.

The spectral clustering results are quite appealing, as can be
seen in the first realization of the NJW algorithm with k = 5
clusters (see top half of Figure 22). Note however that not
every run of the algorithm yields an outcome that we would
consider meaningful (see bottom half of Figure 22).

In the last example, we once again revisit the 2011 Gap-
minder dataset. We use the kernlab implementation of
the NJW algorithm found in specc(), with the default
settings. The results for one run with each of k = 2 to k = 7
clusters are shown in Figures 23 and 24.

We can take stock of our attempts to cluster the Gapmin-
der data: in none of the k−means, hierarchical, DBSCAN,
and spectral runs have we found what one might call natu-
ral groups. Perhaps we have not hit on the right method
yet, but it could also mean that the task is futile and no
such groups exist in the first place.
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First realization

Second realization

Figure 22. Two spectral clustering results, using the NJW algorithm with k = 5. In both cases, the original dataset is
shown in blue. In the first case, we see that the NJW algorithm has captured 5 clusters with different times series
characteristics, which is an encouraging result. The results are not-deterministic, however: the k−means portion of the
algorithm can lead to different clusters, not all of which are of equal quality (as can be seen in the second case).
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Figure 23. Realizations of the NJW algorithm on the Gapminder data using the default specc() settings, for k = 2, 3, 4.
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Figure 24. Realizations of the NJW algorithm on the Gapminder data using the default specc() settings, for k = 5, 6, 7.
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4.3 Probability-Based Clustering
In contrast with the model-free approach density-based
clustering and spectral clustering, probabilistic-based clus-
tering attempt to optimize the fit between the observed
data and some mathematical model of clustering, with
the assumption that the data is generated via a number of
underlying probability distributions.

In practice, we assume that clusters are represented by
parametric probability distributions, and the objective is
to learn the parameters for each of these distributions.

This assumption allows us to use probability theory to de-
rive learning formulas for the parameters.38 Expectation-
Maximization clustering, the representative technique of
probability-based clustering, will be revisited and given a
lighter (and more visual) treatment in a subsequent section.

Mixture Models The main underlying assumptions of mix-
ture models is that each observation is drawn (or gener-
ated) from one of several mechanisms (or components).
In model-based clustering, we learn the parameters that
provide the optimal fit to the data; in other words, we make
a series of predictions about which components generated
each of the observations.

This naturally leads to clusters, all observations gener-
ated by a given component belonging to the same cluster.
Formally, we let

X=





x1
...

xn



 ∈ Mn,p(R).

Assume that there are k mechanisms that generate data,
and that each of them is determined by a vector of parame-
ters θ ℓ, 1≤ ℓ≤ k.

For 1≤ j ≤ n, denote the probability of x j being gener-
ated by the ℓ−th mechanism, 1≤ ℓ≤ k, by

P(x j | θ ℓ).

The mixture vector π = (π1, . . . ,πk) is a vector such that
πℓ ∈ [0,1] for all 1≤ ℓ≤ k and π1 + · · ·+πk = 1.

If z j ∼ C(k;π), i.e., if P(z j = ℓ) = πℓ, for 1 ≤ ℓ ≤ k,
and if

P(x j | z j = ℓ) = P(x j | θ ℓ) ∀ j,ℓ,

then the probability of observing x j is

P(x j) =
k
∑

ℓ=1

πℓP(x j | θ ℓ) =
k
∑

ℓ=1

P(z j = ℓ)P(x j | z j = ℓ),

according to the Law of Total Probability.

In this set-up, we interpret z j as the cluster label for x j .
38We borrow rather heavily from Deng and Han’s Probabilistic Models

for Clustering chapter in [2].

Alternatively, we could use

z j ∈ {0, 1}k, ∥z j∥2 = 1

to denote the cluster signature of x j . The norm condition
implies that exactly one of the components of z j is 1; all
others are 0. For instance, if there are k = 5 mechanisms
(clusters) in the data and x j ∈ C4, then z j = (0, 0, 0, 1, 0).39

If we write

P(z j) = π
z j,1

1 × · · · ×π
z j,k

k =
k
∏

ℓ=1

π
z j,ℓ

ℓ

and

P(x j | z j) = P(x j | θ 1)
z j,1×· · ·×P(x j | θ k)

z j,k =
k
∏

ℓ=1

P(x j | θ ℓ) z j,ℓ ,

we recover the mixture model

P(x j) =
k
∑

ℓ=1

πℓP(x j | θ ℓ) =
k
∑

ℓ=1

P(z j ∈ Cℓ)P(x j | z j ∈ Cℓ).

