

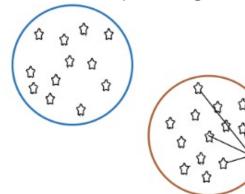
7. Clustering Overview

INTRODUCTION TO MACHINE LEARNING

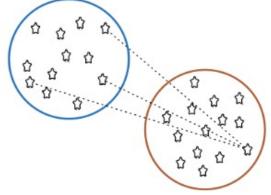
Overview

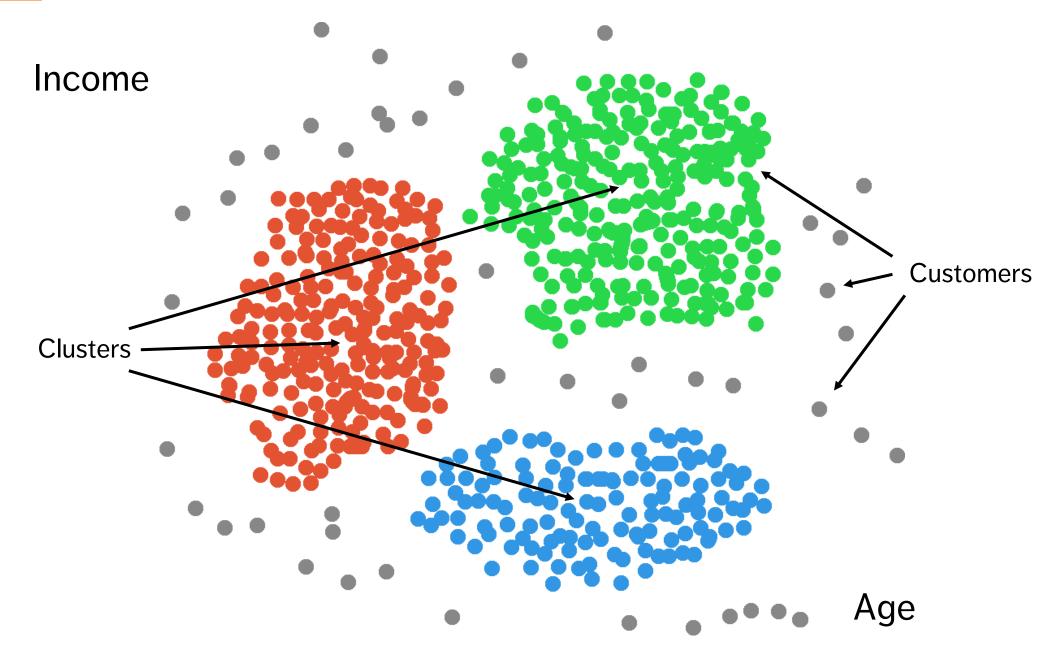
In **clustering**, the data is divided into **naturally occurring groups**. Within each group, the data points are **similar**; from group to group, they are **dissimilar**.

The grouping labels are not determined ahead of time, so clustering is an example of **unsupervised** learning. average distance to points in own cluster (**low is good**)



average distance to points in neighbouring cluster (**high is good**)





Overview

Clustering algorithms can be **complex** and **non-intuitive**, based on varying notions of similarities between observations.

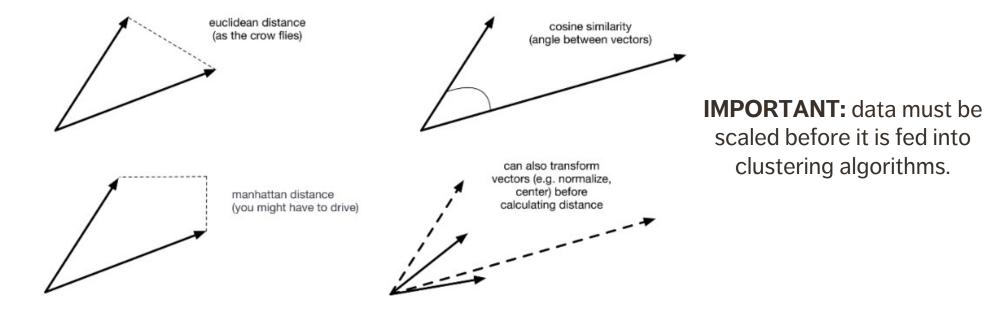
• in spite of that, the temptation to explain clusters *a posteriori* is **strong**

They are also (typically) **non-deterministic:**

- the same algorithm, applied twice (or more) to the same dataset, can discover completely different clusters
- the order in which the data is presented can play a role
- so can starting configurations

Clustering Requirement

A measure of **similarity** *w* (or a distance *d*) between observations:



Typically, $w \to 1$ as $d \to 0$, and $w \to 0$ as $d \to \infty$.

