Welcome to our training catalog. All courses are provided in-house and the courses listed below can be mixed to meet your needs.

Please contact us to discuss what courses would best match your requirements and if you have any questions on specific courses or course categories.

 

Introduction to Clustering

Introduction to Clustering Image

When it comes to using mathematical and statistical language and formalism, supervised learning slots into a role akin to that played by physics: complex, yes, but quite well-suited to the language and with a long history of applications. Unsupervised learning (such as clustering) is more similar to biology: it has not been studied with the same formalism and to the same extent, because it is, quite simply, harder to do so (not in the sense that the algorithms are too complicated, but in the sense that their results are harder to validate). Interest in those methods is increasing, however. In this MCT, we discuss the basics of clustering and tackle some of its issues and challenges. We also introduce k-Means, hierarchical clustering, and discuss clustering validation.

Category:
Machine Learning and AI Basics
Tags:
Machine Learning and AI 101, Instructor Led, Learning by Doing, Self Guided
Product Code:
ML-2
Course Duration (hours):
9

Introduction to Clustering

Introduction to Clustering Image

When it comes to using mathematical and statistical language and formalism, supervised learning slots into a role akin to that played by physics: complex, yes, but quite well-suited to the language and with a long history of applications. Unsupervised learning (such as clustering) is more similar to biology: it has not been studied with the same formalism and to the same extent, because it is, quite simply, harder to do so (not in the sense that the algorithms are too complicated, but in the sense that their results are harder to validate). Interest in those methods is increasing, however. In this MCT, we discuss the basics of clustering and tackle some of its issues and challenges. We also introduce k-Means, hierarchical clustering, and discuss clustering validation.