Generative Process In practice, then, we can imagine that
the dataset X is generated as follows. For 1≤ j ≤ n:

1. draw a cluster signature z j ∼ Gk(π) =Multk(π), and

2. draw an observation x j from the corresponding mech-
anism according to P(x j | z j).

But we usually do not have access to this generative pro-
cess; instead, we are given X and the clustering task is to
determine how likely it is that component Cℓ, 1≤ ℓ≤ k, is
responsible for observation x j , 1≤ j ≤ n.

To do so, we need to compute the

γ(z j,ℓ) = P(z j ∈ Cℓ | x j), ∀ j,ℓ.

This is difficult to do directly; we use Bayes’ Theorem to
provide an easier handle on the computations:

γ(z j,ℓ) = P(z j ∈ Cℓ | x j) =
P(z j ∈ Cℓ)P(x j | z j ∈ Cℓ)

P(x j)

=
P(z j ∈ Cℓ)P(x j | z j ∈ Cℓ)
∑k
ν=1 P(z j ∈ Cν)P(x j | z j ∈ Cν)

=
πℓP(x j | θ ℓ)
∑k
ν=1πνP(x j | θ ν)

.

The clustering objective is to infer {πℓ}kℓ=1, {θ ℓ}kℓ=1 from X
for a fixed k, to obtain the desired probabilities γ(z j,ℓ).

39This notation can be generalized to fuzzy clusters (see Section 4.5):
the cluster signature of x j is

z j ∈ [0,1]k , ∥z j∥2 = 1;

if z j = (0,0, 1p
2

, 1p
2

, 0), say, then we would interpret x j as belonging
equally to clusters C3 and C4, or as having probability 1/2 of belonging to
either C3 or C4.
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Denote
Θ = {π1, . . . ,πk,θ 1, . . . ,θ ℓ}.

If we further assume that the x j are independently drawn
by the generative process, then

P(X | Θ) =
n
∏

j=1

k
∑

ℓ=1

πk P(x j | θ ℓ),

or

LL(Θ) = ln P(X | Θ) =
n
∑

j=1

ln

�

k
∑

ℓ=1

πk P(x j | θ ℓ)

�

,

by construction.

The maximum likelihood estimator (MLE) of Θ is

ΘMLE = argmax
Θ

�

ln P(X | Θ)
	

;

if we have information about the prior P(Θ), then we may
use the maximum a posteriori estimator (MAP) instead:

ΘMAP = arg max
Θ

�

ln P(X | Θ) + ln P(Θ)
	

.

Whether we use MLE or MAP depend, in large part, on the
form taken by the component distributions.

Gaussian Mixture Models A standard assumption is that
all clusters are generated by Gaussian mechanisms, which is
to say that P(x j | θ ℓ) arises from a multivariate Gaussian
distribution:

N (x j | µℓ,Σℓ)

=
1
p

(2π)p|Σk|
exp
�

− 1
2 (x j −µℓ)⊤Σ−1

ℓ
(x j −µℓ)
�

,

where µℓ ∈ Rp and Σℓ is a symmetric positive semi-definite
matrix. Thus, if there are k components, then

P(x j | Θ) =
k
∑

ℓ=1

πℓN (x j | µℓ,Σℓ)

and

LL(Θ) = ln P(X | Θ) =
n
∑

j=1

ln

�

k
∑

ℓ=1

πℓN (x j | µℓ,Σℓ)

�

.

It is straightforward to show that

∇LL(µℓ) = Σ
−1
ℓ

n
∑

j=1

γ(z j,ℓ)(x j −µℓ),

so that the MLE estimators for the mean vectors are

µ̂ℓ =

n
∑

j=1

γ(z j,ℓ) x j

n
∑

j=1

γ(z j,ℓ)

;

that this is a maximizer for LL(Θ) is due to positive semi-
definiteness of Σℓ.

Thus µ̂ℓ is a weighted mean of the observations of X, with
weights corresponding to the posterior probability γ(z j,ℓ)
that the ℓ−th component was responsible for generating x j .

