

10. Dimensionality and Data Transformations

DATA SCIENCE ESSENTIALS

Dimensionality of Data

In data analysis, the **dimension** of the data is the number of attributes that are collected in a dataset, represented by the **number of columns**.

We can think of the number of variables used to describe each object (row) as a vector describing that object: the dimension is simply the **size** of that vector.

(**Note:** "dimension" is used differently in business intelligence contexts)

High Dimensionality and Big Data

Datasets can be "big" in a variety of ways:

- too large for the hardware to handle (cannot be stored, accessed, manipulated properly due to # of observations, # of features, the overall size)
- dimensions can go against modeling assumptions (# of features >> # observations)

Examples:

- Multiple sensors recording 100+ observations per second in a large geographical area over a long time period = very big dataset
- In a corpus' Term Document Matrix (cols = terms, rows = documents), the number of terms is usually substantially higher than the number of documents, leading to sparse data

Curse of Dimensionality

N = 100 observations, uniformly distributed on $[0,1]^d$, d = 1, 2, 3. % of observations captured by $[0,1/2]^d$, d = 1,2,3.

Sampling Observations

Question: does every row of the dataset need to be used?

If rows are selected randomly (with or without replacement), the resulting sample might be **representative** of the entire dataset.

Drawbacks:

- if the signal of interest is rare, sampling might drown it altogether
- if aggregation is happening down the road, sampling will necessarily affect the numbers (passengers vs. flights)
- even simple operations on a large file (finding the # of lines, say) can be taxing on the memory prior information on the dataset structure can help

Feature Selection

Removing irrelevant/redundant variables is a common data processing task.

Motivations:

- modeling tools do not handle these well (variance inflation due to multicolinearity, etc.)
- dimension reduction (# variables >> # observations)

Approaches:

- filter vs. wrapper
- unsupervised vs. supervised

Dimension Reduction: PCA

Motivational Example: Nutritional Content of Food

What is the best way to differentiate food items? Vitamin content, fat, or protein level? A bit of each?

Principal Component Analysis (PCA) can be used to find the combinations of variables along which the data points are **most spread out** (dimension reduction).

Dimension Reduction: PCA

Presence of nutrients appears to be **correlated** among food items.

In the (small) sample consisting of Lamb, Pork, Kale, and Parsley, *Fat* and *Protein* levels seem in step, as do *Fiber* and *Vitamin C*.

In a larger dataset, the correlations are r = 0.56and r = 0.57.

How much could 2 **derived** variables explain?

 $PC_1 = -0.45 \times Fat - 0.55 \times Protein + 0.55 \times Fiber + 0.44 \times Vitamin C$ $PC_2 = 0.66 \times Fat + 0.21 \times Protein + 0.19 \times Fiber + 0.70 \times Vitamin C$

PCA Differentiation

PC₁differentiates vegetables from meats; PC₂ differentiates 2 **sub-categories** within these:

- meats are concentrated on the left (low PC₁ values)
- vegetables are concentrated on the right (high PC₁ values)
- seafood have lower Fat content (low PC₂ values) and are concentrated at the bottom
- non-leafy veggies have lower Vitamin C content (low PC₂ values) and are also bunched at the bottom

Common Transformations

Models sometimes require that certain data assumptions be met (normality of residuals, linearity, etc.).

If the raw data does not meet the requirements, we can either:

- abandon the model
- attempt to transform the data

The second approach requires an **inverse transformation** to be able to draw conclusions about the **original data**.

Common Transformations

In the data analysis context, transformations are **monotonic:**

- Iogarithmic
- square root, inverse, power: W^k
- exponential
- Box-Cox, etc.

Transformations on *X* may achieve linearity, but usually at some price (correlations are not preserved, for instance). Transformations on *Y* can help with non-normality and unequal variance of error terms.

Session 4

Box-Cox Transformation

Assume the usual model $Y_j = \sum_i \beta_i X_{j,i} + \varepsilon_j$ with either

- skewed residuals
- not-constant variance
- non-linear trend

The **Box-Cox transformation** $Y_j \mapsto Y_j'(\lambda)$ suggests a choice: select λ which maximizes the corresponding log-likelihood

$$Y_{j}'(\lambda) = \begin{cases} \operatorname{gm}(\boldsymbol{Y}) \times \ln(Y_{j}), \ \lambda = 0\\ \lambda^{-1} \operatorname{gm}(\boldsymbol{Y})^{1-\lambda} \times (Y_{j}^{\lambda} - 1), \ \lambda \neq 0 \end{cases}$$

Box-Cox Transformation

The procedure provides a **guide** to select a transformation.

Theoretical/practical **rationales** may exist for a particular choice of λ .

Residual analysis is still required to ensure that the choice was appropriate.

Better to work with (interpret) the transformed data.

Session 4

Scaling

Numeric variables may have different scales (i.e., weights and heights).

The variance of a large-range variable is typically greater than that of a smallrange variable, introducing a bias (for instance).

Standardization creates a variable with mean 0 and std. dev. 1:

$$Y_i = \frac{X_i - \bar{X}}{s_X}$$

Normalization creates a new variable in the range [0,1]: $Y_i = \frac{X_i - \min X}{\max X - \min X}$

Discretizing

To reduce computational complexity, a numeric variable may need to be replaced by an **ordinal** variable (from *height* value to "*short*", "*average*", "*tall*", for instance).

Domain expertise can be used to determine the bins' limits (although that may introduce unconscious bias to the analyses)

In the absence of such expertise, limits can be set so that either

- the bins each contain the same number of observations
- the bins each have the same width
- the performance of some modeling tool is maximized

Creating Variables

New variables may need to be introduced:

- as **functional relationships** of some subset of available features
- because modeling tool may require independence of observations
- because modeling tool may require independence of features
- to simplify the analysis by looking at **aggregated summaries** (often used in text analysis)

Time dependencies \rightarrow time series analysis (lags?)

Spatial dependencies \rightarrow spatial analysis (neighbours?)

Suggested Reading

Dimensionality and Data Transformations Data Understanding, Data Analysis, Data Science Data Preparation

Data Transformations

- Common Transformations
- Box-Cox Transformations
- Scaling
- Discretizing
- Creating Variables

*Feature Selection and Dimension Reduction (advanced)

Exercises

Dimensionality and Data Transformations

- 1. Using Example: Algae Bloom as a basis, scale, discretize, and create new variables out of the algae blooms dataset.
- 2. Scale, discretize, and create new variables out of the grades and cities.txt datasets.
- 3. Scale, discretize, and create new variables out of a dataset of your choice.