Distance Measures (Metrics)

Categorical Variables*

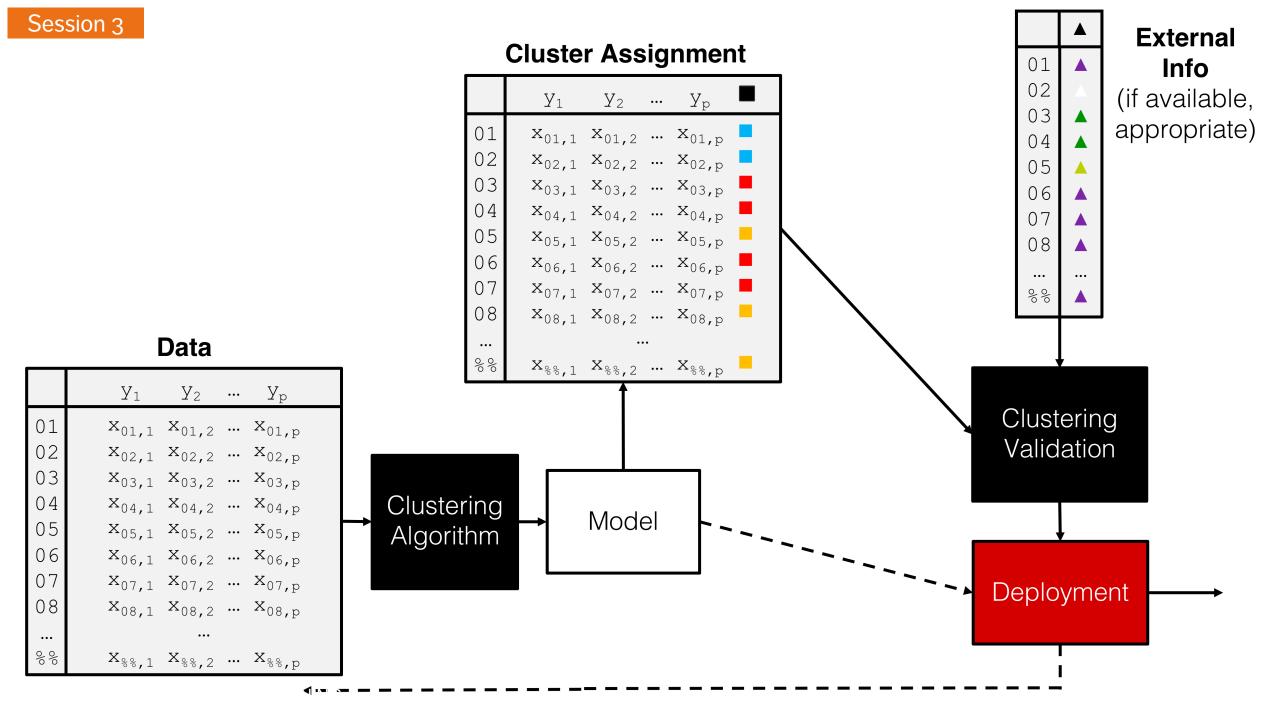
- Hamming distance
- Russel/Rao index
- Jaccard
- Dice's coefficient
- etc.

Numerical Variables

- Euclidean
- Manhattan
- correlation
- cosine
- etc.

No steadfast rule to determine which distance to use; competing schemes are often produced with diff. metrics.

We may need to create hybrid metrics for dataset with both categorical and numerical variables.



Applications

Text Documents

 grouping similar documents according to their topics, based on the patterns of common and unusual words

Product Recommendations

- grouping online purchasers based on the products they have viewed, purchased, liked, or disliked
- grouping products based on customer reviews

Marketing and Business

grouping client profiles based on their demographics and preferences

Applications

Dividing a larger group (or area, or category) into **smaller** groups, with members of the smaller groups guaranteed to have similarities of some kind.