Simultaneously, we can show that

∇LL(Σℓ) =
n
∑

j=1

πℓ
P(x j | Θ)

·
∂N (x j | µℓ,Σℓ)

∂Σℓ
;

slightly more complicated manipulations show that the MLE
estimators for the covariance matrices are also weighted
averages:

Σ̂ℓ =

n
∑

j=1

γ(z j,ℓ)(x j − µ̂ℓ)(x j − µ̂ℓ)
⊤

n
∑

j=1

γ(z j,ℓ)

.

Finally, to obtain the mixture probabilities πℓ, we must
maximize LL(Θ) with respect to π, subject to πℓ ∈ [0,1],

π1 + · · ·+πk = 1;

we can use Lagrange multipliers to show that the MLE
estimates of the mixture probabilities are also an average:

π̂ℓ =
1
n

n
∑

j=1

γ(z j,ℓ).

So we have nice expressions for the MLE estimates Θ̂, but
there is a problem: we need the clustering probabilities
γ(z j,ℓ) in order to provide the MLE estimates, but these
depend on the MLE estimates themselves.

Expectation-Maximization Algorithm While there is no
closed-form solution allowing us to express the cluster
signatures directly in terms of the observed data X, there
is a simple iterative solution based on the Expectation-
Maximization algorithm for Gaussian Mixture Models:

Input: X; Output: Θ∗ which maximizes LL(Θ).

1. Initialize Θ[0] =
¦

µ[0]
ℓ

,Σ[0]
ℓ

,π[0]
ℓ

©k

ℓ=1
and set

LL[0] = LL(Θ[0]);

For i = 0 to max_step, do:

2. E(xpectation)-step: compute the responsibilities

γ(z[i]j,ℓ) =
π
[i]
ℓ
N (x j | µ

[i]
ℓ

,Σ[i]
ℓ
)

∑k
ν=1π

[i]
ν N (x j | µ

[i]
ν ,Σ[i]ν )

, ∀ j,ℓ;

3. M(aximization)-step: update the parameters

µ[i+1]
ℓ

=

n
∑

j=1

γ(z[i]j,ℓ) x j

n
∑

j=1

γ(z[i]j,ℓ)

, ∀ℓ;
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Σ[i+1]
ℓ

=

n
∑

j=1

γ(z[i]j,ℓ)(x j −µ
[i]
ℓ
)(x j −µ

[i]
ℓ
)⊤

n
∑

j=1

γ(z[i]j,ℓ)

, ∀ℓ,

and

π
[i+1]
ℓ

=
1
n

n
∑

j=1

γ(z[i]j,ℓ), ∀ℓ;

4. Set LL[i+1] = LL(Θ[i]) and check for convergence ac-
cording to some convergence criterion

(∥Θ[i] −Θ[i+1]∥< ϵ, say) :

if satisfied, set Θ∗ = Θ[i+1]; otherwise, repeat steps 2
to 4.

There are two main limitations to using EM for GMM:

EM is costlier (has a longer run-time) than k−means,
and depending on the initialization, the algorithm
may converge to a local critical point which is not
necessarily the global maximizer;
as the algorithm iterates, two (or more) GMM clusters
can collapse into a single GMM cluster.

The EM algorithm can be sped-up by first running k−means
and using the mean vector, covariance matrix, and propor-
tion of observations of observations in the k−means cluster
Cℓ for the initialization of µ[0]

ℓ
, Σ[0]
ℓ

, and πℓ for 1≤ ℓ≤ k.
The collapsing of clusters can be mitigated by moni-

toring ∥Σi
ℓ
∥2 and randomly resetting µ[i]

ℓ
, Σ[i]
ℓ

when some
threshold is reached.

Special Cases and Variants In a GMM with k components,
if Σℓ = Σ= σ2In for 1≤ ℓ≤ ℓ, then

P(x j | µℓ,Σ) =
1
p

(2π)pσ
· exp
�

−
1

2σ2
∥(x−µℓ)∥

2
2

�

;

the EM algorithm applied to this special case leads to

E-step: γ(z[i]j,ℓ) =
π
[i]
ℓ

exp
�

−∥x j −µ
[i]
ℓ
∥2

2/2σ
2
�

∑k
ν=1π

[i]
ν exp
�

−∥x j −µ
[i]
ν ∥2

2/2σ
2
�

M-step: µ[i+1]
ℓ

=

n
∑

j=1

γ(z[i]j,ℓ) x j

n
∑

j=1

γ(z[i]j,ℓ)

π
[i+1]
ℓ

=
1
n

n
∑

j=1

γ(z[i]j,ℓ).

