
10. Dimensionality and Data Transformations

194

Session 4

DATA SCIENCE ESSENTIALS



Dimensionality of Data

In data analysis, the dimension of the data is the number of attributes that are
collected in a dataset, represented by the number of columns.

We can think of the number of variables used to describe each object (row) as
a vector describing that object: the dimension is simply the size of that vector.

(Note: “dimension” is used differently in business intelligence contexts)
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High Dimensionality and Big Data

Datasets can be “big” in a variety of ways:
§ too large for the hardware to handle (cannot be stored, accessed, manipulated properly

due to # of observations, # of features, the overall size)

§ dimensions can go against modeling assumptions (# of features ≫ # observations)

Examples:
§ Multiple sensors recording 100+ observations per second in a large geographical area over

a long time period = very big dataset

§ In a corpus’ Term Document Matrix (cols = terms, rows = documents), the number of terms
is usually substantially higher than the number of documents, leading to sparse data
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Curse of Dimensionality
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𝑁 = 100 observations, uniformly distributed on [0,1]@, 𝑑 = 1, 2, 3.
% of observations captured by [0,1/2]@, 𝑑 = 1,2,3.

42% of data is captured 14% of data is captured 7% of data is captured

[http://simplystatistics.org]
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Sampling Observations
Question: does every row of the dataset need to be used?

If rows are selected randomly (with or without replacement), the resulting
sample might be representative of the entire dataset.

Drawbacks:
§ if the signal of interest is rare, sampling might drown it altogether

§ if aggregation is happening down the road, sampling will necessarily affect the numbers
(passengers vs. flights)

§ even simple operations on a large file (finding the # of lines, say) can be taxing on the
memory – prior information on the dataset structure can help
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Feature Selection

Removing irrelevant/redundant variables is a common data processing task.

Motivations:
§ modeling tools do not handle these well (variance inflation due to multicolinearity, etc.)

§ dimension reduction (# variables ≫ # observations)

Approaches:
§ filter vs. wrapper

§ unsupervised vs. supervised
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Dimension Reduction: PCA

Motivational Example: Nutritional Content of Food

What is the best way to differentiate food items?
Vitamin content, fat, or protein level? A bit of each?

Principal Component Analysis (PCA) can be used
to find the combinations of variables along which
the data points are most spread out (dimension
reduction).
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Dimension Reduction: PCA
Presence of nutrients appears to be correlated
among food items.

In the (small) sample consisting of Lamb, Pork,
Kale, and Parsley, Fat and Protein levels seem in
step, as do Fiber and Vitamin C.

In a larger dataset, the correlations are 𝑟 = 0.56
and 𝑟 = 0.57.

How much could 2 derived variables explain?
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PCA Differentiation

PC>differentiates vegetables from meats; PC#
differentiates 2 sub-categories within these:
§ meats are concentrated on the left (low PC! values)

§ vegetables are concentrated on the right (high PC!
values)

§ seafood have lower Fat content (low PC" values)
and are concentrated at the bottom

§ non-leafy veggies have lower Vitamin C content
(low PC" values) and are also bunched at the
bottom

PC!

PC
"
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Session 4 PC! = −𝟎. 𝟒𝟓×Fat − 𝟎. 𝟓𝟓×Protein + 𝟎. 𝟓𝟓×Fiber + 𝟎. 𝟒𝟒×Vitamin C
PC" = 𝟎. 𝟔𝟔×Fat + 0.21×Protein + 0.19×Fiber + 𝟎. 𝟕𝟎×Vitamin C
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Common Transformations

Models sometimes require that certain data assumptions be met (normality of
residuals, linearity, etc.).

If the raw data does not meet the requirements, we can either:
§ abandon the model

§ attempt to transform the data

The second approach requires an inverse transformation to be able to draw
conclusions about the original data.
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Common Transformations

In the data analysis context, transformations are monotonic:
§ logarithmic

§ square root, inverse, power: 𝑊#

§ exponential

§ Box-Cox, etc.

Transformations on 𝑋 may achieve linearity, but usually at some price
(correlations are not preserved, for instance). Transformations on 𝑌 can help
with non-normality and unequal variance of error terms.
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Original Data

Square Root ( 𝑌)

Square (𝑌#)

Reciprocal ( ⁄1 𝑌)
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Box-Cox Transformation
Assume the usual model 𝑌O = ∑P 𝛽P𝑋O,P + 𝜀O with either
§ skewed residuals

§ not-constant variance

§ non-linear trend

The Box-Cox transformation 𝑌O ↦ 𝑌O′(𝜆) suggests a choice: select 𝜆 which
maximizes the corresponding log-likelihood

𝑌O′(𝜆) = R
gm 𝒀 ×ln(𝑌O), 𝜆 = 0

𝜆R>gm 𝒀 >RS×(𝑌OS − 1), 𝜆 ≠ 0

gm = geometric mean
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Box-Cox Transformation

The procedure provides a guide to select a transformation.

Theoretical/practical rationales may exist for a particular choice of 𝜆.

Residual analysis is still required to ensure that the choice was appropriate.

Better to work with (interpret) the transformed data.
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Logarithm (Box-Cox, 𝜆 = 0)
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Scaling
Numeric variables may have different scales (i.e., weights and heights).

The variance of a large-range variable is typically greater than that of a small-
range variable, introducing a bias (for instance).

Standardization creates a variable with mean 0 and std. dev. 1:

𝑌* =
+!, -+
."

Normalization creates a new variable in the range 0,1 : 𝑌P =
T#RUVW T

UXY TRUVW T
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Discretizing
To reduce computational complexity, a numeric variable may need to be
replaced by an ordinal variable (from height value to “short”, “average”, “tall”,
for instance).

Domain expertise can be used to determine the bins’ limits (although that
may introduce unconscious bias to the analyses)

In the absence of such expertise, limits can be set so that either
§ the bins each contain the same number of observations

§ the bins each have the same width

§ the performance of some modeling tool is maximized
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Creating Variables

New variables may need to be introduced:
§ as functional relationships of some subset of available features

§ because modeling tool may require independence of observations

§ because modeling tool may require independence of features

§ to simplify the analysis by looking at aggregated summaries (often used in text analysis)

Time dependencies ⟶ time series analysis (lags?)

Spatial dependencies ⟶ spatial analysis (neighbours?)
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Suggested 
Reading
Dimensionality and 
Data Transformations
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Data Understanding, Data Analysis, Data Science
Data Preparation

Data Transformations
§ Common Transformations

§ Box-Cox Transformations

§ Scaling

§ Discretizing

§ Creating Variables

*Feature Selection and Dimension Reduction (advanced)
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Exercises
Dimensionality and 
Data Transformations
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1. Using Example: Algae Bloom as a basis, scale, 
discretize, and create new variables out of the 
algae blooms dataset.

2. Scale, discretize, and create new variables out 
of the grades and cities.txt datasets.

3. Scale, discretize, and create new variables out 
of a dataset of your choice.
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