- tasks may then be solved separately for each of the smaller groups
- this may lead to increased accuracy once the separate results are aggregated

Creating taxonomies **on the fly**, as new items are added to a group of items

this would allow for easier product navigation on a website like Netflix, for instance

Livehoods

Cranshaw *et al.* The Livehoods Project: Utilizing Social Media to Understand the Dynamics of a City ICWSM, 2012

Objective

When we think of similarity at the urban level, we typically think in terms of neighbourhoods. Is there some other way to identify similar parts of a city?

The researchers aims to draw the boundaries of **livehoods**, areas of similar character within a city, by using clustering models. Unlike **static** administrative neighborhoods, the livehoods are defined based on the **habits** of their inhabitants.

Livehoods

Cranshaw et al. <u>The Livehoods Project: Utilizing Social Media</u> <u>to Understand the Dynamics of a City</u> *ICWSM*, 2012

Methodology

The authors use **spectral clustering** to discover **distinct geographic areas** of the city based on collective **movement patterns**.

Livehood clusters are built as follows:

- 1. a **geographic distance** is computed based on pairs of check-in venues' coordinates;
- 2. a **social similarity** is computed between each pair of **venues** using cosine measurements;
- 3. spectral clustering produces candidate livehoods;
- interviews are conducted with residents in order to explore, label, and validate the clusters discovered by the algorithm.

Livehoods

Cranshaw *et al.* <u>The Livehoods Project: Utilizing Social Media</u> <u>to Understand the Dynamics of a City</u> *ICWSM*, 2012

Data

The data comes from two sources, combining approximately 11 million check-ins from the dataset of Chen et al. (a recommendation site for venues based on users' experiences) and a new dataset of 7 million Twitter check-ins downloaded between June and December of 2011.

For each check-in, the data consists of the **user ID**, the **time**, the **latitude and longitude**, the **name of the venue**, and its **category**.

In this case study, data from the city of Pittsburgh, Pennsylvania, is examined *via* 42,787 check-ins of 3840 users at 5349 venues.

Livehoods

Cranshaw et al. <u>The Livehoods Project: Utilizing Social Media</u> <u>to Understand the Dynamics of a City</u> *ICWSM*, 2012

Strengths and Limitations of the Approach

- The technique used in this study is **agnostic** towards the particular source of the data: it is not dependent on meta-knowledge about the data.
- The algorithm may be prone to "majority" bias, possibly misrepresenting/hiding minority behaviours.
- The dataset is built from a **limited** sample of check-ins shared on Twitter and are therefore biased towards the types of visits/locations that people typically want to share **publicly**.
- Tuning the clusters is non-trivial: experimenter bias may combine with "confirmation bias" of the interviewees in the validation stage – if the researchers are residents of Pittsburgh, will they see clusters when there were none?

Livehoods

Cranshaw et al. <u>The Livehoods Project: Utilizing Social Media</u> <u>to Understand the Dynamics of a City</u> *ICWSM*, 2012

Results, Evaluation, and Validation

Over 3 areas of the city, 9 livehoods have been identified and validated by 27 Pittsburgh residents