When σ→ 0, we can show that

γ(z j,ℓ)→

¨

1 if ℓ= argminν
�

∥x j −µν∥2
2

	

0 otherwise

which is simply the formulation for k−means.

Note that the components do not need to be multivariate
Gaussians; there is a general EM algorithm that takes ad-
vantage of the concavity of the ln function [2].

If the dataset of observations is binary, as may occur in
image datasets (each pixel taking on the values 0 or 1, de-
pending as to whether the pixel is white or black, say), we
can modify GMM so that P(x j | µℓ) arises from a multivari-
ate Bernoulli distribution:

B(x j | µℓ) =
p
∏

ν=1

µ
x j,ν

ℓ,ν (1−µℓ,ν)
1−x j,i ,

where µℓ ∈ [0,1]p. Thus, if there are k components, then

P(x j | Θ) =
k
∑

ℓ=1

πℓB(x j | µℓ)

and

LL(Θ) = ln P(X | Θ) =
n
∑

j=1

ln

�

k
∑

ℓ=1

πℓ

p
∏

ν=1

µ
x j,ν

ℓ,ν (1−µℓ,ν)
1−x j,i

�

.

We can find Θ∗ that maximizes LL(Θ) by using the EM algo-
rithm for the Bernoulli Mixture Models: the EM algorithm
applied to this special case leads to

E-step: γ(z[i]j,ℓ) = π
[i]
ℓ

p
∏

ν=1

�

µ
[i]
ℓ,ν

� x j,ν
(1−µ[i]

ℓ,ν)
1−x j,i

M-step: µ[i+1]
ℓ

=

n
∑

j=1

γ(z[i]j,ℓ) x j

n
∑

j=1

γ(z[i]j,ℓ)

π
[i+1]
ℓ

=
1
n

n
∑

j=1

γ(z[i]j,ℓ),

with initialization π[0]
ℓ
= 1

k and

µℓ ∼
p
∏

ν=1

U (0.25, 0.75)

for 1≤ ℓ≤ k.

Other variants include Generalized EM, Variational EM,
and Stochastic EM [2]. Note that the essence of EM meth-
ods remains the same for all algorithms: we attempt to
"guess" the value of the "hidden" cluster variable z j,ℓ in the
E-step, and we update the model parameters in the M-step,
based on the approximated responsibilities found in the
E−step.

Interestingly, EM can detect overlapping clusters (unlike
k−means, see Figure 25). But most variants share the same
limitations: convergence to a global maximizer is not guar-
anteed; it may be quite slow even when it does converge,
and the correct number of components is assumed to be
known prior to analysis.
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Figure 25. EM results on the Gapminder data using the default mclust() settings (no parameters are specified); on
the raw data, EM finds 5 clusters (top); on the scaled data, it finds 2 clusters (bottom). This implementation determines
the optimal number of clusters using BIC.
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Figure 26. Illustration of 3−mediods on an artificial dataset; modified from [16].

4.4 Affinity Propagation
Affinity propagation (AP) is a fairly recent arrival on the
clustering stage [16,17]; it takes a somewhat novel perspec-
tive on clustering although, as might be expected, there are
still similarities to other clustering methods, in particular,
DBSCAN and k−means.

AP takes the k−medoids algorithm as a jumping off
point. Unlike k−means or EM, this algorithm does not
operate on statistical principles; rather, it selects existing
observations to act as the exemplar for a particular cluster
(rather than a mean vector, as in k−means; see Figure 26).

The k−mediods algorithm refines the selection of these
exemplars so that in the final (stable) configuration, the
observations assigned to an exemplar are quite similar to
it, relative to other exemplars.

As the name suggests, the number of clusters k must
be selected prior to running the algorithm; as is the case
with k−means, k−medoids is non-deterministic and is sen-
sitive to the initial choice of exemplars and similarity metric.

The AP algorithm attempts to overcome the issues arising
with k−medoids, using Bayesian network theory (in partic-
ular, belief propagation networks and factor graphs), and
treats observations as a connected graph. In this approach,
each graph vertex can:

communicate with any other vertex, and
act as a possible exemplar for other observations.

