Course Details Datasets

Course Outline

Course Logistics

Instructor: Patrick Boily, uOttawa
Communications with the Instructor must be conducted through Slack. The Slack invite link is available in the “Announcements” section on Brightspace.

Schedule: Sep 04 – Dec 02
    Mondays, 10:00-11:20, STE G0103
    Wednesdays, 08:30-09:50, STE G0103

Zoom link (if needed)

Projects Deadlines: 20-Sep, 04-Oct, 25-Oct, 15-Nov, 06-Dec, 13-Dec
    Upload completed projects as PDFs to Slack
    10 pages maximum for reports, no exceptions

Course Notes:
    Data Understanding, Data Analysis, and Data Science (DUDADS)
    The Practice of Data Visualization (PDV)

Detailed Schedule:
Schedule

Project Datasets:
    polls_us_election_2016
    ab_data | mimic3d
    BASA_AUC_2028_912 | dat_F_sub | data_P_sub | years20262030
    flights1_2019_1

0. Data Basics 1. Data Visualization
Video Lectures: (3:59:29)
    0.1 Data Fundamentals | Part 1 (0:39:56)
    0.1 Data Fundamentals | Part 2 (0:39:08)
    0.2 Basics of R | Part 1 (0:25:50)
    0.2 Basics of R | Part 2 (0:25:01)
    0.3 Tidyverse for Data Wrangling (0:37:44)
    0.4 Data Processing | Part 1 (0:34:23)
    0.4 Data Processing | Part 2 (0:37:27)

Slide Decks:
    Data Fundamentals
    Introduction to Programming
    Programming in R (and Python)
    Data Processing
    Storytelling with Data

Course Notes Chapters:
    DUDADS, ch. 1: Programming Primer
    DUDADS, ch. 13: Non-Technical Aspects of Data Work (DUDADS)
    DUDADS, ch. 14: Data Science Basics
    DUDADS, ch. 15: Data Preparation
    PDV, ch. 7: Stories and Storytelling
    PDV, ch. 8: Effective Storytelling Visuals

Video Lectures: (4:28:04)
    1.1 Data Exploration & 1.2 Pre-Analysis Visualization (1:16:00)
    1.3 Post-Analysis Visualization & 1.4 Visualization Catalogue (1:13:35)
    1.5 Grammar of Graphics & 1.6 Introduction to Dashboards (1:11:55)
    1.7 Graphics with ggplot2 | Part 1 (0:19:32)
    1.7 Graphics with ggplot2 | Part 2 (0:27:02)

Slide Deck: Data Exploration and Data Visualization

Course Notes Chapters:
    PDV, ch. 1: A Data Visualization Primer
    PDV, ch. 2: Data Visualization and Exploration
    PDV, ch. 4: The Mechanics of Visual Perception
    PDV, ch. 5: Visual Design and Data Charts
    PDV, ch. 6: Universal Design and Accessibility
    PDV, ch. 9: Visualization Toolbox
    PDV, ch. 10: Visualization Software
    PDV, ch. 12: ggplot2 Visualizations in R

Project 1 (due date: 04-Oct)

Supplementary Materials:
    DAL Podcast Episodes: 17 episodes (9:07:38)

2. Bayesian Data Analysis 3. Queueing Systems

Video Lectures: (4:06:59)
    2.1 Plausible Reasoning & 2.2 The Rules of Probability & 2.3 Bayes’ Theorem (1:13:48)
    2.3 Bayes’ Theorem (cont.) & 2.4 Examples & 2.5 Prior Distributions (1:07:30)
    2.5 Prior Distributions (cont.) (0:42:10)
    2.6 Naïve Bayes Classification & 2.7 MCMC and Numerical Methods (1:03:30)

Slide Deck: A Cursory Glance at Bayesian Analysis

Course Notes Chapter:
    DUDADS, ch. 26: Bayesian Data Analysis

Project 2 (due date: 25-Oct)

Supplementary Materials:
    R Code Archive (from Kruschke’ Doing Bayesian Analysis)
    Tutorial – Coin (Excel)
    Tutorial – Dollar Bills (Notebook)
    Tutorial – Planes (Excel)
    Tutorial – Salaries (Excel)

Video Lectures: (2:39:29)
    3.1 Introduction & 3.2 Terminology & 3.3 Notation (0:46:05)
    3.4 Little’s Queueing Formula & 3.5 The M/M/c Queueing Model (00:46:16)
    3.6 Example: Canadian Airports (01:07:08)

Slide Decks:
    Basics of Queueing Theory
    CATSA and Queueing Systems

Course Notes Chapter:
    DUDADS, ch. 25: Queueing Models

Project 3 (due date: 15-Nov)

4. Anomaly Detection and Outlier Analysis
Video Lectures: (5:51:03)
    4.1 Basic Notions and Overview (00:42:36)
    4.1 Basic Notions and Overview (cont.) (00:36:32)
    4.2 Quantitative Methods (00:52:31)
    4.2 Quantitative Methods (cont.) (00:34:35)
    4.3 Qualitative Methods (00:20:46)
    4.4 Anomalies in High-Dimensional Datasets (00:29:49)
    4.4 Anomalies in High-Dimensional Datasets (cont.) & 4.5 Outlier Ensembles (00:31:32)
    4.6 Anomalies in Text Datasets (00:29:16)

Slide Deck: Anomaly Detection and Outlier Analysis

Course Notes Chapter:
    DUDADS, ch. 27: Anomaly Detection and Outlier Analysis

Project 4 (due date: 06-Dec)