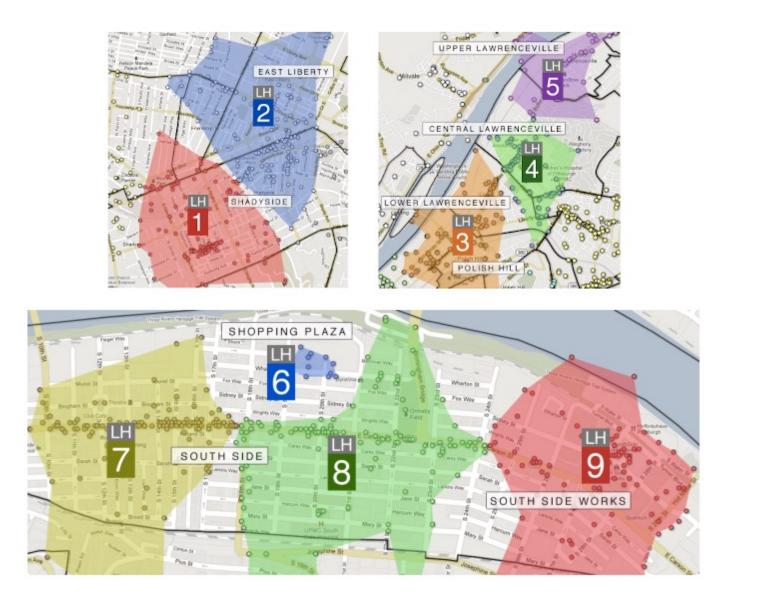
- Municipal Neighborhoods Borders: livehoods are dynamic, and evolve as people's behaviours change, unlike fixed neighbourhoods set by the city government.
- Demographics: the interviews displayed strong evidence that the demographics of the residents and visitors of an area play a strong role in explaining the livehood divisions.
- Development and Resources: economic development can affect the character of an area. Similarly, the resources provided by a region has a strong influence on the people that visit it, and hence its resulting character.

Session 3

Case Study

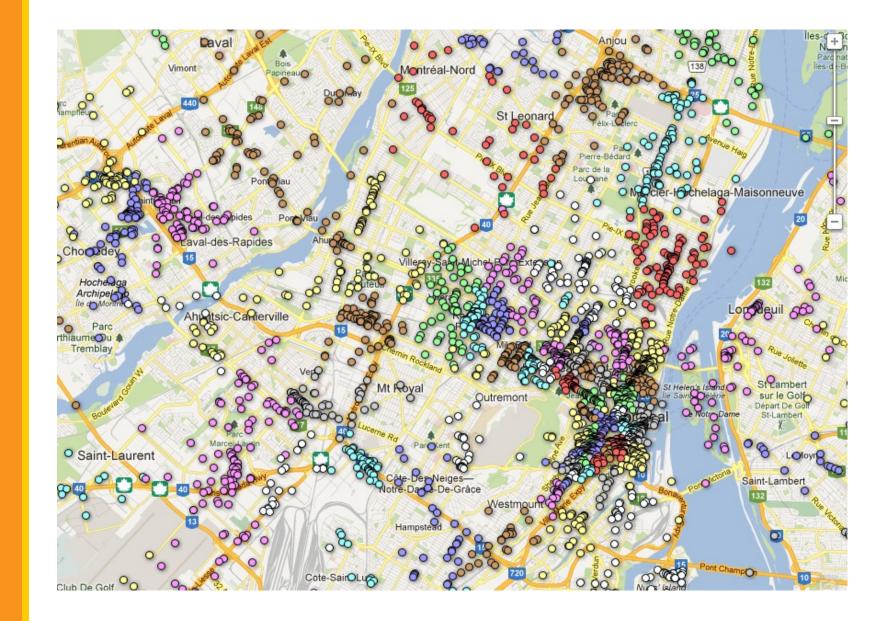
Livehoods

Cranshaw *et al.* <u>The Livehoods Project: Utilizing Social Media</u> <u>to Understand the Dynamics of a City</u> *ICWSM*, 2012



Livehoods

Cranshaw et al. <u>The Livehoods Project: Utilizing Social Media</u> <u>to Understand the Dynamics of a City</u> *ICWSM*, 2012



General Remarks

Clustering is a relatively **intuitive** concept for human beings as our brains do it unconsciously:

- facial recognition
- searching for patterns, etc.

In general, people are very good at **messy** data, but computers and algorithms have a harder time.

Part of the difficulty is that there is **no agreed-upon definition of what constitutes a cluster:**

"I may not be able to define what it is, but I know one when I see one"

Suggested Reading

Clustering Overview

Data Understanding, Data Analysis, Data Science Machine Learning 101

Clustering

- Overview
- <u>Case Study: Livehoods</u>

Spotlight on Clustering

- *Overview (advanced)
- Unsupervised Learning
- Clustering Framework
- A Philosophical Approach to Clustering

Exercises

Clustering Overview

- 1. What does the (potential) non-replicability of clustering imply for validation? For client and/or stakeholder buy-in?
- 2. Identify scenarios and questions that could use classification and/or value estimation in your every day work activities.