The selection of exemplars is determined by exchanging
real-valued messages between points. Eventually, sets of
exemplars and data points associated with each exemplar
are generated from this iterative process, forming clusters.

Messages are updated on the basis of fairly simple formulae.
As in all clustering contexts, a similarity function s must
first be selected prior to clustering: for distinct pairs (i, k),
s(i, k) represents the suitability of k as an exemplar of i.

Each observation k is further assigned a preference
s(k, k) that it be chosen as an exemplar. The preference can
be constant, to indicate no particular initial preference.

Two types of messages get sent:

the availability a(i, k) sent from k to i, which reports
on the suitability of k to be an exemplar of i;
the responsiblity r(i, k) sent from i to k, which re-
ports on the suitability of i to be represented by k.

The availabilities are initialized to 0, the responsibilities to

r(i, k)← s(i, k)−max
k′ ̸=k
{a(i, k′) + s(i, k′)}.

This calculation allows eligible exemplars of an observation
to "compete" for each observations, in a sense, so they can
become that observation’s exemplar.40

Subsequently, the focus switches back and forth between
the exemplar and the observation perspective, with obser-
vations looking for available exemplars:

a(i, k)←















min

(

0, r(k, k) +
∑

i′ ̸∈{i,k}

max{0, r(i, k)}

)

i ̸= k
∑

i′ ̸=k

max{0, r(i′, k)} i = k

The case i = k is intended to reflect current evidence that
point k is an exemplar.

40As candidate exemplars are themselves observations, we can also
compute self-responsibility as r(k, k)← s(k, k)−maxk ̸=k′{s(k, k′)}.
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Figure 27. Illustration of affinity propagation on an artificial dataset (top); illustration of availability and responsibility
(bottom); modified from [16].

The responsibilities and availabilities are updated, reflecting
the current affinity that one observation has for choosing
another observation as its exemplar (hence the name), until
the quantities converge to r(i, k) and a(i, k), respectively,
for all pairs of observations (i, k).

This leads to the cluster assignment {c1, . . . , cn}, where

ci = argmax
k
{a(i, k) + r(i, k)}, 1≤ i ≤ n;

if i is an observation with associated exemplar k, then
ci = ck = k.

The fact that any observation can become an exemplar
when the quantities are updated, and thus that the number
of clusters is not an algorithm parameter, is an important
distinction between AP and k−medoids (and other sege-
mentation clustering approaches).

Setting Algorithm Parameters AP has two parameters
which impact its clustering behaviour: the input prefer-
ence (which influences the eventual number of clusters)
and the dampening parameter.

The input preference determines the suitability of each
observation to act as an exemplar; this is often set as the
median similarity in the data, but it can be tweaked. In
principle, certain observations could be assigned preference
values in a different manner, perhaps relating to domain
knowledge (or previous results).

The dampening parameter is slightly more technical.
Because affinity propagation creates a directed graph to

generate clusters, it can become vulnerable to graph loops,
which could result in algorithmic oscillations (the algorithm
may not converge to a particular solution). The dampening
factor acts to control this oscillation problem.

Comparison with Other Algorithms Performance of clus-
tering algorithms can be considered both in general (e.g.,
based on best/worst cases of an implemented algorithm)
or in the context of applications in particular domains. One
major AP drawback is the cost of calculation of the similar-
ity matrix, which is O(n2). Once the similarity matrix has
been calculated, the number of scalar computations scales
linearly in the number of similarities or quadratically in the
number of observations if all possible pairwise similarities
are used [16]. In other words, AP is slow on larger datasets.

Arguably, one of the major advantages of AP (other than
not having to specify the number of clusters up front) is
its ability to use any similarity measure. As a result, we do
not need to alter the dataset to ’fit’ with a distance/simi-
larity framework (e.g., by changing categorical variables
into numeric variables in some way, or ignoring categorical
variables altogether).

Example We once again re-visit the 2011 (scaled) Gapmin-
der dataset. We use the AP implementation found in the R
packageapcluster, with similarity s(i, k) = −∥xi−xk∥2.
We start by setting the input preference as the median simi-
larity and obtain 13 clusters; if instead we use the minimum
similarity, we obtain 4 clusters (exemplars: Guinea, Guyana,
Croatia, Morocco). The results are displayed in Figure 28.
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Figure 28. AP results on the scaled 2011 Gapminder data using apcluster; input preference is the median of
similiarities in the data, yielding 13 clusters (top) or the minimum of input similarities, yielding 4 clusters.
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4.5 Fuzzy Clustering
Fuzzy clustering (FC) is also called “soft” clustering (in op-
position to “hard” clustering). Rather than assigning each
observation to a cluster, they are assigned a cluster signa-
ture, a set of values that indicate their relative membership
in each of the clusters.

The signature vector is often interpreted as a prob-
ability vector: observation xi belongs to cluster ℓ with
probability pi,ℓ ≥ 0, with

pi,1 + · · ·+ pi,c = 1, for all 1≤ i ≤ n.

Fuzzy c−Means: The Typical Approach The most preva-
lent algorithm for carrying out FC is called fuzzy c−means
(FCM). It is a variant of k−means with two modifications:

the presence of a new parameter m > 1, called the
fuzzyfier, which determines the degree of "fuzziness"
of the clusters, and
cluster membership is output as a weight vector,
with weights in [0,1] adding to 1.

As in k−means, c observations are selected randomly as
the initial cluster centroids, as are the membership weights
of each observation.

The membership weights of each observations, relative
to the current centroid, are re-calculated based on how
"close" the point is to the given centroid in comparison to
the distance to all of the other centroids.41

Effectively, we are looking for clusters that minimize the
objective function

c
∑

ℓ=1

∑

xi∈Cℓ

um
i,ℓvariation(xi ,µℓ),

where the degree um
i,ℓ to which observation xi belongs to

cluster Cℓ is

um
i,ℓ =

1
c
∑

j=1

�

variation(xi ,µℓ)
variation(xi ,µ j)

�2/(m−1)
.

The value of m effectively determines the width of fuzziness
bands around clusters, where clusters may overlap with
other clusters.

Within these bands, if there are overlaps, points will
have weights between 0 and 1. Outside of these bands,
points will have a membership of 1 for a particular cluster
(that it is close to) and a membership of 0 for other bands.

As with k−means, the algorithm is generally run until the
change in membership values, or in this case the weights,
falls below a particular threshold.

41The centroid of the ℓth cluster is the weighted average of ALL obser-
vations by the degree to which they belong to cluster ℓ.

In practice, we typically use m= 2 and

variation(xi ,µℓ) = ∥xi −µℓ∥
2.

As m→ 1, FCM converges to k−means.

Comparison Between Fuzzy c−Means and k−Means To
gain an appreciation for how FCM works, it can be useful
to compare its results to those provided by k−means. The
image below shows the same dataset clustered by k−means
(left) and fuzzy c−means (right) [6].

On the right, we can see observations that "belong" to the
2 clusters. FCM is useful in this context because it would
seem almost arbitrary for some of the points to be assigned
to one or the other cluster (which is what k−means does).

Other Fuzzy Clustering Options Although FCM is the most
popular fuzzy clustering algorithm, it is not a particularly
nuanced algorithm. Like k−means, the resulting clusters
are essentially blob-shaped.

Sophisticated results can be gained by using more com-
plex algorithms. The Gustafson–Kessel (GK) clustering
algorithm [19] is an early extension of FCM which replaces
the simple distance measure used in FCM with a (covari-
ance) matrix. This brings FCM more in-line with EM clus-
tering, which also provides fuzzy results, and can be carried
out with a variety of statistical models, resulting in a more
mature clustering results, albeit at the cost of heavier pro-
cessing. FANNY [27] is another fuzzy approach; it is less
sensitive to outliers than FCM is.

Fuzzy Clustering Validation As with hard clustering, it is
important to validate fuzzy clusters. A number of validation
strategies have been developed; the Xie-Beni index is a
popular choice. It can be calculated for non-fuzzy clusters
as well as for fuzzy clusters. However, it takes into accounts
the weights of the points for each clustering by weighting
the clustering separation and compactness measures using
the membership matrix (i.e., the matrix that contains the
weights for each observation with respect to each cluster).
Other metrics include the Tang index and the Kwon index
[29,45,56].

Example We show some results of FANNY (with c = 2, 3, 4,
and 6 clusters) and FCM (with c = 4 clusters) on the
(scaled) 2011 Gapminder dataset in Figure 29.
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Figure 29. FANNY (for c = 2, 3, 4, 6 clusters, first 4 rows) and FCM results (bottom row) on the scaled 2011 Gapminder
dataset. The scatterplots in the column on the left are projected on the first two principal components of the data. Note
the cluster overlap. The silhouette plots suggest that there are probably 2 or 3 fuzzy clusters in the data.
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4.6 Cluster Ensembles
We have seen that the choice of clustering method and
algorithm parameters may have an impact on the nature
and number of clusters in the data; quite often, the resulting
clusters are volatile. This is aligned with the idea that
the ability to accurately assess the quality of a clustering
outcome remains elusive, for the most part.

The goal of ensemble clustering is to combine the re-
sults of multiple clustering runs to create a more robust
outcome.

Most ensemble models use the following two steps to gen-
erate an outcome:

1. generate different clustering schemes, using different
models, parameters, or data selection mechanisms
(the ensemble components), and

2. combine the different results into a single outcome.

Selecting Different Ensemble Components The ensemble
components are either model-based or data selection-
based.

In model-based ensembles, the different components of
the ensemble reflect different models, such as the use of

different clustering approaches;
different parameter settings for a given approach;
different randomizations (for stochastic algorithms),
or some combination of these.

For instance, an ensemble’s components could be built from:

1. 5 runs of k−means for each of k = 2, . . . , 10, for
each of the Euclidean and Manhattan similarities (90
components);

2. the hierarchical clustering outcome for each of the
complete, single, average, centroid, and Ward link-
age, for each of the Euclidean and Manhattan dis-
tances, for each of k = 2, . . . , 10 clusters (90 compo-
nents);

3. the DBSCAN outcome for each of 5 values of ϵ∗, for
each of minPts= 2, . . . , 10, for each of the Euclidean
and Manhattan distances (90 components), and

4. the spectral clustering outcome for each of 3 thresh-
old values τ, for each of the 3 types of Laplacians,
for k = 2,4,6,8,10, for each of the Euclidean and
Manhattan distances (90 components),

for a total of 4×90 = 360 components. Note that we could
also pick algorithms, settings, and similarity measures ran-
domly, from a list of reasonable options.

In data selection-based ensembles, we might select a
specific clustering approach, combined with a set of pa-
rameters, and a given randomization (if the approach is
stochastic) and instead build the different components of
the model by running the algorithm on different subsets of
the data, either via:

selecting subsets of observations using random or
other probabilistic sampling scheme;
selecting subsets of variables, again using proba-
bilistic sampling, or
some combination of both.

For instance, an ensemble’s components could be built using
affinity propagation with Euclidean distance and a specific
combination of input preference and dampening parameter,
and 360 subsets of the data, obtained as follows:

1. for each component, draw a % of observations to
sample and a # of variables to select from the data;

2. randomly select a subset with these properties;
3. run affinity propagation on the subset to obtain a

clustering outcome.

We could also combine model-based and data selection-
based approaches to create the components.

Combining Different Ensemble Components However the
components are obtained, we need to find a way to combine
them to obtain a robust clustering consensus. There are
three basic methods to do this:

general affiliation;
hypergraph partitioning, and
meta-clustering.

In the general affiliation approach, we consider each pair
of observations and determine how frequently they are
found in the same clusters in each of the ensemble compo-
nents. The corresponding proportions create a similarity
matrix, which can then be used to cluster the data using
some graph-based method, such as DBSCAN.

In the hypergraph partitioning approach, each obser-
vation in the data is represented by a hypergraph vertex. A
cluster in any of the ensemble components is represented as
a hypergraph hyperedge, a generalization of the notion of
edge which connects (potentially) more than two vertices
in the form of a complete clique. This hypergraph is then
partitioned using graph clustering methods.42

The meta-clustering approach is also a graph-based ap-
proach, except that vertices are associated with each cluster
in the ensemble components; each vertex therefore repre-
sents a set of data objects. A graph partitioning algorithm
is then applied to this graph.43 Balancing constraints may
be added to the meta-clustering phase to ensure that the
resulting clusters are balanced.

Cluster ensembles are implemented in R via the packages
diceR and clue. More information is available in [1,2,
49].

42One major challenge with hypergraph partitioning is that a hyperedge
can be “broken” by a partitioning in many different ways, not all of which
are qualitatively equivalent. Most hypergraph partitioning algorithms use
a constant penalty for breaking a hyperedge.

43The distribution of the membership of different instances to the meta-
partitions can be used to determine its meta-cluster membership, or soft
assignment probability.
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